Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 工程科學及海洋工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/31190
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor薛文証
dc.contributor.authorSeng-Wen Hsinen
dc.contributor.author辛聖文zh_TW
dc.date.accessioned2021-06-13T02:34:51Z-
dc.date.available2008-02-02
dc.date.copyright2007-02-02
dc.date.issued2006
dc.date.submitted2007-01-22
dc.identifier.citation[1] T. R. Hsu, MEMS & Microsystems Design and Manufacture, McGraw-Hill, 2002.
[2] E. Gizeli, M. Liley, C. R. Lowe, and H. Vogel, “Antibody Binding to a Functionalized Supported Lipid Layer: A Direct Acoustic Immunosensor”, Anal. Chem. vol.69,pp.4808, 1997.
[3] G. Sauerbrey, “Verwendung von schwingquarzen zur Schichten und zur ”, Z. Phys. vol.155, pp.206, 1959。
[4] D. S. Ballantine, S. J. Matrin, R. M. White, H. Wohltjen, E. T. Zellers, Acoustic Wave Sensors:Theory, Design, and Physico-Chemical Applications, Academic Press, New York, 1997.
[5] W. H. King, “Piezoelectric sorption detector”,Anal. Chem. vol.36, pp.1735-1739, 1964.
[6] K. K. Kanazawa, J. G. Gordon , “Frequency of a quartz microbalance in contact with liquid”,Anal. Chem. vol.57, pp.1770-1771,1985.
[7] M. Hiroshi, T. Eiichi, K. Isao, “Computation of equivalent circuit parameters of quartz crystals in contact with liquids and study of liquid properties”, Anal. Chem. Vol.60, pp.2142-2146,1988.
[8] S. J. Martin, V. E. Granstaff and G. C. Frye, “Characterization of a quartz crystal microbalance with simultaneous mass and liquid loading”,Anal. Chem. Vol.63, pp.2272-2281, 1991.
[9] M. Yang and M. Thompson, “Multiple chemical information from the thickness shear mode acoustic wave sensor in the liquid phase”, Anal. Chem. vol.65, pp.1158-1168, 1993.
[10] C. E. Reed, K. K. Kanazawa, and J. H. Kaufman, “Physical description of a viscoelastically loaded AT-cut quartz resonator”, J. Appl. Phys. vol.68, pp.1993-2001,1990.
[11] D. DeKee, J. Stastna, and M. B. Powley, J. Non-Newton Fluid Mech. 26,149,1987.
[12] E. Nwankwo, C. J. Durning, “Mechanical response of thickness-shear mode quartz-crystal resonators to linear viscoelastic fluids”, Sens. Actuators vol.64,pp.119-124, 1998.
[13] R. B. Bird, R. C. Armstrong and O. Hassager, “Dynamics of Polymeric Liquids”,Vol. 1, Wiley, New York, 1987,Ch. 5,pp. 255-291
[14] P. E. Rouse, “A theory of linear viscoelastic properties of dilute solutions of coiling ploymers”,J. Chem. Phys. vol.21, pp.1272-1280, 1953.
[15] B. Zimm, “Dynamics of polymer molecules in dilute solution:viscoelasticity, flow birefringence and dielectric loss”, J. Chem. Phys. vol.24, pp.269-280, 1956.
[16] Richard W. Cernosek, “Comparison of lumped-element and transmission-line models for thickness-shear-mode quartz resonator sensors”,IEEE Trans. Ultrason. Ferroelectr. Freq. Control. vol.45, pp.1399-1407, 1998.
[17] H. L. Bandey, “Modeling the Responses of Thickness-Shear Mode Resonators under Various Loading Conditions”, Anal. Chem. vol.71, pp.2205-2214, 1999.
[18] S. J. Martin, “Equivalent-Circuit Model for the Thickness-Shear Mode Resonator with a Viscoelastic Film Near Film Resonance”, Anal, Chem. vol.72, pp.141-149, 2000.
[19] A. Arnau, “An extended Butterworth Van Dyke model for quartz crystal microbalance applications in viscoelastic fluid media”,IEEE Trans. Ultrason. Ferroelectr. Freq. Control. vol.48,pp.1367-1382, 2001
[20] R. Lucklum, C. Behling, and P. Hauptmann, “Role of Mass Accumulation and Viscoelastic Film Properties for the Response of Acoustic-Wave-Based Chemical Sensors”, Anal. Chem. vol.71, pp.2488-2496, 1999.
[21] G. McHale, “Influence of viscoelasticity and interfacial slip on acoustic wave sensors”, J. Appl. Phys. vol.88,pp.7304-7312, 2000.
[22] F. Lu, H. P. Lee and S. P. Lim, “Detecting solid–liquid interface properties with mechanical slip modelling for quartz crystal microbalance operating in liquid”, J. Phys. D vol.37, pp.898-906, 2004.
[23] J. S. Ellis, “Interfacial slip on a transverse-shear mode acoustic wave device”, J. Appl. Phys. vol.94, pp.7856-7867, 2003.
[24] F. Ferrante, “Molecular slip at the solid-liquid interface of an acoustic-wave sensor”, J. Appl. Phys. vol.76, pp.3448-3462, 1994.
[25] R. W. Cernosek, “Comparison of lumped-element and transmission-line models for thickness-shear-mode quartz resonator sensors”, IEEE Trans. Ultrason. Ferroelectr. Freq. Control. vol.45, pp.1399-1407, 1998.
[26] 楊坤松, “TSM振盪器應用於生化感測之研究”,國立台灣大學工程科學與海洋工程研究所碩士論文, 2005.
[27] O. B. Wilson, Introduction to Theory and Design of Sonar Transducers, Los Altos, California, USA, 1988.
[28] R. F. Schmitt, J. W. Allen, J. F. Vetelino, J. Parks, C. Zhang, “Bulk acoustic wave modes in quartz for sensing measurand induced mechanical and electrical property changes”, Sens Actuators (B), vol.76, pp.95-102, 2001.
[29] V. E. Bottom, Introduction to quartz crystal unit design, Van Nostrand Reinhold Company, New York, 1982.
[30] B. A. Auld, Acoustic Fields and Waves in Solids, Wiley, New York, 1973。
[31] J. F. Rosenbaum, Bulk Acoustic Wave Theory and Devices, Artech House, Boston, Sect. 10.5, 1988。
[32] R. Lucklum, C. Behling, R. W. Cernosek, S. J. Martin, “Detremination of complex shear modulus with thickness shear mode resonatros”, J. Phys. D: Appl. Phys. vol.30, pp.346-356, 1997.
[33] W. J. Hsueh, “Analysis of vibration isolation systems using a graph modl”, J. Sound. Vib. vol.216, pp.399-412, 1998.
[34] W. J. Hsueh, “Novel graph model and analysis method for piezoelectric thickness-drive transducers”, J. Acoust. Soc. Am. vol.108, pp.2159-2165, 2000.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/31190-
dc.description.abstract本論文主要目的在於探討以QCM量測具黏彈性之生醫介質,以TWSF等效電路的方式去分析QCM負載複雜黏彈性物質時的頻率與阻抗響應,由TWSF等效電路進行簡化而得到快速求解共振頻率飄移與阻抗變化的近似公式。
現今模擬分析QCM振盪器的等效電路有TLM等效電路、BVD等效電路、TWSF等效電路等。三種方法中以TLM等效電路求得的結果最為精確,但其求解最為複雜。BVD等效電路分析比較簡單,但其精確度較低。因此我們使用TWSF等效電路的方式,進行各種黏彈性流體、黏彈性薄膜,以及雙層黏彈性介質之分析,並與TLM等效電路、BVD等效電路分析的結果作比較。其後,再由TWSF負載黏彈性生醫介質的等效電路去進行簡化分析,找出影響介質振動行為的黏彈性因子,以期能找出快速分析複雜黏彈性負載的簡化公式。
zh_TW
dc.description.abstractThe main purpose of this thesis is to study the determination of viscoelastic properties of biomedical media by QCM and analyze QCM by TWSF equivalent circuit and simplify TWSF equivalent circuit to find the shift of frequency and impedance.
The equivalent circuits of TLM、BVD、TWSF have been applied to QCM at present.The most accurate and complicated is TLM equivalent circuit .The simplest is BVD equivalent circuit,but it is not very accuracy.Thus,we analyze viscoelastic fluid、viscoelastic thin film and double layer of viscoelastic media by TWSF equivalent circuit and compare with the result of the equivalent circuit of TLM and BVD.We expect to simplify the analysis of QCM, find out the viscoelastic factor of media and simplify formula by TWSF equivalent circuit.
en
dc.description.provenanceMade available in DSpace on 2021-06-13T02:34:51Z (GMT). No. of bitstreams: 1
ntu-95-R93525033-1.pdf: 819685 bytes, checksum: 4ecc9893dd118b97f2d3fc6bd8a89fa3 (MD5)
Previous issue date: 2006
en
dc.description.tableofcontents中文摘要…………………………………………………………………i
目錄……………………………………………………………………ii
表目錄…………………………………………………………………v
圖目錄………………………………………………………………vi
符號表……………………………………………………………xi
第一章 緒論………………………………………………………1
1-1 背景與動機……………………………………………………1
1-2 文獻探討………………………………………………………3
1-3 論文架構………………………………………………………5
第二章 QCM振盪器模擬感測原理……………………………7
2-1 石英振動的控制方程式………………………………………7
2-2 等效電路理論…………………………………………………9
2-2-1 TLM等效電路……………………………………………9
2-2-2 BVD等效電路…………………………………………11
2-2-2-1 BVD簡化具負載之共振頻率………………14
2-3 表面負載效應…………………………………………………14
2-3-1 理想質量層之負載……………………………………15
2-3-2 牛頓流體之負載………………………………………16
2-3-3 非牛頓流體之負載……………………………………17
2-3-4 薄膜之負載………………………………………………18
2-3-5 薄膜吸附待測物之負載…………………………………20
第三章 TWSF模式分析………………………………………22
3-1 TWSF模式…………………………………………………22
3-2 QCM於TWSF模式分析……………………………………25
3-2-1 QCM於TWSF模式響應之量測………………………26
3-2-2 TWSF模式之簡化………………………………………27
3-3 負載效應………………………………………………28
3-3-1 無質量負載……………………………………………28
3-3-2 牛頓流體負載…………………………………………29
3-3-3 De Kee流體負載……………………………………30
3-3-4 Rouse流體負載………………………………………33
3-3-5 薄膜負載………………………………………………34
3-3-6 薄膜負載之簡化………………………………………36
3-3-7 薄膜吸附待測物之負載………………………………37
第四章 模擬分析與比較………………………………………………38
4-1 無負載響應……………………………………………………38
4-2 牛頓流體負載響應……………………………………………39
4-3 De Kee流體負載響應………………………………………40
4-3-1 馬克斯威廉流體………………………………………40
4-3-2 三參數流體……………………………………………41
4-4 Rouse流體負載響應…………………………………42
4-5 薄膜負載響應…………………………………………44
4-6 薄膜吸附待測物負載響應…………………………46
第五章 結論與展望……………………………………………………49
5.1 結論……………………………………………………………49
5-2 未來研究方向………………………………………………50
參考文獻………………………………………………………………52
dc.language.isozh-TW
dc.subject薄膜zh_TW
dc.subject生醫zh_TW
dc.subject壓電zh_TW
dc.subjectQCMen
dc.subjectbiomedicalen
dc.subjectviscoelasticen
dc.titleQCM於黏彈性生醫介質之量測zh_TW
dc.titleDetermination of viscoelastic properties of biomedical media by QCMen
dc.typeThesis
dc.date.schoolyear95-1
dc.description.degree碩士
dc.contributor.oralexamcommittee廖建義,吳忠霖,陳永祥
dc.subject.keyword薄膜,壓電,生醫,zh_TW
dc.subject.keywordQCM,viscoelastic,biomedical,en
dc.relation.page88
dc.rights.note有償授權
dc.date.accepted2007-01-23
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept工程科學及海洋工程學研究所zh_TW
顯示於系所單位:工程科學及海洋工程學系

文件中的檔案:
檔案 大小格式 
ntu-95-1.pdf
  未授權公開取用
800.47 kBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved