請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/31169
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 陳培哲 | |
dc.contributor.author | Li-Rung Huang | en |
dc.contributor.author | 黃麗蓉 | zh_TW |
dc.date.accessioned | 2021-06-13T02:33:37Z | - |
dc.date.available | 2008-02-02 | |
dc.date.copyright | 2007-02-02 | |
dc.date.issued | 2007 | |
dc.date.submitted | 2007-01-23 | |
dc.identifier.citation | 1. Ganem, D., and Prince, A.M. 2004. Hepatitis B virus infection--natural history and clinical consequences. N Engl J Med 350:1118-1129.
2. Bertoletti, A., and Ferrari, C. 2003. Kinetics of the immune response during HBV and HCV infection. Hepatology 38:4-13. 3. Guidotti, L.G., Rochford, R., Chung, J., Shapiro, M., Purcell, R., and Chisari, F.V. 1999. Viral clearance without destruction of infected cells during acute HBV infection. Science 284:825-829. 4. Thimme, R., Wieland, S., Steiger, C., Ghrayeb, J., Reimann, K.A., Purcell, R.H., and Chisari, F.V. 2003. CD8(+) T cells mediate viral clearance and disease pathogenesis during acute hepatitis B virus infection. J Virol 77:68-76. 5. Whalley, S.A., Murray, J.M., Brown, D., Webster, G.J., Emery, V.C., Dusheiko, G.M., and Perelson, A.S. 2001. Kinetics of acute hepatitis B virus infection in humans. J Exp Med 193:847-854. 6. Hoofnagle, J.H. 1981. Serologic markers of hepatitis B virus infection. Annu Rev Med 32:1-11. 7. Wright, T.L., and Lau, J.Y. 1993. Clinical aspects of hepatitis B virus infection. Lancet 342:1340-1344. 8. Stevens, C.E., Neurath, R.A., Beasley, R.P., and Szmuness, W. 1979. HBeAg and anti-HBe detection by radioimmunoassay: correlation with vertical transmission of hepatitis B virus in Taiwan. J Med Virol 3:237-241. 9. Chen, D.S. 1993. From hepatitis to hepatoma: lessons from type B viral hepatitis. Science 262:369-370. 10. McMahon, B.J. 2004. The natural history of chronic hepatitis B virus infection. Semin Liver Dis 24 Suppl 1:17-21. 11. Summers, J. 1981. Three recently described animal virus models for human hepatitis B virus. Hepatology 1:179-183. 12. Mason, W.S., Cullen, J., Saputelli, J., Wu, T.T., Liu, C., London, W.T., Lustbader, E., Schaffer, P., O'Connell, A.P., Fourel, I., et al. 1994. Characterization of the antiviral effects of 2' carbodeoxyguanosine in ducks chronically infected with duck hepatitis B virus. Hepatology 19:398-411. 13. Korba, B.A., Xie, H., Wright, K.N., Hornbuckle, W.E., Gerin, J.L., Tennant, B.C., and Hostetler, K.Y. 1996. Liver-targeted antiviral nucleosides: enhanced antiviral activity of phosphatidyl-dideoxyguanosine versus dideoxyguanosine in woodchuck hepatitis virus infection in vivo. Hepatology 23:958-963. 14. Guidotti, L.G., Matzke, B., Schaller, H., and Chisari, F.V. 1995. High-level hepatitis B virus replication in transgenic mice. J Virol 69:6158-6169. 15. Moriyama, T., Guilhot, S., Klopchin, K., Moss, B., Pinkert, C.A., Palmiter, R.D., Brinster, R.L., Kanagawa, O., and Chisari, F.V. 1990. Immunobiology and pathogenesis of hepatocellular injury in hepatitis B virus transgenic mice. Science 248:361-364. 16. Larkin, J., Clayton, M., Sun, B., Perchonock, C.E., Morgan, J.L., Siracusa, L.D., Michaels, F.H., and Feitelson, M.A. 1999. Hepatitis B virus transgenic mouse model of chronic liver disease. Nat Med 5:907-912. 17. Liu, F., Song, Y., and Liu, D. 1999. Hydrodynamics-based transfection in animals by systemic administration of plasmid DNA. Gene Ther 6:1258-1266. 18. Zhang, G., Gao, X., Song, Y.K., Vollmer, R., Stolz, D.B., Gasiorowski, J.Z., Dean, D.A., and Liu, D. 2004. Hydroporation as the mechanism of hydrodynamic delivery. Gene Ther 11:675-682. 19. Yang, P.L., Althage, A., Chung, J., and Chisari, F.V. 2002. Hydrodynamic injection of viral DNA: a mouse model of acute hepatitis B virus infection. Proc Natl Acad Sci U S A 99:13825-13830. 20. Suzuki, T., Takehara, T., Ohkawa, K., Ishida, H., Jinushi, M., Miyagi, T., Sasaki, Y., and Hayashi, N. 2003. Intravenous injection of naked plasmid DNA encoding hepatitis B virus (HBV) produces HBV and induces humoral immune response in mice. Biochem Biophys Res Commun 300:784-788. 21. Chang, W.W., Su, I.J., Lai, M.D., Chang, W.T., Huang, W., and Lei, H.Y. 2003. The role of inducible nitric oxide synthase in a murine acute hepatitis B virus (HBV) infection model induced by hydrodynamics-based in vivo transfection of HBV-DNA. J Hepatol 39:834-842. 22. Milich, D.R., and Chisari, F.V. 1982. Genetic regulation of the immune response to hepatitis B surface antigen (HBsAg). I. H-2 restriction of the murine humoral immune response to the a and d determinants of HBsAg. J Immunol 129:320-325. 23. Milich, D.R., Louie, R.E., and Chisari, F.V. 1985. Genetic regulation of the immune response to hepatitis B surface antigen (HBsAg). V. T cell proliferative response and cellular interactions. J Immunol 134:4194-4202. 24. Milich, D.R., and McLachlan, A. 1986. The nucleocapsid of hepatitis B virus is both a T-cell-independent and a T-cell-dependent antigen. Science 234:1398-1401. 25. Feitelson, M.A., DeTolla, L.J., and Zhou, X.D. 1988. A chronic carrierlike state is established in nude mice injected with cloned hepatitis B virus DNA. J Virol 62:1408-1415. 26. Zhang, G., Song, Y.K., and Liu, D. 2000. Long-term expression of human alpha1-antitrypsin gene in mouse liver achieved by intravenous administration of plasmid DNA using a hydrodynamics-based procedure. Gene Ther 7:1344-1349. 27. Takahashi, K., Machida, A., Funatsu, G., Nomura, M., Usuda, S., Aoyagi, S., Tachibana, K., Miyamoto, H., Imai, M., Nakamura, T., et al. 1983. Immunochemical structure of hepatitis B e antigen in the serum. J Immunol 130:2903-2907. 28. Standring, D.N., Ou, J.H., Masiarz, F.R., and Rutter, W.J. 1988. A signal peptide encoded within the precore region of hepatitis B virus directs the secretion of a heterogeneous population of e antigens in Xenopus oocytes. Proc Natl Acad Sci U S A 85:8405-8409. 29. Ferrari, C., Penna, A., Bertoletti, A., Valli, A., Antoni, A.D., Giuberti, T., Cavalli, A., Petit, M.A., and Fiaccadori, F. 1990. Cellular immune response to hepatitis B virus-encoded antigens in acute and chronic hepatitis B virus infection. J Immunol 145:3442-3449. 30. Milich, D.R., McLachlan, A., Stahl, S., Wingfield, P., Thornton, G.B., Hughes, J.L., and Jones, J.E. 1988. Comparative immunogenicity of hepatitis B virus core and E antigens. J Immunol 141:3617-3624. 31. Bertoletti, A., Ferrari, C., Fiaccadori, F., Penna, A., Margolskee, R., Schlicht, H.J., Fowler, P., Guilhot, S., and Chisari, F.V. 1991. HLA class I-restricted human cytotoxic T cells recognize endogenously synthesized hepatitis B virus nucleocapsid antigen. Proc Natl Acad Sci U S A 88:10445-10449. 32. Townsend, K., Sallberg, M., O'Dea, J., Banks, T., Driver, D., Sauter, S., Chang, S.M., Jolly, D.J., Mento, S.J., Milich, D.R., et al. 1997. Characterization of CD8+ cytotoxic T-lymphocyte responses after genetic immunization with retrovirus vectors expressing different forms of the hepatitis B virus core and e antigens. J Virol 71:3365-3374. 33. Milich, D.R., Jones, J.E., Hughes, J.L., Price, J., Raney, A.K., and McLachlan, A. 1990. Is a function of the secreted hepatitis B e antigen to induce immunologic tolerance in utero? Proc Natl Acad Sci U S A 87:6599-6603. 34. Milich, D., and Liang, T.J. 2003. Exploring the biological basis of hepatitis B e antigen in hepatitis B virus infection. Hepatology 38:1075-1086. 35. Hsu, H.Y., Chang, M.H., Lee, C.Y., Hsieh, K.H., Ni, Y.H., Chen, P.J., and Chen, D.S. 1995. Precore mutant of hepatitis B virus in childhood fulminant hepatitis B: an infrequent association. J Infect Dis 171:776-781. 36. Milich, D.R., Schodel, F., Hughes, J.L., Jones, J.E., and Peterson, D.L. 1997. The hepatitis B virus core and e antigens elicit different Th cell subsets: antigen structure can affect Th cell phenotype. J Virol 71:2192-2201. 37. Milich, D.R., Chen, M.K., Hughes, J.L., and Jones, J.E. 1998. The secreted hepatitis B precore antigen can modulate the immune response to the nucleocapsid: a mechanism for persistence. J Immunol 160:2013-2021. 38. Chen, M.T., Billaud, J.N., Sallberg, M., Guidotti, L.G., Chisari, F.V., Jones, J., Hughes, J., and Milich, D.R. 2004. A function of the hepatitis B virus precore protein is to regulate the immune response to the core antigen. Proc Natl Acad Sci U S A 101:14913-14918. 39. Milich, D.R., Chen, M., Schodel, F., Peterson, D.L., Jones, J.E., and Hughes, J.L. 1997. Role of B cells in antigen presentation of the hepatitis B core. Proc Natl Acad Sci U S A 94:14648-14653. 40. Lazdina, U., Cao, T., Steinbergs, J., Alheim, M., Pumpens, P., Peterson, D.L., Milich, D.R., Leroux-Roels, G., and Sallberg, M. 2001. Molecular basis for the interaction of the hepatitis B virus core antigen with the surface immunoglobulin receptor on naive B cells. J Virol 75:6367-6374. 41. Lazdina, U., Alheim, M., Nystrom, J., Hultgren, C., Borisova, G., Sominskaya, I., Pumpens, P., Peterson, D.L., Milich, D.R., and Sallberg, M. 2003. Priming of cytotoxic T cell responses to exogenous hepatitis B virus core antigen is B cell dependent. J Gen Virol 84:139-146. 42. Jung, M.C., Spengler, U., Schraut, W., Hoffmann, R., Zachoval, R., Eisenburg, J., Eichenlaub, D., Riethmuller, G., Paumgartner, G., Ziegler-Heitbrock, H.W., et al. 1991. Hepatitis B virus antigen-specific T-cell activation in patients with acute and chronic hepatitis B. J Hepatol 13:310-317. 43. Milich, D.R., McLachlan, A., Thornton, G.B., and Hughes, J.L. 1987. Antibody production to the nucleocapsid and envelope of the hepatitis B virus primed by a single synthetic T cell site. Nature 329:547-549. 44. Riedl, P., Stober, D., Oehninger, C., Melber, K., Reimann, J., and Schirmbeck, R. 2002. Priming Th1 immunity to viral core particles is facilitated by trace amounts of RNA bound to its arginine-rich domain. J Immunol 168:4951-4959. 45. Vanlandschoot, P., and Leroux-Roels, G. 2003. Viral apoptotic mimicry: an immune evasion strategy developed by the hepatitis B virus? Trends Immunol 24:144-147. 46. Loirat, D., Mancini-Bourgine, M., Abastado, J.P., and Michel, M.L. 2003. HBsAg/HLA-A2 transgenic mice: a model for T cell tolerance to hepatitis B surface antigen in chronic hepatitis B virus infection. Int Immunol 15:1125-1136. 47. Akbar, S.M., Onji, M., Inaba, K., Yamamura, K., and Ohta, Y. 1993. Low responsiveness of hepatitis B virus-transgenic mice in antibody response to T-cell-dependent antigen: defect in antigen-presenting activity of dendritic cells. Immunology 78:468-475. 48. Kurose, K., Akbar, S.M., Yamamoto, K., and Onji, M. 1997. Production of antibody to hepatitis B surface antigen (anti-HBs) by murine hepatitis B virus carriers: neonatal tolerance versus antigen presentation by dendritic cells. Immunology 92:494-500. 49. Chen, Y., Wei, H., Sun, R., and Tian, Z. 2005. Impaired function of hepatic natural killer cells from murine chronic HBsAg carriers. Int Immunopharmacol 5:1839-1852. 50. Adkins, B., Leclerc, C., and Marshall-Clarke, S. 2004. Neonatal adaptive immunity comes of age. Nat Rev Immunol 4:553-564. 51. Siegrist, C.A. 2001. Neonatal and early life vaccinology. Vaccine 19:3331-3346. 52. Marodon, G., and Rocha, B. 1994. Activation and 'deletion' of self-reactive mature and immature T cells during ontogeny of Mls-1a mice: implications for neonatal tolerance induction. Int Immunol 6:1899-1904. 53. Sarzotti, M., Robbins, D.S., and Hoffman, P.M. 1996. Induction of protective CTL responses in newborn mice by a murine retrovirus. Science 271:1726-1728. 54. Crispe, I.N. 2003. Hepatic T cells and liver tolerance. Nat Rev Immunol 3:51-62. 55. Goddard, S., Youster, J., Morgan, E., and Adams, D.H. 2004. Interleukin-10 secretion differentiates dendritic cells from human liver and skin. Am J Pathol 164:511-519. 56. Godfrey, D.I., and Kronenberg, M. 2004. Going both ways: immune regulation via CD1d-dependent NKT cells. J Clin Invest 114:1379-1388. 57. Limmer, A., Ohl, J., Kurts, C., Ljunggren, H.G., Reiss, Y., Groettrup, M., Momburg, F., Arnold, B., and Knolle, P.A. 2000. Efficient presentation of exogenous antigen by liver endothelial cells to CD8+ T cells results in antigen-specific T-cell tolerance. Nat Med 6:1348-1354. 58. Bertolino, P., Trescol-Biemont, M.C., and Rabourdin-Combe, C. 1998. Hepatocytes induce functional activation of naive CD8+ T lymphocytes but fail to promote survival. Eur J Immunol 28:221-236. 59. Reis e Sousa, C., Hieny, S., Scharton-Kersten, T., Jankovic, D., Charest, H., Germain, R.N., and Sher, A. 1997. In vivo microbial stimulation induces rapid CD40 ligand-independent production of interleukin 12 by dendritic cells and their redistribution to T cell areas. J Exp Med 186:1819-1829. 60. Dalod, M., Salazar-Mather, T.P., Malmgaard, L., Lewis, C., Asselin-Paturel, C., Briere, F., Trinchieri, G., and Biron, C.A. 2002. Interferon alpha/beta and interleukin 12 responses to viral infections: pathways regulating dendritic cell cytokine expression in vivo. J Exp Med 195:517-528. 61. Fernandez, N.C., Lozier, A., Flament, C., Ricciardi-Castagnoli, P., Bellet, D., Suter, M., Perricaudet, M., Tursz, T., Maraskovsky, E., and Zitvogel, L. 1999. Dendritic cells directly trigger NK cell functions: cross-talk relevant in innate anti-tumor immune responses in vivo. Nat Med 5:405-411. 62. Fujii, S., Shimizu, K., Kronenberg, M., and Steinman, R.M. 2002. Prolonged IFN-gamma-producing NKT response induced with alpha-galactosylceramide-loaded DCs. Nat Immunol 3:867-874. 63. Banchereau, J., and Steinman, R.M. 1998. Dendritic cells and the control of immunity. Nature 392:245-252. 64. Steinman, R.M., Hawiger, D., and Nussenzweig, M.C. 2003. Tolerogenic dendritic cells. Annu Rev Immunol 21:685-711. 65. Rutella, S., Danese, S., and Leone, G. 2006. Tolerogenic dendritic cells: cytokine modulation comes of age. Blood 108:1435-1440. 66. Xu, D., Fu, J., Jin, L., Zhang, H., Zhou, C., Zou, Z., Zhao, J.M., Zhang, B., Shi, M., Ding, X., et al. 2006. Circulating and liver resident CD4+CD25+ regulatory T cells actively influence the antiviral immune response and disease progression in patients with hepatitis B. J Immunol 177:739-747. 67. Bertoletti, A., Costanzo, A., Chisari, F.V., Levrero, M., Artini, M., Sette, A., Penna, A., Giuberti, T., Fiaccadori, F., and Ferrari, C. 1994. Cytotoxic T lymphocyte response to a wild type hepatitis B virus epitope in patients chronically infected by variant viruses carrying substitutions within the epitope. J Exp Med 180:933-943. 68. Okamoto, H., Yotsumoto, S., Akahane, Y., Yamanaka, T., Miyazaki, Y., Sugai, Y., Tsuda, F., Tanaka, T., Miyakawa, Y., and Mayumi, M. 1990. Hepatitis B viruses with precore region defects prevail in persistently infected hosts along with seroconversion to the antibody against e antigen. J Virol 64:1298-1303. 69. Papatheodoridis, G.V., Dimou, E., and Papadimitropoulos, V. 2002. Nucleoside analogues for chronic hepatitis B: antiviral efficacy and viral resistance. Am J Gastroenterol 97:1618-1628. 70. Wu, H.L., Chen, P.J., Lin, M.H., and Chen, D.S. 1991. Temporal aspects of major viral transcript expression in Hep G2 cells transfected with cloned hepatitis B virus DNA: with emphasis on the X transcript. Virology 185:644-651. 71. Zolotukhin, S., Potter, M., Hauswirth, W.W., Guy, J., and Muzyczka, N. 1996. A 'humanized' green fluorescent protein cDNA adapted for high-level expression in mammalian cells. J Virol 70:4646-4654. 72. Widera, G., Austin, M., Rabussay, D., Goldbeck, C., Barnett, S.W., Chen, M., Leung, L., Otten, G.R., Thudium, K., Selby, M.J., et al. 2000. Increased DNA vaccine delivery and immunogenicity by electroporation in vivo. J Immunol 164:4635-4640. 73. Kojima, Y., Xin, K.Q., Ooki, T., Hamajima, K., Oikawa, T., Shinoda, K., Ozaki, T., Hoshino, Y., Jounai, N., Nakazawa, M., et al. 2002. Adjuvant effect of multi-CpG motifs on an HIV-1 DNA vaccine. Vaccine 20:2857-2865. 74. Mehal, W.Z., Azzaroli, F., and Crispe, I.N. 2001. Immunology of the healthy liver: old questions and new insights. Gastroenterology 120:250-260. 75. Yeh, S.H., Tsai, C.Y., Kao, J.H., Liu, C.J., Kuo, T.J., Lin, M.W., Huang, W.L., Lu, S.F., Jih, J., Chen, D.S., et al. 2004. Quantification and genotyping of hepatitis B virus in a single reaction by real-time PCR and melting curve analysis. J Hepatol 41:659-666. 76. Pol, S., Nalpas, B., Driss, F., Michel, M.L., Tiollais, P., Denis, J., and Brecho, C. 2001. Efficacy and limitations of a specific immunotherapy in chronic hepatitis B. J Hepatol 34:917-921. 77. Mancini-Bourgine, M., Fontaine, H., Brechot, C., Pol, S., and Michel, M.L. 2005. Immunogenicity of a hepatitis B DNA vaccine administered to chronic HBV carriers. Vaccine. 78. Beckebaum, S., Cicinnati, V.R., and Gerken, G. 2002. DNA-based immunotherapy: potential for treatment of chronic viral hepatitis? Rev Med Virol 12:297-319. 79. Ferrari, C., Penna, A., Sansoni, P., Giuberti, T., Neri, T.M., Chisari, F.V., and Fiaccadori, F. 1986. Selective sensitization of peripheral blood T lymphocytes to hepatitis B core antigen in patients with chronic active hepatitis type B. Clin Exp Immunol 66:497-506. 80. Lau, G.K., Suri, D., Liang, R., Rigopoulou, E.I., Thomas, M.G., Mullerova, I., Nanji, A., Yuen, S.T., Williams, R., and Naoumov, N.V. 2002. Resolution of chronic hepatitis B and anti-HBs seroconversion in humans by adoptive transfer of immunity to hepatitis B core antigen. Gastroenterology 122:614-624. 81. Wu, J.C., Lee, S.D., Wang, J.Y., Ting, L.P., Tsai, Y.T., Tsay, S.H., and Tong, M.J. 1987. Correlation between hepatic hepatitis B core antigen and serum hepatitis B virus-DNA levels in patients with chronic hepatitis B virus infections in Taiwan. Arch Pathol Lab Med 111:181-184. 82. Chu, C.M., Yeh, C.T., Chien, R.N., Sheen, I.S., and Liaw, Y.F. 1997. The degrees of hepatocyte nuclear but not cytoplasmic expression of hepatitis B core antigen reflect the level of viral replication in chronic hepatitis B virus infection. J Clin Microbiol 35:102-105. 83. Hadziyannis, S.J., Lieberman, H.M., Karvountzis, G.G., and Shafritz, D.A. 1983. Analysis of liver disease, nuclear HBcAg, viral replication, and hepatitis B virus DNA in liver and serum of HBeAg Vs. anti-HBe positive carriers of hepatitis B virus. Hepatology 3:656-662. 84. Hsu, H.C., Su, I.J., Lai, M.Y., Chen, D.S., Chang, M.H., Chuang, S.M., and Sung, J.L. 1987. Biologic and prognostic significance of hepatocyte hepatitis B core antigen expressions in the natural course of chronic hepatitis B virus infection. J Hepatol 5:45-50. 85. Reifenberg, K., Wilts, H., Lohler, J., Nusser, P., Hanano, R., Guidotti, L.G., Chisari, F.V., and Schlicht, H.J. 1999. The hepatitis B virus X protein transactivates viral core gene expression in vivo. J Virol 73:10399-10405. 86. Melegari, M., Wolf, S.K., and Schneider, R.J. 2005. Hepatitis B virus DNA replication is coordinated by core protein serine phosphorylation and HBx expression. J Virol 79:9810-9820. 87. Xu, Z., Yen, T.S., Wu, L., Madden, C.R., Tan, W., Slagle, B.L., and Ou, J.H. 2002. Enhancement of hepatitis B virus replication by its X protein in transgenic mice. J Virol 76:2579-2584. 88. Shimizu, Y., Guidotti, L.G., Fowler, P., and Chisari, F.V. 1998. Dendritic cell immunization breaks cytotoxic T lymphocyte tolerance in hepatitis B virus transgenic mice. J Immunol 161:4520-4529. 89. Pasquetto, V., Guidotti, L.G., Kakimi, K., Tsuji, M., and Chisari, F.V. 2000. Host-virus interactions during malaria infection in hepatitis B virus transgenic mice. J Exp Med 192:529-536. 90. Kakimi, K., Guidotti, L.G., Koezuka, Y., and Chisari, F.V. 2000. Natural killer T cell activation inhibits hepatitis B virus replication in vivo. J Exp Med 192:921-930. 91. Guidotti, L.G., Ishikawa, T., Hobbs, M.V., Matzke, B., Schreiber, R., and Chisari, F.V. 1996. Intracellular inactivation of the hepatitis B virus by cytotoxic T lymphocytes. Immunity 4:25-36. 92. Lian, Z.X., Okada, T., He, X.S., Kita, H., Liu, Y.J., Ansari, A.A., Kikuchi, K., Ikehara, S., and Gershwin, M.E. 2003. Heterogeneity of dendritic cells in the mouse liver: identification and characterization of four distinct populations. J Immunol 170:2323-2330. 93. Pillarisetty, V.G., Shah, A.B., Miller, G., Bleier, J.I., and DeMatteo, R.P. 2004. Liver dendritic cells are less immunogenic than spleen dendritic cells because of differences in subtype composition. J Immunol 172:1009-1017. 94. Kawano, T., Cui, J., Koezuka, Y., Toura, I., Kaneko, Y., Motoki, K., Ueno, H., Nakagawa, R., Sato, H., Kondo, E., et al. 1997. CD1d-restricted and TCR-mediated activation of valpha14 NKT cells by glycosylceramides. Science 278:1626-1629. 95. Kakimi, K., Lane, T.E., Chisari, F.V., and Guidotti, L.G. 2001. Cutting edge: Inhibition of hepatitis B virus replication by activated NK T cells does not require inflammatory cell recruitment to the liver. J Immunol 167:6701-6705. 96. Guidotti, L.G., Ando, K., Hobbs, M.V., Ishikawa, T., Runkel, L., Schreiber, R.D., and Chisari, F.V. 1994. Cytotoxic T lymphocytes inhibit hepatitis B virus gene expression by a noncytolytic mechanism in transgenic mice. Proc Natl Acad Sci U S A 91:3764-3768. 97. Cella, M., Scheidegger, D., Palmer-Lehmann, K., Lane, P., Lanzavecchia, A., and Alber, G. 1996. Ligation of CD40 on dendritic cells triggers production of high levels of interleukin-12 and enhances T cell stimulatory capacity: T-T help via APC activation. J Exp Med 184:747-752. 98. Koch, F., Stanzl, U., Jennewein, P., Janke, K., Heufler, C., Kampgen, E., Romani, N., and Schuler, G. 1996. High level IL-12 production by murine dendritic cells: upregulation via MHC class II and CD40 molecules and downregulation by IL-4 and IL-10. J Exp Med 184:741-746. 99. Trinchieri, G. 2003. Interleukin-12 and the regulation of innate resistance and adaptive immunity. Nat Rev Immunol 3:133-146. 100. Cavanaugh, V.J., Guidotti, L.G., and Chisari, F.V. 1997. Interleukin-12 inhibits hepatitis B virus replication in transgenic mice. J Virol 71:3236-3243. 101. Okamura, H., Tsutsi, H., Komatsu, T., Yutsudo, M., Hakura, A., Tanimoto, T., Torigoe, K., Okura, T., Nukada, Y., Hattori, K., et al. 1995. Cloning of a new cytokine that induces IFN-gamma production by T cells. Nature 378:88-91. 102. Okamura, H., Tsutsui, H., Kashiwamura, S., Yoshimoto, T., and Nakanishi, K. 1998. Interleukin-18: a novel cytokine that augments both innate and acquired immunity. Adv Immunol 70:281-312. 103. Kimura, K., Kakimi, K., Wieland, S., Guidotti, L.G., and Chisari, F.V. 2002. Interleukin-18 inhibits hepatitis B virus replication in the livers of transgenic mice. J Virol 76:10702-10707. 104. Wang, H., Gao, X., Fukumoto, S., Tademoto, S., Sato, K., and Hirai, K. 1999. Differential expression and regulation of chemokines JE, KC, and IP-10 gene in primary cultured murine hepatocytes. J Cell Physiol 181:361-370. 105. Arai, K., Liu, Z.X., Lane, T., and Dennert, G. 2002. IP-10 and Mig facilitate accumulation of T cells in the virus-infected liver. Cell Immunol 219:48-56. 106. Chen, J.P., Lu, H.L., Lai, S.L., Campanella, G.S., Sung, J.M., Lu, M.Y., Wu-Hsieh, B.A., Lin, Y.L., Lane, T.E., Luster, A.D., et al. 2006. Dengue virus induces expression of CXC chemokine ligand 10/IFN-gamma-inducible protein 10, which competitively inhibits viral binding to cell surface heparan sulfate. J Immunol 177:3185-3192. 107. Chen, Z.Y., He, C.Y., Meuse, L., and Kay, M.A. 2004. Silencing of episomal transgene expression by plasmid bacterial DNA elements in vivo. Gene Ther 11:856-864. 108. Riu, E., Grimm, D., Huang, Z., and Kay, M.A. 2005. Increased maintenance and persistence of transgenes by excision of expression cassettes from plasmid sequences in vivo. Hum Gene Ther 16:558-570. 109. Chen, Z.Y., He, C.Y., and Kay, M.A. 2005. Improved production and purification of minicircle DNA vector free of plasmid bacterial sequences and capable of persistent transgene expression in vivo. Hum Gene Ther 16:126-131. 110. Miao, C.H., Thompson, A.R., Loeb, K., and Ye, X. 2001. Long-term and therapeutic-level hepatic gene expression of human factor IX after naked plasmid transfer in vivo. Mol Ther 3:947-957. 111. Piechaczek, C., Fetzer, C., Baiker, A., Bode, J., and Lipps, H.J. 1999. A vector based on the SV40 origin of replication and chromosomal S/MARs replicates episomally in CHO cells. Nucleic Acids Res 27:426-428. 112. Schaarschmidt, D., Baltin, J., Stehle, I.M., Lipps, H.J., and Knippers, R. 2004. An episomal mammalian replicon: sequence-independent binding of the origin recognition complex. Embo J 23:191-201. 113. Jenke, A.C., Stehle, I.M., Herrmann, F., Eisenberger, T., Baiker, A., Bode, J., Fackelmayer, F.O., and Lipps, H.J. 2004. Nuclear scaffold/matrix attached region modules linked to a transcription unit are sufficient for replication and maintenance of a mammalian episome. Proc Natl Acad Sci U S A 101:11322-11327. 114. Manzini, S., Vargiolu, A., Stehle, I.M., Bacci, M.L., Cerrito, M.G., Giovannoni, R., Zannoni, A., Bianco, M.R., Forni, M., Donini, P., et al. 2006. Genetically modified pigs produced with a nonviral episomal vector. Proc Natl Acad Sci U S A 103:17672-17677. 115. Takehara, T., Suzuki, T., Ohkawa, K., Hosui, A., Jinushi, M., Miyagi, T., Tatsumi, T., Kanazawa, Y., and Hayashi, N. 2006. Viral covalently closed circular DNA in a non-transgenic mouse model for chronic hepatitis B virus replication. J Hepatol 44:267-274. 116. Lu, C.Y., Calamai, E.G., and Unanue, E.R. 1979. A defect in the antigen-presenting function of macrophages from neonatal mice. Nature 282:327-329. 117. Taylor, S., and Bryson, Y.J. 1985. Impaired production of gamma-interferon by newborn cells in vitro is due to a functionally immature macrophage. J Immunol 134:1493-1497. 118. Muthukkumar, S., Goldstein, J., and Stein, K.E. 2000. The ability of B cells and dendritic cells to present antigen increases during ontogeny. J Immunol 165:4803-4813. 119. Goriely, S., Vincart, B., Stordeur, P., Vekemans, J., Willems, F., Goldman, M., and De Wit, D. 2001. Deficient IL-12(p35) gene expression by dendritic cells derived from neonatal monocytes. J Immunol 166:2141-2146. 120. Park, F., Ohashi, K., and Kay, M.A. 2003. The effect of age on hepatic gene transfer with self-inactivating lentiviral vectors in vivo. Mol Ther 8:314-323. 121. Kakimi, K., Isogawa, M., Chung, J., Sette, A., and Chisari, F.V. 2002. Immunogenicity and tolerogenicity of hepatitis B virus structural and nonstructural proteins: implications for immunotherapy of persistent viral infections. J Virol 76:8609-8620. 122. Riedl, P., Buschle, M., Reimann, J., and Schirmbeck, R. 2002. Binding immune-stimulating oligonucleotides to cationic peptides from viral core antigen enhances their potency as adjuvants. Eur J Immunol 32:1709-1716. 123. Lobaina, Y., Palenzuela, D., Garcia, D., Rodriguez, D., Pichardo, D., Muzio, V., and Aguilar, J.C. 2006. Comparative study of the immunogenicity and immunoenhancing effects of two hepatitis B core antigen variants in mice by nasal administration. Vaccine 24 Suppl 2:S2-58-59. 124. Rossol, S., Marinos, G., Carucci, P., Singer, M.V., Williams, R., and Naoumov, N.V. 1997. Interleukin-12 induction of Th1 cytokines is important for viral clearance in chronic hepatitis B. J Clin Invest 99:3025-3033. 125. Manigold, T., Bocker, U., Chen, J., Gundt, J., Traber, P., Singer, M.V., and Rossol, S. 2003. Hepatitis B core antigen is a potent inductor of interleukin-18 in peripheral blood mononuclear cells of healthy controls and patients with hepatitis B infection. J Med Virol 71:31-40. 126. Cooper, A., Tal, G., Lider, O., and Shaul, Y. 2005. Cytokine induction by the hepatitis B virus capsid in macrophages is facilitated by membrane heparan sulfate and involves TLR2. J Immunol 175:3165-3176. 127. Calne, R.Y., Sells, R.A., Pena, J.R., Davis, D.R., Millard, P.R., Herbertson, B.M., Binns, R.M., and Davies, D.A. 1969. Induction of immunological tolerance by porcine liver allografts. Nature 223:472-476. 128. Bowen, D.G., McCaughan, G.W., and Bertolino, P. 2005. Intrahepatic immunity: a tale of two sites? Trends Immunol 26:512-517. 129. Biron, C.A., and Brossay, L. 2001. NK cells and NKT cells in innate defense against viral infections. Curr Opin Immunol 13:458-464. 130. Kalvakolanu, D.V., and Borden, E.C. 1996. An overview of the interferon system: signal transduction and mechanisms of action. Cancer Invest 14:25-53. 131. Haller, O., Frese, M., and Kochs, G. 1998. Mx proteins: mediators of innate resistance to RNA viruses. Rev Sci Tech 17:220-230. 132. Terenzi, F., deVeer, M.J., Ying, H., Restifo, N.P., Williams, B.R., and Silverman, R.H. 1999. The antiviral enzymes PKR and RNase L suppress gene expression from viral and non-viral based vectors. Nucleic Acids Res 27:4369-4375. 133. Dong, B., and Silverman, R.H. 1999. Alternative function of a protein kinase homology domain in 2', 5'-oligoadenylate dependent RNase L. Nucleic Acids Res 27:439-445. 134. Guidotti, L.G., and Chisari, F.V. 2001. Noncytolytic control of viral infections by the innate and adaptive immune response. Annu Rev Immunol 19:65-91. 135. Binder, G.K., and Griffin, D.E. 2001. Interferon-gamma-mediated site-specific clearance of alphavirus from CNS neurons. Science 293:303-306. 136. Obojes, K., Andres, O., Kim, K.S., Daubener, W., and Schneider-Schaulies, J. 2005. Indoleamine 2,3-dioxygenase mediates cell type-specific anti-measles virus activity of gamma interferon. J Virol 79:7768-7776. 137. Guidotti, L.G., Morris, A., Mendez, H., Koch, R., Silverman, R.H., Williams, B.R., and Chisari, F.V. 2002. Interferon-regulated pathways that control hepatitis B virus replication in transgenic mice. J Virol 76:2617-2621. 138. Uprichard, S.L., Wieland, S.F., Althage, A., and Chisari, F.V. 2003. Transcriptional and posttranscriptional control of hepatitis B virus gene expression. Proc Natl Acad Sci U S A 100:1310-1315. 139. Andrews, D.M., Andoniou, C.E., Scalzo, A.A., van Dommelen, S.L., Wallace, M.E., Smyth, M.J., and Degli-Esposti, M.A. 2005. Cross-talk between dendritic cells and natural killer cells in viral infection. Mol Immunol 42:547-555. 140. Iizuka, K., Naidenko, O.V., Plougastel, B.F., Fremont, D.H., and Yokoyama, W.M. 2003. Genetically linked C-type lectin-related ligands for the NKRP1 family of natural killer cell receptors. Nat Immunol 4:801-807. 141. Piccioli, D., Sbrana, S., Melandri, E., and Valiante, N.M. 2002. Contact-dependent stimulation and inhibition of dendritic cells by natural killer cells. J Exp Med 195:335-341. 142. Gerosa, F., Baldani-Guerra, B., Nisii, C., Marchesini, V., Carra, G., and Trinchieri, G. 2002. Reciprocal activating interaction between natural killer cells and dendritic cells. J Exp Med 195:327-333. 143. Cooper, M.A., Fehniger, T.A., and Caligiuri, M.A. 2001. The biology of human natural killer-cell subsets. Trends Immunol 22:633-640. 144. Biron, C.A., Nguyen, K.B., Pien, G.C., Cousens, L.P., and Salazar-Mather, T.P. 1999. Natural killer cells in antiviral defense: function and regulation by innate cytokines. Annu Rev Immunol 17:189-220. 145. Orange, J.S., Wang, B., Terhorst, C., and Biron, C.A. 1995. Requirement for natural killer cell-produced interferon gamma in defense against murine cytomegalovirus infection and enhancement of this defense pathway by interleukin 12 administration. J Exp Med 182:1045-1056. 146. Andoniou, C.E., van Dommelen, S.L., Voigt, V., Andrews, D.M., Brizard, G., Asselin-Paturel, C., Delale, T., Stacey, K.J., Trinchieri, G., and Degli-Esposti, M.A. 2005. Interaction between conventional dendritic cells and natural killer cells is integral to the activation of effective antivira | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/31169 | - |
dc.description.abstract | 目前全球約有三億五千萬人口感染慢性B型肝炎,欲治療慢性B型肝炎必須先了解其致病機制,以助發展適當的治療方法。鑑於目前仍無適當的動物模式可供作研究造成B型肝炎病毒持續性感染的成因,我的研究主題即是在免疫健全的小鼠建立B型肝炎病毒持續感染的模式且進一步研究造成持續感染的機制,期望有助於發展適當的治療策略。
由於B型肝炎病毒無法直接感染小鼠,我以高壓注射法(hydrodynamic injection)自小鼠尾靜脈打入一個具複製能力的B型肝炎病毒基因體,促使B型肝炎病毒基因體進入小鼠肝細胞內。在注射質體pAAV/HBV1.2後,約有40%的C57BL/6小鼠在注射後26週仍無法清除體內的B型肝炎抗原,在其血清內仍可偵測到表面抗原、e抗原及成熟病毒顆粒;此外其肝臟內也能偵測到B型肝炎病毒複製時的中間產物、RNA、表面抗原及核心抗原但無明顯的發炎反應且無法產生具保護力的表面抗體。上述特性與人類慢性B型肝炎健康帶原者的免疫耐受期(immune tolerant phase)相似。 同時我也發現小鼠的品系及載體的序列,為決定高壓注射後B型肝炎病毒是否能於小鼠體內持續表現的重要因子。AAV載體有助pAAV/HBV1.2持續存在肝細胞中,而C57BL/6小鼠對B型肝炎抗原的免疫反應較BALB/c小鼠弱,因而在注射pAAV/HBV1.2後傾向持續表現B型肝炎抗原,即造成帶原;而BALB/c小鼠在注射pAAV/HBV1.2後,可於其體內偵測到較強的表面抗體反應及核心抗原的細胞免疫反應,且將B型肝炎病毒清除。 我進一步發現在沒有核心抗原或具核心抗原特異性的免疫反應存在時,不論是C57BL/6小鼠或是對B型肝炎抗原免疫反應較強的BALB/c小鼠都無法有效清除表面抗原及產生具保護力的表面抗體。此結果暗示在此動物模式中,具核心抗原特異性的免疫反應對於清除B型肝炎病毒之感染具決定性,且能幫助感染者產生具保護力之表面抗體。同時也發現核心抗原存在時,有較多的棘細胞(dendritic cells)及自然殺手細胞(natural killer cells)浸潤於肝組織內,且可偵測到較高量的IL-12。由此結果推測核心抗原會吸引且活化肝臟內淋巴球藉此清除B型肝炎病毒感染。 我們初步發現具核心抗原特異性免疫反應與B型肝炎病毒之持續感染具相關性,未來希望能將此動物模式應用於研究核心抗原如何啟動抗病毒機制以清除B型肝炎病毒感染,進一步釐清造成持續性感染的成因;希望藉此能發展出適當的治療策略。 | zh_TW |
dc.description.abstract | There are approximately 350 million people chronically infected with hepatitis B viruses (HBV) worldwide. To develop an appropriate treatment for chronic hepatitis B, it is imperative to have a suitable animal model for studying the pathogenesis of HBV. Our goal is to establish a persistent HBV model in immunocompetent mice for studying the mechanism responsible for HBV persistence, which may facilitate the development of appropriate treatments for chronic hepatitis B.
Due to the inability of HBV to infect mice directly, a replication-competent HBV plasmid, pAAV/HBV1.2, was injected hydrodynamically into the tail veins of mice, which mimicked the infection of HBV to hepatocytes. In 40% of the injected C57BL/6 mice, HBV surface antigenemia, viral replication, transcription and protein expression in the liver tissues persisted for more than 6 months but minimal inflammation and no anti-HBs antibody production were detected. Overall, the status of the long-term HBsAg-positive carrier mice in our study is similar to that of healthy human HBV carriers in the immune tolerant phase. Mouse genetic background and vector backbone were found to be the most important factors for determining HBV persistence after hydrodynamic injection. The AAV vector helped the stabilization of pAAV/HBV1.2 in the hepatocytes of injected mice. C57BL/6 mice exhibited milder immune responses against HBV antigens as compared with those of BALB/c mice and tended to express HBV antigens persistently after hydrodynamic injection of pAAV/HBV1.2. After hydrodynamic injection of pAAV/HBV1.2, all the BALB/c mice developed protective levels of anti-HBs antibodies and a strong cellular immune response against HBcAg and could clear HBV persistence. In the absence of expression of HBcAg or HBcAg-specific immunity, C57BL/6 mice and a portion of BALB/c mice failed to clear HBV infections and produce protective immunity efficiently, which suggests that HBcAg-specific immune responses play an important role in the clearance of HBV persistence and also in the generation of protective immunity. Large numbers of dendritic cells and natural killer cells and IL-12 mRNA were found in response to the expression of HBcAg in the livers of mice injected hydrodynamically with pAAV/HBV1.2. Based on this observation, I propose that HBcAg can recruit and activate intrahepatic lymphocytes, which facilitates the clearance of HBV infection. We already demonstrated the correlation of HBcAg-specific immunity and HBV persistence in this model. Further studies are needed to elucidate how HBcAg triggers the antiviral defense and the detailed mechanisms for persistent infection of HBV in this model. Based on these studies, hopefully we will develop an appropriate treatment for chronic infection of HBV in the future. | en |
dc.description.provenance | Made available in DSpace on 2021-06-13T02:33:37Z (GMT). No. of bitstreams: 1 ntu-96-D89445003-1.pdf: 4140007 bytes, checksum: cf3053f1e6b04166feb54735bda38df9 (MD5) Previous issue date: 2007 | en |
dc.description.tableofcontents | Table of Contents--------------------------------------------------------------------------- i
List of Figures------------------------------------------------------------------------------- vi List of Tables-------------------------------------------------------------------------------- ix Abstract in Chinese------------------------------------------------------------------------- x Abstract in English------------------------------------------------------------------------- xii Chapter 1: Introduction------------------------------------------------------------------ 1 1.1 Natural history of HBV infection------------------------------------------------ 2 1.2 Animal models for chronic hepatitis B------------------------------------------ 4 1.3 The immunological aspects of HBV antigens---------------------------------- 6 1.3.1 Hepatitis B e antigen ------------------------------------------------------------ 7 1.3.2 Hepatitis B core antigen -------------------------------------------------------- 7 1.3.3 Hepatitis B surface antigen ---------------------------------------------------- 9 1.4 Mechanisms of viral persistence------------------------------------------------- 11 1.4.1 Neonatal tolerance--------------------------------------------------------------- 11 1.4.2 Infection of immunologically privileged sites------------------------------- 11 1.4.3 Induction of tolerogenic dendritic cells and regulatory T cells----------- 12 1.4.4 Alteration of viral epitopes in mutant viruses ------------------------------ 13 Chapter 2: Materials and Methods---------------------------------------------------- 14 2.1 Constructs of pAAV/HBV1.2, pGEM4Z/HBV1.2 and HBcAg-null pAAV/HBV1.2------------------------------------------------ 15 2.2 Animal study----------------------------------------------------------------------- 16 2.3 Preparation of the DIG (Digoxigenin)-labeled HBV probe by PCR------- 17 2.4 Southern Hybridization----------------------------------------------------------- 18 2.5 Northern hybridization------------------------------------------------------------ 19 2.6 Detection of HBV antigens, antibodies and serum alanine aminotransferase------------------------------------------------- 20 2.7 Immunohistochemical staining and hematoxylin and eosin (H&E) staining--------------------------------------------------------------------- 20 2.8 Immunization of mice with recombinant proteins or plasmids-------------- 21 2.9 Preparation of splenocytes and enzyme-linked immunospot (ELISPOT) assay------------------------------------------------------------------- 22 2.10 RNA extraction and real time PCR---------------------------------------------- 23 2.11 Adoptive transfer of immune splenocytes to HBV carrier mice------------- 24 2.12 Intrahepatic lymphocytes preparation------------------------------------------- 24 2.13 Surface and intracellular staining for flow cytometric analysis------------- 25 Chapter 3: Results------------------------------------------------------------------------ 27 3.1 Establishment of the immunocompetent mouse model for human chronic hepatitis B virus infection-------------------------------------- 28 3.1.1 Constructs of replication-competent HBV plasmids------------------------ 28 3.1.2 The duration of HBV replication, transcription and protein expression in the livers of C57BL/6 and BALB/c mice after hydrodynamic injection of pAAV/HBV1.2 was different.----------------- 28 3.1.3 C57BL/6 mice with long-term maintenance of pAAV/HBV1.2 in the liver also sustained the expression of secretory HBsAg in their sera.---------------------------------------------------------------------- 30 3.1.4 HBV persistence in mice induced by hydrodynamic injection of HBV plasmids was determined by vector backbone in cis.---------------------- 31 3.1.5 HBV persistence after hydrodynamic injection of pAAV/HBV1.2 was age-dependent.------------------------------------------------------------------ 32 3.1.6 The similarities shared by the long-term HBsAg-positive C57BL/6 mice and the healthy human HBV carriers in the immune tolerant phase------------------------------------------------------------------------------ 34 3.1.7 Tolerance toward HBsAg was observed in the HBV carrier mice and could be broken by DNA immunization against surface antigens.------- 35 3.1.8 Impaired HBcAg-specific immunity was observed in C57BL/6 mice during primary activation.----------------------------------------------- 37 3.1.9 Pre-existing HBcAg-specific immune response protected the C57BL/6 mice from HBV persistence after hydrodynamic injection.--------------- 39 3.1.10 Adoptive transfer of HBcAg-specific immunity helped HBV clearance in carrier mice.------------------------------------------------------- 42 3.2 Hypothesis and possible mechanisms for the intrahepatic immunological cascade for the elimination of HBV during the onset of infection-------------------------------------------------------------- 44 3.2.1 Construction of HBcAg-null pAAV/HBV1.2-------------------------------- 46 3.2.2 HBV replication and transcription in vivo after hydrodynamic injection of wild-type or HBcAg-null pAAV/HBV1.2--------------------- 46 3.2.3 The percentage of HBsAg-positive mice was higher in the group receiving HBcAg-null pAAV/HBV1.2 than that receiving wild-type pAAV/HBV1.2.------------------------------------ 48 3.2.4 There were other defensive mechanisms for the clearance of HBV antigens besides HBcAg-specific immunity in BALB/c mice receiving pAAV/HBV1.2.------------------------------------ 49 3.2.5 In the presence of HBcAg, there were more CD11c-positive and asialo GM1-positive cells recruited into livers of BALB/c mice during HBV infection.--------------------------------------------------- 51 3.2.6 The increase in production of IL-12 p40 of the intrahepatic lymphocytes in the presence of HBcAg was observed.-------------------- 54 3.2.7 The IFNγ-producing cells specific for HBcAg in the splenocytes from BALB/c mice receiving pAAV/HBV1.2 were mainly natural killer cells.----------------------------------------------- 56 Chapter 4: Discussion-------------------------------------------------------------------- 58 4.1 Backbone effect on HBV persistence after hydrodynamic injection of pAAV/HBV1.2------------------------------------ 59 4.2 Effect of genetic background of recipient mice on the HBV persistence in vivo after hydrodynamic injection of pAAV/HBV1.2------------------------------------------------------ 61 4.3 Age effect on HBV persistence in vivo after hydrodynamic injection of pAAV/HBV1.2------------------------------------ 62 4.4 The sequence of HBV-specific immune responses relative to HBV clearance observed in BALB/c and C57BL/6 mice after hydrodynamic injection of wild-type or HBcAg-null pAAV/HBV1.2, respectively---------------------- 63 4.5 The immunogenecity and tolerogenecity of HBsAg and HBcAg in the HBV tg mouse model, hydrodynamics-based HBV persistence model, and during immunization--------------------------- 64 4.6 Hypothesis for the role of HBcAg in initiation of antiviral defense during the onset of HBV infection-------------------------- 66 4.7 The cross-talk between dendritic cells and natural killer cells in viral infections----------------------------------------------------- 69 4.8 The importance of NK cells in controlling viral infections------------------ 70 4.9 The applications of the immunocompetent chronic HBV mouse model--- 72 References----------------------------------------------------------------------------------- 75 List of Figures------------------------------------------------------------------------------ 93 Figure 1. Genome structure, transcripts and translated proteins of HBV--------- 94 Figure 2. Construct of pAAV/HBV1.2------------------------------------------------ 95 Figure 3. HBV replication intermediates and transcripts in the liver of injected C57BL/6 mice------------------------------------- 96 Figure 4. Immunohistochemical staining for HBsAg and HBcAg---------------- 97 Figure 5. HBV persistence induced by hydrodynamic injection of HBV plasmids was determined by genetic background of mice.------ 98 Figure 6. H&E staining of the livers from C57BL/6 and BALB/c mice hydrodynamically injected with 10 μg of pAAV/HBV1.2-------------- 99 Figure 7. HBV persistence induced by hydrodynamic injection of HBV plasmids was determined partially by vector backbone.---------------------------------------------------------- 100 Figure 8. HBV persistence in mice is not cleared by additional vector sequences.------------------------------------------------------------- 101 Figure 9. HBV persistence after hydrodynamic injection of pAAV/HBV1.2 is observed only in the injected C57BL/6 mice under 8-week old but not in 13-week old C57BL/6 mice.------- 102 Figure 10. Southern, Northern blotting and immunohistochemical staining in the livers of carrier mice after hydrodynamic injection of pAAV/HBV1.2------------------------------------------------ 103 Figure 11. Tolerance toward HBsAg was noted in HBV carrier mice-------------- 104 Figure 12. BALB/c mice produced more IFNγ than C57BL/6 mice after hydrodynamic injection of HBV plasmids.------------------------- 106 Figure 13. Pre-existing HBcAg-specific immunity could prevent HBV persistence in these mice.--------------------------------------------- 107 Figure 14. Pre-existing HBcAg-specific immunity inhibits HBV replication through posttranscriptional mechanisms.-------------------- 109 Figure 15. Adoptive transfer of HBcAg-specific immunity to HBV carrier mice could cure HBV persistence in these mice.----------------- 110 Figure 16. The construction of HBcAg-null pAAV/HBV1.2, and HBV transcription and replication in the livers of mice receiving hydrodynamic injection of wild-type or HBcAg-null pAAV/HBV1.2--------------------------------------------- 111 Figure 17. HBcAg-null pAAV/HBV1.2 failed to elicit HBcAg- specific cellular immune response and established HBsAg persistence in more than 90% of injected C57BL/6 mice.--------------- 112 Figure 18. HBcAg-null pAAV/HBV1.2 exhibited prolonged HBsAg persistence even in BALB/c mice.-------------------------------- 113 Figure 19. Immunohistochemical staining for HBcAg, CD11c, asialo GM1 and CD3 molecules of the liver sections from BALB/c mice receiving wild-type or HBcAg-null pAAV/HBV1.2 at 3 dpi------------------------------------------------------ 114 Figure 20. Immunohistochemical staining for HBcAg, CD11c, asialo GM1 and CD3 molecules of the liver sections from BALB/c mice receiving wild-type or HBcAg-null pAAV/HBV1.2 at 7 dpi------------------------------------------------------ 116 Figure 21. The cytokine or chemokine mRNA expression by the intrahepatic lymphocytes after hydrodynamic injection----------------- 118 Figure 22. The Possible mechanisms for HBcAg in the initiation of antiviral defense in the liver during the onset of HBV infection-------- 119 List of Tables------------------------------------------------------------------------------- 120 Table 1. Anti-HBc or anti-HBs production in C57BL/6 or BALB/c mice receiving hydrodynamic injection of the HBV plasmids---------------------------------------------------------- 121 Table 2. The number of positive cells in frozen liver sections immunochemically stained with CD3, CD4, CD8, CD11c and AsGM1----------------------------------------------------------- 122 Table 3. The cell population responsible for HBcAg-specific IFNγ-secretion at the onset of HBV infection----------------------------- 123 List of abbreviations---------------------------------------------------------------------- 124 Appendix------------------------------------------------------------------------------------ 125 | |
dc.language.iso | en | |
dc.title | B型肝炎病毒之小鼠耐受模式 | zh_TW |
dc.title | An Immunocompetent Mouse Model for Hepatitis B Virus Tolerance | en |
dc.type | Thesis | |
dc.date.schoolyear | 95-1 | |
dc.description.degree | 博士 | |
dc.contributor.oralexamcommittee | 伍安怡,陶秘華,許輝吉,吳慧琳 | |
dc.subject.keyword | B型肝炎病毒,動物模式,耐受性, | zh_TW |
dc.subject.keyword | Hepatitis B virus,animal model,tolerance, | en |
dc.relation.page | 134 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2007-01-24 | |
dc.contributor.author-college | 醫學院 | zh_TW |
dc.contributor.author-dept | 微生物學研究所 | zh_TW |
顯示於系所單位: | 微生物學科所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-96-1.pdf 目前未授權公開取用 | 4.04 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。