Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 土木工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/31151
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor黃世建
dc.contributor.authorYing-Chang Chenen
dc.contributor.author陳盈璋zh_TW
dc.date.accessioned2021-06-13T02:32:37Z-
dc.date.available2011-08-05
dc.date.copyright2011-08-05
dc.date.issued2011
dc.date.submitted2011-07-30
dc.identifier.citation[1] (財)国土開發技術研究センター,“建設省総合技術開發プロジェクト:鉄筋コンクリート造建築物之超軽量化˙超高層化技術の開發(New RC)” ,平成四年度構造性能分科会報告書,1993。
[2] Aoyama, H., “Design of Modern High-rise Reinforced Concrete Structures,” Imperial College, London, 2002.
[3] Sugano, S., 'Application of High Strength and High Performance Concrete in Seismic Region', Invited Lecture in the 8th International Symposium on Utilization of High-Strength and High-Performance Concrete, Tokyo, October. 2008,pp. 27-29.
[4] Kojima, M., ' Application of 150N/mm2 Advanced Performance Composite to High-Rise R/C Building', Invited Lecture in the 8th International Symposium on Utilization of High-Strength and High-Performance Concrete, Tokyo, October. 2008,pp. 27-29.
[5] 中國土木水利工程學會,「混凝土工程設計與解說(土木401-96)」,科技圖書,台北,2005。
[6] ACI Committee 318, “Building Code Requirement for Structural Concrete (ACI 318-08) and Commentary (ACI 318R-08),” American Concrete Institute, Farmington Hills, Mich., 2008.
[7] 張豐展,「高強度鋼筋混凝土柱圍束效應研究」,碩士論文,國立台灣大學土木工程學系,台北,民國99年。
[8] Elwood, K.J.; Maffei, J.M.; Riederer, K.A.; and Telleen, K., “Improving Column Confinement—Part 2: Proposed new provisions for the ACI 318 Building Code,” Concrete International, American Concrete Institute, Dec. 2009.
[9] Canadian Standards Association, “Design of Concrete Structures,” CSA A23.3-04 , Mississauga, ON, Canada, 2004, 258 pp.
[10] Standards Association of New Zealand, “Concrete Design Standard, NZS3101:2006, Part 1” and “Commentary on the Concrete Design Standard, NZS 3101:2006, Part 2,” Wellington, New Zealand, 2006, 646 pp.
[11] Elwood, K. J.; Matamoros A. B.; Wallace J. W.; Lehman D. E.; Heintz J. A.; Mitchell A. D.; Moore M. A.; Valley M. T.; Lowes L. N.; Comartin C. D.; and Moehle J. P., “Update to ASCE/SEI 41 Concrete Provisions,” Earthquake Spectra, Volumn 23, No. 3, 2007, pp. 493-523.
[12] ACI Innovation Task Group 4, “Report on Structural Design and Detailing for High-Strength Concrete in Moderate to High Seismic Applications (ITG-4.3R-07),” American Concrete Institute, Farmington Hill, MI, 2007, 66 pp.
[13] Paultre, P.; and Légeron, F., “Confinement Reinforcement Design for Reinforced Concrete Columns,” Journal of Structural Engineering, ASCE, V. 134, No. 5, 2008, pp. 738-749.
[14] 郭美婷,「五螺箍矩形RC柱之軸壓試驗與優化研究」,碩士論文,國立交通大學土木工程學系,新竹,民國97年。
[15] TCI鋼筋混凝土用鋼筋(SD 550/685/785) ,台灣混凝土學會新高強度鋼筋混凝土技術委員會報告,台北,2010。
[16] Sheikh, S. A.; and Bayrak, O., “High-Strength Concrete Columns under Simulated Earthquake Loading,” ACI Structural Journal, V. 94, Nov.-Dec. 1997, pp. 708-722.
[17] Sheikh, S. A.; Shah, D. V.; and Khoury, S. S., “Confinement of High-Strength Concrete Columns,” ACI Structural Journal, V. 91, No. 1, Jan.-Feb. 1994, pp. 100-111.
[18] Xiao, Y.; and Martirossyan, A., “Seismic Performance of High- Strength Concrete Columns,” ASCE Journal of Structural Engineering, V. 124, No. 3, Mar. 1998, pp. 241-251.
[19] French, C. W.; and Kreger, M. E., “High-Strength Concrete(HSC) in Seismic Regions - Confinement: Discussion Summary,” American Concrete Institute, Farmington Hill, MI, SP 176, 1998, pp. 449-450.
[20] 錢宗國,「非韌性鋼筋混凝土短柱受撓剪破壞之耐震行為曲線研究」,碩士論文,國立台灣大學土木工程學系,台北,民國99年 。
[21] ACI Innovation Task Group 1 and Collaborators, “Acceptance Criteria for Moment Frames Based on Structural Testing,” ACI T1.1-01, 2001, American Concrete Institute.
[22] Hakuto S.; Park R.; and Tanaka H., “Seismic Load Tests on Interior and Exterior Beam-Column Joints with Substandard Reinforcing Details,” ACI Structural Journal, 97(1): 11-25, 2000.
[23] ASCE/SEI, “Minimum Design Loads for Buildings and Other Structures,” ASCE/SEI 7-05, American Society of Civil Engineers, Reston, VA, 2006, 388 pp.
[24] 內政部,「建築物耐震設計規範及解說」,營建雜誌社,74 pp,民國94年 。
[25] ACI Committee 318, “Building Code Requirement for Structural Concrete (ACI 318-05) and Commentary (ACI 318R-05),” American Concrete Institute, Farmington Hills, 2005, 430 pp.
[26] 曾衡韜,「超高強度構件耐震設計方法之研究」,碩士論文,國立台灣大學土木工程學系,台北,民國100年 。
[27] Riederer, K.A, “Assessment of Confinement Models for Reinforced Concrete Columns Subjected to Seismic Loading,” University of British Columbia, Vancouver, BC, Canada, Dec. 2006, 211 pp.
[28] Camarillo, H., “Evaluation of Shear Strength Methodologies for Reinforced Concrete Columns”, M.Sc Thesis, University of Washington, USA, 2003.
[29] Elwood, K.J.; Maffei, J.M.; Riederer, K.A.; and Telleen, K., “Improving Column Confinement—Part 1: Assessment of design provisions,” Concrete International, American Concrete Institute, Nov. 2009.
[30] Whitney, C. S., “Design of Reinforced Concrete Members Under Flexure or Combined Flexure and Direct Compression,” ACI Structural Journal, V. 33, Mar.-Apr, 1937, pp. 483-498.
[31] Watson, S.; Zahn, F.A.; and Park, R., “Confining Reinforcement for Concrete Columns,” Journal of Structural Engineering, ASCE, V. 120, No. 6, Jun. 1994, pp. 1798-1824.
[32] Sheikh, S. A.; and Uzumeri, S. M., “Analytical Model for Concrete Confinement in Tied Columns,” J. Struct. Div., ASCE, V. 108, No. 12, 1982, pp. 2703-2722.
[33] Mander, J. B.; Priestley, M. J. N.; and Park, R., “Seismic Design of Bridge Piers,” Univ. of Canterbury, Christchurch, New Zealand, Rep. No. 84-2, 1984.
[34] 張國鎮、尹衍樑、王瑞禎、王柄雄,「螺旋箍筋於矩形柱應用之試驗研究」,中國工程師學會,第七十八卷,第三期,台北,2005。
[35] ACI Committee 318, “Building Code Requirement for Structural Concrete (ACI 318-95) and Commentary (ACI 318R-95),” American Concrete Institute, Farmington Hills, 1995, 369 pp.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/31151-
dc.description.abstract將高強度混凝土(High-Sthength Concrete, HSC)配合高強度鋼筋(High-Strength Steel, HSS)應用在高樓層RC建築的柱構件上有許多好處,包括增加軸向承載能力及側向勁度,有利縮減助構件的斷面尺寸,增進室內可使用空間;並可減少建築物重量,降低地震力。但HSC相較NSC更為脆性的材料性質,往往侷限了其應用在耐震結構上的可能性。
實際上,若對柱的核心提供足夠的圍束力,HSC的韌性行為將有明顯的改善,而此圍束力與柱的橫向箍筋量及其配置型式有很大的關係;此外,國內的混凝土工程設計規範同ACI 318-05規範般,其建議之圍束箍筋量對於承受高軸壓的柱構件明顯不足,因此尋求一套適用於HSC的圍束箍筋量公式,成了目前將高強度材料推廣於工程實務上迫切的議題。
本研究針對高強度材料設計了8座柱構件,於國家地震工程研究中心(NCREE)之MATS (Muti Axial Testing System)系統進行高軸壓下之反覆側推試驗,使用的高強度材料有降伏強度685 MPa之主筋、785 MPa之箍筋,及混凝土設計抗壓強度70、100 MPa,分為傳統橫箍與多螺箍兩種箍筋型式,參考了加拿大規範(CSA A23.3-04)及Elwood et al.建議的設計公式決定測試時施加的軸力大小。
測試的結果顯示:較高強度混凝土之柱構件其變形能力不如較低強度者;此外,90°彎鉤對於束制柱主筋的效果不及135°以上之耐震彎鉤;並且本試驗再次驗證了,軸向載重大小確實會影響柱圍束箍筋的需求。
最後,本研究針對試驗結果,分別對橫箍柱及螺箍柱提出了一套建議的設計公式,並以現有的資料進行檢核。驗證的結果顯示,此建議公式能合理的應用在高強度材料及高軸力作用下的柱構件上,並確保其有好的變形能力。
zh_TW
dc.description.abstractThe use of high-strength concrete (HSC) and high-strength steel (HSS) in column elements of high-rise RC building has many benefits, such as increasing the axial load capacity and lateral stiffness, reducing the size of the component’s cross-section; enhancing interior space; and reducing the weight of the building as well as the seismic design force. However, HSC is essentially more brittle than the normal strength concrete (NSC), which limits its application in earthquake-resistant structures.
In fact, if the core of the column is provided with sufficient confinement, the ductility of HSC will be significantly improved, and this confining effect is greatly influenced by the amount of transverse stirrup and its configuration. Currently, the domestic building design code follows the American ACI Code. However, the amount of confinement stirrups required by these codes is clearly insufficient for the column elements subjected high axial load capacity under earthquake. Therefore, defining a suitable confinement design equation for HSC columns now becomes an urgent issues.
In this study, 8 column specimens with high-strength materials were designed and tested under axial load combining with cyclic loading on the MATS (Muti-Axial Testing System) in NCREE. The use of high-strength material includes the longitudinal reinforcement with yield strength of 685 MPa, the hoops with yield strength of 785MPa and concrete design compressive strength of 70 and 100 MPa. The specimens are divided into two groups based on the confinement type: the traditional tied columns and multiple spiral columns. The amount of axial force applied is refered to the Canadian Code (CSA A23.3-04) and Elwood et al’s design recommendation.
Test results showed that the columns with high-strength concrete have lower deformation capacity than the low-strength ones. In addition, 90 degree hooks have less confining effect than seismic hooks. It was also shown that the magnitude of the applied axial load indeed affects the demand of confinement.
Finally, this study proposes a new confinement design equation for both tied columns and spiral columns based on the test observations. Applicability of the proposed equations to the NSC columns is also checked with the available experimental data. Test results of these study show that the proposed equations can be reasonably applied to the columns with high-strength materials and columns under high axial load, and ensure them to have good deformability.
en
dc.description.provenanceMade available in DSpace on 2021-06-13T02:32:37Z (GMT). No. of bitstreams: 1
ntu-100-R98521222-1.pdf: 26904028 bytes, checksum: 1431ef209c4cb32a089769fab502e35d (MD5)
Previous issue date: 2011
en
dc.description.tableofcontents目錄
口試委員審定書……………………………………………………………...…….I
誌謝……………………………………………………………………….....……III
摘要…………………………………………………………………………......…V
Abstract………………………………………….……………………………....VII
目錄………………………………….…………………………….…...……....…IX
表目錄……………………………….…………………………….…..........…. XIII
圖目錄……………………………….…………………………….….......…..…XV
第一章 緒論 ............................................................................................................ 1
1.1. 動機與目的 .......................................................................................... 1
1.2. 研究內容與方法 .................................................................................. 3
第二章 文獻回顧 .................................................................................................... 5
2.1. 柱桿件之強度預測 .............................................................................. 5
2.1.1. 柱桿件之剪力強度預測 ............................................................. 5
2.1.2. 柱桿件之撓曲強度預測 ............................................................. 8
2.2. 設計箍筋量參考 ................................................................................ 10
2.2.1. 美國ACI 318-08[6]規範 .......................................................... 10
2.2.2. 加拿大(CSA [9])規範及紐西蘭(NZS [10])規範 ..................... 12
2.2.3. Elwood et al. [8, 29]建議之柱圍束箍筋量 .............................. 13
2.2.4. Paultre and Légeron [13] (2005) ............................................... 17
2.3. 多螺箍柱的設計理念 ........................................................................ 22
2.3.1. 郭美婷[14]建議之五螺箍RC 柱圍束箍筋設計法 ................. 22
2.4. 高強度鋼筋之機械性質 .................................................................... 23
2.5. 高強度RC 柱構件於定軸壓下之反覆載重試驗 ............................. 24
2.5.1. Sheikh and Bayrak [16] and Sheikh et al. [17] .......................... 25
2.5.2. Xiao and Martirossyan [18] ....................................................... 27
2.5.3. 日本New RC 之柱構件試驗[2] ............................................... 28
2.5.4. 張豐展[7] .................................................................................. 28
第三章 試驗規畫 .................................................................................................. 31
3.1. 試驗目的 ............................................................................................ 31
3.2. 試體設計 ............................................................................................ 35
3.2.1. 設計概念 ................................................................................... 35
3.2.2. 設計細節 ................................................................................... 39
3.2.3. 試驗參數 ................................................................................... 42
3.3. 試體製作 ............................................................................................ 44
3.3.1. 材料準備 ................................................................................... 44
3.3.2. 鋼筋籠施作 ............................................................................... 45
3.3.3. 入模與澆置 ............................................................................... 47
3.4. 詴驗系統佈置 .................................................................................... 48
3.5. 量測系統佈置 .................................................................................... 51
3.5.1. 內部量測系統 ........................................................................... 51
3.5.2. 外部量測系統 ........................................................................... 51
3.6. 測試流程 ............................................................................................ 53
第四章 試驗結果 .................................................................................................. 55
4.1. 材料試驗 ............................................................................................ 55
4.1.1. 鋼筋 ........................................................................................... 55
4.1.2. 混凝土 ....................................................................................... 56
4.2. 載重與位移關係行為 ........................................................................ 57
4.3. 裂縫發展與破壞模式 ........................................................................ 71
4.4. 小結 .................................................................................................... 83
4.5. 應變計量測 ........................................................................................ 85
第五章 分析與討論 .............................................................................................. 87
5.1. 各試體行為討論 ................................................................................ 87
5.1.1. 軸力參數 ................................................................................... 88
5.1.2. 箍筋降伏強度上限 ................................................................... 90
5.1.3. 箍筋端彎鉤有效性認定 ........................................................... 91
5.1.4. 高低軸力下之箍筋需求量 ....................................................... 93
5.1.5. 小螺箍於五螺箍試體之配置型式不同 ................................... 95
5.2. 柱桿件強度分析 ................................................................................ 96
第六章 設計建議 ................................................................................................ 101
6.1. 圍束公式參數之探討 ...................................................................... 101
6.2. 橫箍柱建議公式 .............................................................................. 103
6.3. 橫箍柱建議公式之驗證 .................................................................. 104
6.4. 螺箍柱建議公式 .............................................................................. 109
6.5. 螺箍柱建議公式之驗證 ................................................................... 110
6.6. 小結 ................................................................................................... 112
第七章 結論與建議 ............................................................................................. 113
7.1. 前言 ................................................................................................... 113
7.2. 結論與建議 ....................................................................................... 113
7.2.1. 試驗觀察 .................................................................................. 114
7.2.2. 分析結果 .................................................................................. 115
7.2.3. 設計建議 .................................................................................. 116
7.2.4. 總結 .......................................................................................... 117
7.3. 未來研究展望 ................................................................................... 118
參考文獻 .............................................................................................................. 121
附錄A 五螺箍試體S100-N30-D1、S100-N30-D2…………………………..A-1
附錄B-1 橫箍柱(Tied Column)………………………………..……………..B-1
附錄B-2 螺箍柱(Spiral Column)……………………………..…………….B-12
dc.language.isozh-TW
dc.subject高軸力zh_TW
dc.subject柱zh_TW
dc.subject圍束zh_TW
dc.subject高強度混凝土zh_TW
dc.subject高強度鋼筋zh_TW
dc.subject五螺箍zh_TW
dc.subject設計公式zh_TW
dc.subjecthigh-strength reinforcementen
dc.subjectmultiple spiralen
dc.subjecthigh axial loaden
dc.subjecthigh-strength concreteen
dc.subjectconfinementen
dc.subjectcolumnen
dc.subjectdesign equationen
dc.title高強度鋼筋混凝土柱耐震圍束效應之研究zh_TW
dc.titleDesign of Seismic Confinement of RC Columns Using High Strength Materialsen
dc.typeThesis
dc.date.schoolyear99-2
dc.description.degree碩士
dc.contributor.oralexamcommittee張國鎮,林克強
dc.subject.keyword柱,圍束,高強度混凝土,高強度鋼筋,高軸力,五螺箍,設計公式,zh_TW
dc.subject.keywordcolumn,confinement,high-strength concrete,high-strength reinforcement,high axial load,multiple spiral,design equation,en
dc.relation.page302
dc.rights.note有償授權
dc.date.accepted2011-08-01
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept土木工程學研究所zh_TW
顯示於系所單位:土木工程學系

文件中的檔案:
檔案 大小格式 
ntu-100-1.pdf
  未授權公開取用
26.27 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved