Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 資訊工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/31146
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor傅立成(Li-Chen Fu)
dc.contributor.authorShih-Shinh Huangen
dc.contributor.author黃世勳zh_TW
dc.date.accessioned2021-06-13T02:32:19Z-
dc.date.available2007-02-02
dc.date.copyright2007-02-02
dc.date.issued2007
dc.date.submitted2007-01-24
dc.identifier.citation[1] R. Adams and L. Bischof. 'Seeded Region Growing'. IEEE Transactions on Pattern Analysis and Machine Intelligence, 16(6):641{647, June 1994.
[2] A. Agarwal and B. Triggs. '3D Human Pose from Silhouettes by Relevance Vector Regression'. IEEE Computer Society Conference on Computer Vision and Pattern
Recognition, 2:882{888, 2004.
[3] A. Agarwal and B. Triggs. 'Recovering 3D Human Pose from Monocular Images'. IEEE Transactions on Pattern Analysis and Machine Intelligence, 28(1):44{58,
January 2006.
[4] J. K. Aggarwal and Q. Cai. 'Human Motion Analysis: A Review'. Computer Vision and Image Understanding, 73(3):428{440, March 1999.
[5] C. Benedek and T. Sziranyi. Markovian Framework for Foreground-Background- Shadow Separation of Real World Video Scenes. Asian Conference on Computer
Vision, pages 898{907, 2006.
[6] M. J. Black. 'The Robust Estimation of Multiple Motions: Parametric and Piecewise-Smooth Flow Fields'. Computer Vision and Image Understanding, 63(1):75{104, January 1996.
[7] A. F. Bobick, S. S. intille, and J. W. Davis. 'The Kids Room: A Percepturally-Based Interactive and Immersive Story Environment'. Technical report, Mas-sachusetts Institue of Technology, June 1998.
[8] G. D. Borshukov and G. Bozdagi. 'Motion Segmentation by Multistage Affine Classification'. IEEE Transactions on Image Processing, 6(11):1591{1594, November 1997.
[9] P. Bouthemy and E. Francois. 'Motion Segmentation and Qualitative Dynamic Scene Analysis from an Image Sequences'. International Journal of Computer
Vision, 10(2):157{182, 1993.
[10] S. P. Brooks, P. Giudici, and G. O. Roberts. 'E±cient Construction of Reversible Jump Markov Chain Monte Carlo Proposal Distributions'. Journal of the Royal
Statistical Society Series B, 65(1):3{55, 2003.
[11] J. Canny. 'A Computational Approach to Edge Detection'. IEEE Transactions on Pattern Analysis and Machine Intelligence, 8(6):679{698, March 1986.
[12] A. Cavallaro and T. Ebrahimi. 'Change Detection Based on Color Edges'. IEEE International Symposium on Circuits and Systems, 2:141{144, 2001.
[13] M. M. Chang, A. M. Tekalp, and M. I. Sezan. 'Simultaneous Motion Estimation and Segmentation'. IEEE Trans. on Image Processing, 6(9):1326{1333, September
1997.
[14] P.-C. Chen, J.-J. Su, Y.-P. Tsai, and Y.-P. Hung. 'Coarse-To-Fine Video Object Segmentation by MAP Labeling of Watershed Regions'. Bulletin of the College
of Engineering, N.T.U, 90:25{34, February 2004.
[15] S. Chib and E. Greenberg. 'Understanding the Metropolis-Hastings Algorithm'. The American Statistician, 49(4):327{335, 1995.
[16] S. Y. Chien, S. Y. Ma, and L. G. Chen. 'E±cient Moving Object Segmentation
Algorithm Using Background Registration Technique'. IEEE Transactions on Circuits and Systems for Video Technology, 12(7):577{586, July 2002.
[17] P. B. Chou and C. M. Brown. 'The Theory and Practice of Bayesian Image Labeling'. International Journal of Computer Vision, 4:185{210, 1990.
[18] Y.-C. Chung and J.-M. W. an Sei-Wang Chen. 'Progressive Background Images Generation'. IPPR Conference on Computer Vision, Graphics, and Image
Processing, 2002.
[19] A. Elgammal, D. Harwood, and L. S. Davis. Non-parametric Model for Background Subtraction. European Conference on Computer Vision, 2:571{767, 2000.
[20] P. F. Felzenszwalb. 'Pictorial Structures for Object Recognition'. International Journal of Computer Vision, 61(1):55{79, January 2005.
[21] N. Friedman and S. Russell. Image Segmentation in Video Sequence: A Probabilistic Approach. International Conference on Uncertainty in Arti‾cial Intelligence,
August 1997.
[22] F. Fukunaga. 'Introduction to Statistical Pattern Recognition'. Academic Press,1990.
[23] D. M. Gavrila. 'The Visual Analysis of Human Movement: A Survey'. Computer Vision and Image Understanding, 73(1):82{98, January 1999.
[24] S. Geman and D. Geman. 'Stochastic Relaxation Gibbs Distributions and the Bayesian Restoration of Images'. IEEE Transaction on Pattern Analysis and
Machine Intelligence, PAMI-6:721{741, November 1984.
[25] W. R. Gilks, S. Richardson, and D. J. Spiegelhalter. Markov Chain Monte Carlo in Practice. Chapman & Hall/CRC, 1996.
[26] P. J. Green. 'Reversible Jump Markov chain Monte Carlo Computation and Bayesian Model Determination'. Biometrika, 82(4):711{732, 1995.
[27] S. Gupte, O. Masoud, R. F. K. Martin, and N. P. Papanikolopoulos. 'Detection
and Classification of Vehicles'. IEEE Transactions on Intelligent Transportation System, 3(1):37{47, 2002.
[28] I. Haritaoglu, D. Harwood, and L. S. Davis. 'W4: Real-Time Surveillance of People and Their Activities'. IEEE Transactions on Pattern Analysis and Machine Intelligence, 22(8):809{830, August 2000.
[29] M. Heikkila and M. Pietikainen. 'A Texture-Based Method for Modeling the Background and Detecting Moving Objects'. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 28(4):657{661, April 2006.
[30] B. K. P. Horn and B. G. Schunck. 'Determining Optical Flow'. AI Memo 572,Massachusetts Institue of Technology, 1980.
[31] T. Horprasert, D. Harwood, and L. S. Davis. 'A Statistical Approach for Real-Time Robust Background Subtraction and Shadow Detection'. IEEE Interna-
tional Conference on Computer Vision Frame-Rate Workshop, 1999.
[32] G. Hua, M. H. Yang, and Y. Wu. 'Learning to Estimate Human Pose with Data-Driven Belief Propagation'. IEEE Computer Society Conference on Computer
Vision and Pattern Recognition, 2:747{754, 2005.
[33] Y. Huang, D. Paulus, and H. Niemann. 'Background-Foreground Segmentation Based on Dominant Motion Estimation and Static Segmentation'. International
Workshop on Signal Image Analysis and Processing, pages 13{15, June 2000.
[34] P. J. Huber. 'Robust Statistics(Wiley Series in Probability and Mathematical Statistics'. 'John Wiley & Sons', 1981.
[35] S. Io®e and D. A. Forsyth. 'Probabilistic Methods for Finding People'. International Journal of Computer Vision, 43(1):45{68, 2001.
[36] S. Jabri, Z. Duric, H. Wechsler, and A. Rosenfeld. Detection and Location of People in Video Images Using Adpative Fusion of Color and Edge Information.
IEEE International Conference on Pattern Recognition, pages 627{630, 2000.
[37] Y. H. Jan and D. W. Lin. 'Extraction of Video Objects by Combined Motion and Edge Analysis'. IEEE International Symposium on Circuits and Systems, pages
677{680, 2002.
[38] D. W. Kang and J. Ohya. 'Estimating Posture of a Human Wearing a Multiple-Colored Suit Based on Color Information Processing'. IEEE International Con-
ference on Multimedia and Expo, 1:261{264, 2003.
[39] C. Kim. 'Video Object Extraction for Object-Oriented Applications'. Journal of VLSI Signal Processing System, 29(1-2):7{21, August-September 2001.
[40] C. Kim and J.-N. Hwang. Fast and Automatic Video Object Segmentation and Tracking for Content-Based Applications. IEEE Transactions on Circuits and
Systems for Video Technology, 12(2):122{129, 2002.
[41] K. B. Korb and A. E. Nicholson. 'Bayesian Arti‾cial Intelligence'. Chapman & Hall/CRC, 2004.
[42] D. S. Lee. 'E®ective Gaussian Mixture Learning for Video Background Subtraction'. IEEE Transactions on Pattern Analysis and Machine Intelligence, 27(5):827{832, May 2005.
[43] J. Lee, J. Chai, and P. S. A. Reitsma. 'Interactive Control of Avatars Animated
with Human Motion Data'. ACM Transactions on Graphics, 21(3):491{500, July 2002.
[44] M. W. Lee and I. Cohen. 'Proposal Maps Driven MCMC for Estimating Human Body Pose in Static Images'. IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2:334{341, 2004.
[45] M. W. Lee and R. Nevatia. 'Dynamic Human Pose Estimation Using Markov Chain Monte Carlo Approach'. IEEE Workshop on Motion and Video Computing, pages 168{175, 2005.
[46] S. Z. Li. 'Markov Random Field Modeling in Computer Vision'. Proceedings of European Conference in Computer Vision, 1994.
[47] B. Lucas and T. Kanade. 'An Iterative Image Registration Technique with an Application to Stereo Vision'. Proceedings of the 7th International Joint Conference on Arti‾cial Intelligence, pages 674{679, 1981.
[48] L. Martel and A. Zaccarin. 'Adaptive Thresholding for Detection of Nonsigni‾cant Vectors in Noisy Image Sequences'. IEEE International Conference on Acoustics
Speech, and Signal Processing, pages 2597{2600, 1998.
[49] R. Mech and M. Wollborn. A Noise Robust Method for Segmentation of Moving Objects in Video Sequence. International Conference on Acoustics, Speech, and
Signal Processing, pages 2657{2660, 1997.
[50] R. Mech and M. Wollborn. 'A Noise Robust Method for 2D Shape Estimation of Moving Objects in Video Sequences Considering a Moving Camera'. Signal Processing, 66:203{217, 1998.
[51] T. Meier and K. N. Ngan. Automatic Segmentation of Moving Objects for Video Object Plane Generation. IEEE Transactions on Circuits and Systems for Video
Technology, 8(5):525{538, 1998.
[52] T. Meier and K. N. Ngan. Video Segmentation for Content-Based Coding. IEEE Transactions on Circuits and Systems for Video Technology, 9(8):1190{1203, 1999.
[53] A. Micilotta, E. Ong, and R. Bowden. 'Detection and Tracking of Humans by Probabilistic Body Part Assembly'. British Machine Vision Conference, 2005.
[54] T. B. Moeslunad and E. Granum. 'A Survey of Computer Vision-Based Human Motion Capture'. Computer Vision and Image Understanding, 81:231{268, 2001.
[55] T. B. Moeslunad and E. Granum. 'A Survey of Advances in Vision-Based Human Motion Capture and Analysis'. Computer Vision and Image Understanding,104:90{126, 2006.
[56] A. Mohan, C. Papageorgiou, and T. Poggio. 'Example-Based Object Detection in Images by Components'. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 23(4):349{361, April 2001.
[57] G. Mori, X. Ren, A. A. Efros, and J. Malik. 'Recovering Human Body Congurations: Combining Segmentation and Recognition'. IEEE Computer Society
Conference on Computer Vision and Pattern Recognition, 2:326{333, 2004.
[58] A. Neri, S. Colonnese, G. Russo, and P. Talone. 'Automatic Moving Object and
Background Separation'. Signal Processing, 66:219{232, 1998.
[59] M.-B. Nicolas and A. Zaccarin. 'Moving Cast Shadow Detection from a Gaussian Mixture Shadow Model'. Computer Vision and Image Understanding, 2:643{648,
June 2005.
[60] J. M. Odobez and P. Bouthemy. 'Robust Multiresolution Estimation of Parametric Motion Models'. Journal of Visual Communication and Image Prepresentation, 4(6):248{365, December 1995.
[61] J.-M. Odobez and P. Bouthemy. 'Direct incremental model-based image motion segmentation for video analysis.'. Signal Processing, 66(2):143{155, 1998.
[62] N. Paragios and V. Ramesh. 'A MRF-based Approach for Real-Time Subway Monitoring'. IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 1:1034{1040, 2001.
[63] I. Patras, E. A. Hendriks, and R. L. Lagendijk. 'Video Segmentation by MAP
Labeling of Watershed Segmentation'. IEEE Transations on Pattern Analysis and Machine Intelligence, 23(3):326{332, March 2001.
[64] P. W. Power and J. A. Schoonees. 'Understanding Background Mixture Models for Foreground Segmentation'. Proceedings Image and Vision Computing New
Zealand, pages 267{271, November 2002.
[65] D. Ramanan, D. A. Forsyth, and A. Zisserman. 'Stike a Pose: Tracking People by Finding Stylized Poses'. IEEE Computer Society Conference on Computer Vision
and Pattern Recognition, 1:271{278, 2005.
[66] D. Ramanan and C. Sminchisescu. 'Training Deformable Models for Localization'. IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 1:206{213, 2006.
[67] J. M. Rehg, M. Loughlin, and K. Waters. 'Vision for a Smart Kiosk'. IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pages 690{696, 1997.
[68] D. Reisfeld, H. Wolfson, and Y. Yeshurun. 'Context Free Attentional Operators: the Generalized Symmetry Transform'. International Journal of Computer
Vision, 14(2):119{130, March 1995.
[69] X. Ren, A. C. Berg, and J. Malik. 'Recovering Human Body Con‾gurations Using Pairwise Constraints Between Parts'. IEEE International Conference of Computer Vision, pages 126{138, 2005.
[70] T. J. Roberts. 'E±cient Human Pose Estimation from Real World Images'. PhD thesis, University of Dundee, Scotland, 2005.
[71] T. J. Roberts, S. J. Mckenna, and I. W. Ricketts. 'Human Pose Estimatin Using Learnt Probabilistic Region Similarities and Partial Con‾gurations'. European
Conference on Computer Vision, 3024:291{303, 2004.
[72] R. Ronfard, C. Schmid, and B. Triggs. 'Learning to Parse Pictures of People'. European Conference on Computer Vision, pages 27{31, 2002.
[73] R. Rosales, M. Siddiqui, J. Alon, and S. Scalro®. 'Estimating 3D Body Pose Using Uncalibrated Cameras'. IEEE Computer Society Conference on Computer
Vision and Pattern Recognition, 2:821{827, 2001.
[74] S. Russell and P. Norvig. 'Arti‾cial Intelligence: A Modern Approach'. Prentice, 2003.
[75] G. Shakhnarovich, P. Viola, and T. Darrell. 'Fast Pose Estimation with Parameter-Sensitive Hashing'. IEEE International Conference on Computer Vision, 2:750{757, 2003.
[76] Y. Sheikh and M. Shah. 'Bayesian Modeling of Dynamic Scenes for Object Detection'. IEEE Transactions on Pattern Analysis and Machine Intelligence, 27(1):1778{1792, November 2005.
[77] Y. Sheikh and M. Shah. Bayesian Object Detection in Dynamic Scenes. IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 1:74{
79, 2005.
[78] C. Stau®er and W. Grimson. Adaptive Background Mixture Models for Real-Time Tracking. IEEE Computer Society Conference on Computer Vision and Pattern
Recognition, 2:246{252, June 2005.
[79] C. Stiller and J. Konrad. 'Estimation Motion in Image Sequences: A Tutorial on Modeling and Computation of 2D Motion'. IEEE Signal Processing Maganize,16:70{91, 1999.
[80] E. Stringa. Morphological Change Detection Algorithms for Surveillance Applications. British Machine Vision Conference, 2000.
[81] Y. L. Tian, M. Lu, and A. Hampapur. Robust and E±cient Foreground Analysis for Real-time Video Surveillance. IEEE Computer Society Conference on Com-
puter Vision and Pattern Recognition, 1:1182{1187, 2005.
[82] Y. Tsaig and A. Averbuch. 'Automatic Segmentation of Moving Objects in Video Sequences: A Region Labeling Approach'. IEEE Transactions on Circuits and
Systems for Video Technology, 12(7):597{612, 2002.
[83] Z. Tu, X. Chen, A. L. Yuille, and S. C. Zhu. 'Image Parsing: Unifying Segmentation, Detection, and Recognition'. International Journal of Computer Vision,
63(2):113{140, 2005.
[84] Z. Tu and S. C. Zhu. 'Image Segmentation by Data-Driven Markov Chain Monte Caril'. IEEE Transactions on Pattern Analysis and Machine Intelligence,24(5):657{673, May 2002.
[85] P. Viola and M. Jones. Rapid Object Detection Using a Boosted Cascade of Simple Features. IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 1:511{518, 2001.
[86] B. Walsh. 'Markov Chain Monte Carlo and Gibbs Sampling'. Lecture Notes for EEB 581, April 2004.
[87] J. Wang, H. Wang, Q. Liu, and H. Lu. 'Automatic Moving Object Segmentation with Accurate Boundaries'. Asian Confernece on Computer Vision, pages 276{
285, 2006.
[88] J. Y. A. Wang and E. H. Adelson. 'Representation Moving Images with Layers'. IEEE Transactions on Image Processing, 3(5):625{638, September 1994.
[89] L.Wang, W. Hu, and T. Tan. 'Recent Developments in Human Motion Analysis'. Pattern Recognition, 36(1):585{601, 2003.
[90] Y. Wang, K.-F. Loe, T. Tan, and J.-K. Wu. 'Spatiotemporal Video Segmentation
Based on Graphic Model'. IEEE Trans. on Image Processing, 14(7):937{947, July 2005.
[91] Y. Wang, K.-F. Loe, and J.-K. Wu. 'A Dynamic Conditional Random Field Model for Foreground and Shadow Segmentation'. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 28(2):279{289, February 2006.
[92] Y. Wang, T. Tan, K.-F. Loe, and J.-K. Wu. 'A Probabilistic Approach for Foreground and Shadow Segmentation in Monocular Image Sequences'. Pattern Recog-
nition, 38:1937{1946, 2005.
[93] C. R. Wren, A. Azarbayejani, T. Darrell, and A. P. Pentland. 'P‾nder:Real-Time Tracking of the Human Body'. IEEE Transactions on Pattern Analysis and Machine Intelligence, 19:780{785, July 1997.
[94] D. Xu, J. Liu, X. Li, Z. Liu, and X. Tang. 'Insigni‾cant Shadow Detection for Video Segmentation'. IEEE Transactions on Circuits and Systems for Video
Technology, 15(8):1058{1064, August 2005.
[95] R. Zhang and Y. Pi. 'Human Body Con‾guration Using Bayesian Model'. International Journal of Intelligent Technology, 1(1):12{17, 2005.
[96] T. Zhao and R. Nevatia. 'Bayesian Human Segmentation in Crowded Situations'.IEEE Computer Society Conference on Computer Vision and Pattern Recognition,
2:459{466, 2003.
[97] S. C. Zhu, R. Zhang, and Z. Tu. 'Integrating Bottom-Up/Top-Down for Object Recognition by DD-MCMC'. IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 1:738{745, 2000.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/31146-
dc.description.abstract人體動態分析在人機介面互動研究應用中,例如:虛擬實境、智慧型監控以及智慧型使用者介面,扮演著重要且不可或缺的角色,目前、以電腦視覺為基礎之人體動態分析在學術界上也引起許多廣泛的討論。一般而言,其主要包含四個部分:前景切割、人行偵測、姿態估測以及姿態追蹤,於本論文中,主要針對前景偵測以及姿態估測這兩個主題,分析當前文獻並分別提出一套有效的解決方法。
於前景切割部分,我們提出一個基於機率的方法,能將前景部份自動從影片中分割出來。為節省計算複雜度以及克服雜訊的干擾,我們提出一個以邊緣為基礎之變化偵測演算法去識別影像中可能為前景的區域。接著透過貝式網路,我們整合運動資訊將所偵測區域進一步分類為前景或背景,以有效過濾陰影效應、雜訊以及未遮蓋背影。而前景切割的問題可描述為:給定連續兩張影像以及前一個時間所獲得之前景切割結果,透過幾何運動限制以及背景觀察模型,我們可以定義運動位移場以及前景切割結果之共同條件機率。利用最佳化演算法,我們可以同時找出運動位移場以及前景切割的解。
人體姿態能提供有效之資訊作為感測與分析人類行為之重要依據。因此、我們提出一個機率架構去估測影像中人體的姿態。在此研究中,我們用以衡量觀測的主要線索為人形影像輪廓。首先、透過前景輪廓與所預估人體模型的差異,定義出所謂可能機率;透過引入身體各部位之幾何限制,定義出事前機率,最後利用RJMCMC近似演算法,在姿態參數空間中,找尋出可能的解。為了提升收斂速度,我們利用資料驅動的策略設計出有效之提案函數。
zh_TW
dc.description.abstractHuman dynamics analysis is currently one of the most active researches in computer vision because it is an important and fundamental component in many applications in the areas of human-computer interaction, such as virtual reality, smart surveillance, and intelligent user interface, etc. In the thesis, two issues which we take into considerations for human dynamics analysis are foreground segmentation and pose estimation.
We present a probabilistic approach for automatically segmenting foreground objects from a video sequence. In order to perform foreground segmentation in a more semantic region level, we propose an edge-based change detection algorithm to automatically identify the regions with potential appearance variation due to the motion of objects. Then, we incorporate the motion information
to perform foreground segmentation under a Bayesian framework. Given two consecutive images, the joint probability density function of the motion vector field and foreground segmentation mask is defined based on the constraints including observation likelihood and spatiotemporal constraint and thus is maximized to simultaneously achieve the foreground segmentation and the motion estimation in a mutually beneficial manner.
Human pose is a natural way for a computer system to understand the intention of humans. Here, we want to propose a new statistical framework for estimating human pose by use of a reversible jump Markov Chain Monte Carlo (RJMCMC) approach, which tries to recovering the human body configuration based on its silhouette.
Such problem is formulated as that of computing the maximum a posterior (MAP) of the probability density function of pose configuration given currently observed image. Equivalently, pose inference can be considered as
traversing over the difference subspaces. Using of the data-driven mechanism, the mentioned reversible jump Markov chain Monte Carlo (RJMCMC) can explore such solution space much more efficiently.
en
dc.description.provenanceMade available in DSpace on 2021-06-13T02:32:19Z (GMT). No. of bitstreams: 1
ntu-96-D89922013-1.pdf: 4164954 bytes, checksum: 73870ab31c46c3adda1769c59d35abaf (MD5)
Previous issue date: 2007
en
dc.description.tableofcontentsContents iv
List of Figures vi
List of Tables ix
1 Introduction 1
1.1 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.1.1 Properties of Vision-Based Systems . . . . . . . . . . . . . . . . 2
1.1.2 Main Applications . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.2.1 Environment Variation . . . . . . . . . . . . . . . . . . . . . . . 6
1.2.2 Appearance Variation . . . . . . . . . . . . . . . . . . . . . . . . 8
1.3 System Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.4 Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.4.1 Algorithms for Foreground Segmentation . . . . . . . . . . . . . 11
1.4.2 Framework for Human Pose Estimation . . . . . . . . . . . . . . 12
1.5 Thesis Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2 State of the Art 15
2.1 Foreground Segmentation . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.1.1 Background Subtraction . . . . . . . . . . . . . . . . . . . . . . 19
2.1.2 Motion-Based Segmentation . . . . . . . . . . . . . . . . . . . . 22
2.2 Pose Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.2.1 Component-Based Approach . . . . . . . . . . . . . . . . . . . . 29
2.2.2 Template-Based Approach . . . . . . . . . . . . . . . . . . . . . 30
2.2.3 Parameterization-Based Approach . . . . . . . . . . . . . . . . . 31
3 Region-Level Foreground Segmentation Based on Graphical Models 33
3.1 Application Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.2 Changed Region Detection . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.2.1 CDM Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.2.2 Region Generation . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.3 Motion Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
3.3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
3.3.2 Non-parametric Approaches . . . . . . . . . . . . . . . . . . . . 45
3.3.3 Parametric Approaches . . . . . . . . . . . . . . . . . . . . . . . 47
3.4 Bayesian Foreground Segmentation . . . . . . . . . . . . . . . . . . . . 48
3.4.1 Bayesian Network Introduction . . . . . . . . . . . . . . . . . . 48
3.4.2 Bayesian Network Formulation . . . . . . . . . . . . . . . . . . 51
3.4.3 MAP Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . 53
3.5 Probability Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
3.5.1 Likelihood Model . . . . . . . . . . . . . . . . . . . . . . . . . . 54
3.5.2 Temporal Constraint . . . . . . . . . . . . . . . . . . . . . . . . 58
3.5.3 Spatial Constraint . . . . . . . . . . . . . . . . . . . . . . . . . 60
3.6 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
3.7 Experiment and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . 64
3.7.1 Subjective Evaluation . . . . . . . . . . . . . . . . . . . . . . . 64
3.7.2 Objective Evaluation . . . . . . . . . . . . . . . . . . . . . . . . 70
4 Silhouette-Based Pose Estimation Using Reversible-Jump MCMC 74
4.1 Estimation Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
4.2 Pictorial Structure Human Model . . . . . . . . . . . . . . . . . . . . . 76
4.2.1 Part Description . . . . . . . . . . . . . . . . . . . . . . . . . . 77
4.2.2 Prior Distribution . . . . . . . . . . . . . . . . . . . . . . . . . . 78
4.2.3 Likelihood Distribution . . . . . . . . . . . . . . . . . . . . . . . 79
4.3 Inference Using Reversible Jump Markov Chain Monte Carlo . . . . . . 80
4.3.1 Structure of Solution Space . . . . . . . . . . . . . . . . . . . . 81
4.3.2 Solution Exploration . . . . . . . . . . . . . . . . . . . . . . . . 82
4.4 Data-Driven Proposal Maps Generation . . . . . . . . . . . . . . . . . . 89
4.4.1 Body Part Extraction . . . . . . . . . . . . . . . . . . . . . . . 90
4.4.2 Face Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
4.5 Experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
5 Conclusion 102
6 Future Works 104
Bibliography 105
dc.language.isoen
dc.subject貝式網路zh_TW
dc.subject人體姿態分析zh_TW
dc.subject前景切割zh_TW
dc.subject姿態估測zh_TW
dc.subject資料驅動zh_TW
dc.subjectRJMCMC近似演算法zh_TW
dc.subjectReversible Jump Markov Chain Monte Carloen
dc.subjectPose Estimationen
dc.subjectForeground Segmentationen
dc.subjectData-Driven Strategyen
dc.subjectBayesian Networken
dc.title前景切割與人體姿態估測zh_TW
dc.titleForeground Segmentation and Human Pose Estimationen
dc.typeThesis
dc.date.schoolyear95-1
dc.description.degree博士
dc.contributor.oralexamcommittee貝蘇章,蔡文祥,陳稔,張隆紋,洪一平,范國清,林進燈
dc.subject.keyword人體姿態分析,前景切割,貝式網路,姿態估測,資料驅動,RJMCMC近似演算法,zh_TW
dc.subject.keywordForeground Segmentation,Pose Estimation,Bayesian Network,Reversible Jump Markov Chain Monte Carlo,Data-Driven Strategy,en
dc.relation.page114
dc.rights.note有償授權
dc.date.accepted2007-01-24
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept資訊工程學研究所zh_TW
顯示於系所單位:資訊工程學系

文件中的檔案:
檔案 大小格式 
ntu-96-1.pdf
  未授權公開取用
4.07 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved