請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/31137
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 徐春田(Chuen-Tien Shyu) | |
dc.contributor.author | Su-Jer Lin | en |
dc.contributor.author | 林書晢 | zh_TW |
dc.date.accessioned | 2021-06-13T02:31:49Z | - |
dc.date.available | 2007-02-02 | |
dc.date.copyright | 2007-02-02 | |
dc.date.issued | 2007 | |
dc.date.submitted | 2007-01-24 | |
dc.identifier.citation | Bialas, J., and N. Kukowski, 2001: R/V Sonne off Peru: Along “ring of fire”, new gwophysical data for investigating gas hydrates, convergent margin structure, seismicity, Sea Technology, 42, 29-32.
Bullard, E. C., 1954 : The flow of heat trough the floor of the Atlantic Ocean.proc. R. Sec. London, Ser, A., 222, 408-429. Carslaw, H. S., and J. C. Jaeger, 1959 : Conduction of heat in solids,2nd edn., Oxford University Press, London, 510pp. Chi, W. C., D. L. Reed, C. S. Liu, and N. Lundberg, 1998 : Distribution of the bottom-simulatingreflector in the offshore Taiwan collision Zon, TAO. 9, 779-794. Davis, E. E., C. R. B. Lister, and J. G. Scalter, 1984 : Towards determining the thermal state of old ocean lithosphere : Heat-flow measurements from the Blake-Bahama Outer Ridge, Northwestern Atlantic, Goephys. J. R. Astron. soc., 78, 507-545. Davis, E. E., R. D. Hyndman, and H. Villinger, 1990 : Rates of fluid explusion across the northern Cascadia accretionary prism : constraints from new heat flow and multichannel seismic reflection data. J. Geophys. Res., 95, 8869-8889. Dickens, G. R., and M. S. Quinby-Hunt, 1997 : Methane hydrate stability in pore water: A simple theoretical approach for geophysical applications, J. Geophys. Res., 102, 773-783. Foucher, J. P., H. Nouze, and P. Henry, 2002 : Observation and tentative interpretation of a double BSR on the Nankai Trough, Marine Goel., 187, 161-175. Ganguly, N., G. D. Spence, N. R. Chapman, and R. D. Hyndman, 2000 : Heat flow variations from bottom simulating reflectors on the Cascadian margin, Marine Geol., 164, 53-68. Handa, Y. P., and D. Stupin, 1992 : Thermodynamic properties and dissociation characteristics of methane and propane hydrates in 70-A-radius silica-gel pores, Jour. Phys. Chem., 96, 8599-8603. Henry, P., M. Thomas, and M. B. Clennell, 1999 : Formation of natural gas hydrates in marine sediments 2. thermodynamic calculations of stability conditions in porous sediments, J. Geophys. Res., 104, 23005-23022. Hyndman, R. D., E. E. Davis, and J. A. Wright, 1979 : The measurement of marine geothermal heat flow by a multipenetration probe with digital acoustic telemetry and in situ thermal conductivity, Mar. Geophys. Res., 4, 181-205. Hyndman, R. D., K. Wang, T. Yuan, and G. D. Spence, 1993 : Tectonic sediment thicking, fluid expulsion and the thermal regime of subduction zone accretionary prisms: the Cascadia margin of Vancouver Island. J. Geophys. Res., 4, 181-205. Hyndman, R. D., G. D. Spence, R. Chapman, M. Riedel, and R. N. Edwards, 2001 : Geophysical studies of marine gas hydrates in Northern Cascadia, In Natural Gas Hydrates-Occurrence Distribution and Detection, edited by Charles K. Paull and William P. Dillon, Geophysical Monograph Series, 124, 273-295. Jaegar, J. C., 1956 : Application of the theory of heat conduction to geothermal measurement. In : W. H. K. Lee(Ed.), Terrestrial heat flow, Am. Geophys Union., Washington, Dc, 7-23. Katz, H. R., 1982 : Evidence for gas hydrate beneath the continental slope, East coast, North Island, New Zealand, N. Z. J. Geol. Geophys., 25, 193-199. Kvenvolden, K. A., and M. McMenamin, 1980 : A review of their geologic occurrence, US Geological Survey Circular, 825. Lewis, K. B., and J. A. Pettinga, 1993 : The emerging imbricate frontal wedge of the Hikurangi margin, in: Balance, P. E. (Ed.), South Pacific Sedimentary Basins, Elsevier, Amsterdam, 225-250. Liu, C. S., I. L. Huang, and L. S. Teng, 1997 : Structral features off Southwestern Taiwan. Marine Geol., 137, 305-319. Lu, H. L., and R Matsmoto, 2001 : Anion plays an more important role than cation in affecting gas hydrate stability in electrolytes solution-a recognition from experimental results, Fluid Phase Equil.,178, 225-232. Matsumoto, R., H. Tomaru, and H. Lu, 2004 : Detection and evaluation of gas hydrates in the eastern Nankai Trough by geochemical and geophysical methods, Resource Geology., 54, 53-67. Pfender, M., and H. Villinger, 2002 : Miniaturized data loggers for deep sea sediment temperature gradient measurements, Marine Geology., 186, 557-570. Shyu, C. T., and H. I. Chang, 2005 : Determination of seafloor temperatures using data from high-resolution marine heat probes, TAO. 16, 137-153. Shyu, C. T., Y. J. Chen, Y. J., S. T. Chiang, and C. S. Liu, 2006 : Heat flow measurements over bottom simulating reflectors, offshore southwestern Taiwan, TAO.17,845-869. Tr’ehu, A. M., 2006 : Subsurface temperature beneath southern Hydrate Ridge, In Tre’hu, A. M., Bohrmann, G., Torres, M. E., and Colwell, F. S. (Eds.), Proc. ODP, Sci. Results, 204 (online). Von Herzen, R. P. and Uyeda, S., 1963 : Heat flow through the eastern Pacific Ocean floor. Journal of Geophysical Research,68,4219-50. Wang, Shin and J. M. Lu., 1975 : Preliminary study of surfacial sediment transport in coastal water of western Taiwan by analyzing ERTS-1 imagery MRSO Report-147,33p. Waseda, A., and T. Uchida, 2004 : The Geochemical context of gas hydrate in the eastern Nankai Trough, Resource Geol., 54, 69-78. 姚伯初 南海北部陸緣天然氣水合物初探, 海洋地質與第四紀地質,第11-18頁,1998。 陳格忠 台灣西南海域天然氣水合物分布特徵,國立台灣大學海洋 研究所碩士論文,2003。 陳儀清 台灣西南外海海床表層沉積現象之研究,國立台灣大學海洋研究所博士論文,1997。 陳育鍾 台灣西南海域之海床溫度推估甲烷氣水包合物的深度研究,國立台灣大學海洋研究所碩士論文,2000。 曾威豪 台灣西南海域海底泥火山之分布特徵與噴發機制,國立台灣大學海洋研究所碩士論文,2006。 劉家瑄 台灣西南海域天然氣水合物賦存區地質調查研究地球物理調查(2/4)反射震測與海床聲納迴聲剖面調查研究。經濟部中央地質調查所,2005。 鐘三雄、劉家瑄、劉少勇、賴國榮、陳之馨、陳格忠 海底仿擬反射資料庫建置,21世紀新能源天然氣水合物研討會,大會論文摘要,53-57頁,2002。 | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/31137 | - |
dc.description.abstract | 在台灣西南海域的大陸斜坡及大陸隆起處,於震測剖面上發現了許多海底仿擬反射層。為了能更準確的求得天然氣水合物穩定生成的底部,即海床的地溫梯度與天然氣水合物穩定曲線的交點。我們將5根小型溫度探針繫綁於岩心採樣器之外管壁上,在岩心採樣時同時量取海床底下之溫度。
由於附著式小型溫度探針需以支架繫掛於大而重之長岩心器上,因此磨擦熱產生的起始溫度也不再是單一的脈衝形狀而是一前一後的複雜波形,在資料處理方法中我們發現使用緊貼於岩心管的矮支架所得的地溫資料,雖然所受到各種的磨擦熱源影響較大,但優點是這些磨擦熱會在短時間內抵達探針,因此我們可選擇遠離溫度波峰較遠(後)的資料來處理,即可將此複合式的升高溫度形狀視為是只有單一的複合波,如此便可利用溫度衰減函數匹配推求背景溫度及梯度;反之高支架的地溫資料,顯示溫度在衰減過程中會有二次增溫的現象,導致我們無法利用圓柱體溫度衰減函數去匹配推求背景溫度,僅能利用較前段之尚未升溫之資料推估背景溫度是其缺點。另外我們也發現直接從溫度梯度的資料用該函數來推求最終之背景溫度梯度的方法又優於先用該函數推求背景溫度再求背景梯度的方法。 由於長岩心採樣系統尚未能正常運作,只能將小型溫度探針繫掛於直徑為11公分長6公尺之岩心器上,並沿着有明顯海底仿擬反射層處收集了12站的資料(但僅有10站的資料較好),如以靜水壓模式推求天然氣水合物穩定帶的底部,在台灣西南海域被動式大陸邊緣的6站深度測站為134至438 mbsf,而在主動式大陸邊緣的4站卻深達359至473 mbsf,初步研判後者之所以偏高是受高沉積速率的影響而降低了溫度梯度值。但整體而言,與以往所收集的資料相較,趨勢尚稱一致,即天然氣水合物穩定帶的底部之所以未隨海水深度而增加,是因溫度梯度有隨水深而增加的關係,說明了天然氣穩定生成的深度受地溫梯度的影響較大。 | zh_TW |
dc.description.abstract | Bottom simulating reflectors (BSRs) have been found on the seismic profiles collected from continental slopes and rises, and most of which are associated with the accretionary prism off southwest Taiwan.
In order to obtain a more accurate prediction of intersection between the temperature gradient measured at sub-seafloor and the gas hydrate phase boundary curve (i.e. BGHS;Base of Gas Hydrate Stability), we attached 5 miniature temperature probes to the outside walls of a sediment corer to measure the temperature and thermal gradient of sub-seafloor when taking a core sample. Since the probes are attached to a big and heavy sediment corer, the frictional temperature pulse is no longer a spike-like wavelet, but an elongated and complex shape. In data processing, we found that the temperature recordings obtained from probes attached to the corer with short fins will lead higher frictional temperature than that produced by using tall fins. The advantage is the frictional temperature may reach to the probe in a short period of time. We can choose the temperature data away from the initial temperature surge for processing. That is, we can consider the raised temperature a single impulse and predict the ambient temperature and temperature gradient of the sediments by fitting with the cylindrical temperature decay function. If the tall fins were used, the secondary raised temperature may appear on the temperature record after a period of time following the primary raised temperature peak. So, we couldn’t derive the ambient temperature by the previous method. Only the anterior data following immediately the earlier temperature decay (before the secondary temperature rising) are usable for data reduction. In addition, we found that to obtain ambient temperature gradients by fitting the cylindrical temperature decay function to the temperature gradient data directly is better than that obtained by applying the function to fit the temperature data first and then to compute the temperature gradients. Fail to use the new long-coring equipment in time, we can only attach the miniature temperature probes to a core of 11 cm in diameter and 6 m in length. Though we collected 12 stations of temperature data along obvious BSR, only 10 stations of the data are usable. Assuming the hydrostatic model is applicable to the area; from the gas hydrate stability curve we may estimate the base of gas hydrate stability. The depths of BGHS at sites on passive margin range from 134 to 438 mbsf while at sites on active margin range from 359 to 473 mbsf. The depth of BGHS for later sites are much deeper because of the effects of high sedimentary rate which reduced the temperature gradients beneath seafloor. The BGHS does not obviously increase with the water depth, but it depends on the temperature gradients greatly. From the compiled contour map, we have found that the BGHSs are deeper than the previous results; however, the general trend is consistent with each other. | en |
dc.description.provenance | Made available in DSpace on 2021-06-13T02:31:49Z (GMT). No. of bitstreams: 1 ntu-96-R93241315-1.pdf: 2948117 bytes, checksum: 8b7dd1d4dc14236e5f92d33b55f78766 (MD5) Previous issue date: 2007 | en |
dc.description.tableofcontents | 目錄
中文摘要 I 英文摘要 II 目錄 IV 圖目錄 VI 表目錄 IX 第一章 緒論1 第二章 海床地溫量測作業5 2.1 小型附著式熱探針5 2.2 繫載熱探針之支撐架 7 2.3 儀器配置與施放流程 9 第三章 資料處理11 3.1 小型熱探針之溫度校正11 3.2 資料處理原理13 3.3 資料處理步驟14 3.4 模擬熱容量對求取背景溫度的影響15 3.5 模擬利用圓柱體溫度衰減函數推求地溫梯度21 第四章 利用溫度衰減函數修正磨擦熱對溫度之干擾 26 4.1 矮支架對探針所量測溫度的影響26 4.2 採用矮支架推求背景溫度的方法與分析28 4.3 採用矮支架推求地溫梯度的方法與分析33 4.4 高支架對探針所量測溫度的影響40 4.5 採用高支架推求背景溫度的方法與分析43 4.6 矮支架與高支架之地溫資料討論45 第五章 推求台灣西南海域天然氣水合物最大生成深度(BGHS)的結果與分析47 5.1 構造背景 47 5.2 研究區域之測站規劃 48 5.3 天然氣水合物溫度壓力平衡曲線52 5.4 Hydrostatic pressure與Lithostatic pressure的模式差別 52 5.5 地溫梯度推求的結果 53 5.6 推估BGHS深度的結果 56 5.7 彙整成新的地溫梯度及BGHS深度圖64 第六章 結論67 參考文獻 69 | |
dc.language.iso | zh-TW | |
dc.title | 使用附著式小型溫度探針量測海底沉積物之溫度梯度並推估天然氣水合物穩定帶底部之研究 | zh_TW |
dc.title | Using attachable miniature temperature probes to measure sub-seafloor temperature gradients and estimate the Base of Gas Hydrate Stability Zone | en |
dc.type | Thesis | |
dc.date.schoolyear | 95-1 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 劉家瑄(Char-Shing Liu),李昭興(Chao-Shing Lee),許樹坤(Shu-Kun Hsu),喬凌雲(Lin-Yun Chiao) | |
dc.subject.keyword | 仿擬反射層,小型溫度探針,天然氣水合物,背景溫度梯度,圓柱體溫度衰減函數, | zh_TW |
dc.subject.keyword | Bottom simulating reflector,Miniature temperature probe,Gas Hydrate,Temperature gradient,Cylindrical temperature decay function, | en |
dc.relation.page | 73 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2007-01-25 | |
dc.contributor.author-college | 理學院 | zh_TW |
dc.contributor.author-dept | 海洋研究所 | zh_TW |
顯示於系所單位: | 海洋研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-96-1.pdf 目前未授權公開取用 | 2.88 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。