請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/31112
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 王重雄 | |
dc.contributor.author | Wei-Fone Huang | en |
dc.contributor.author | 黃偉峰 | zh_TW |
dc.date.accessioned | 2021-06-13T02:30:26Z | - |
dc.date.available | 2012-02-02 | |
dc.date.copyright | 2007-02-02 | |
dc.date.issued | 2007 | |
dc.date.submitted | 2007-01-25 | |
dc.identifier.citation | 嚴奉琰、高學文 1972. 蜜蜂微粒子病及其病理學。 植保會刊 14:53-57。
An, J.K., and Ho, K.K., 1980. The seasonal variation of Nosema apis Zander in Taiwan. Honeybee Sci. 1, 157-158. Anderson, R.M., and May, R.M. 1981. The population dynamics of microparasites and their invertebrate hosts. Philos. Trans. R. Soc. London B 291, 451-524. Bailey, L. 1981. Honey bee Pathology. Academic Press, London, UK, 124pp. Baker, M. D., Vossbrinck, C. R., Maddox, J. V., and Undeen, A. H. 1994. Phylogenetic relationships among Vairimorpha and Nosema species (Microspora) based on ribosomal RNA sequence data. J. Invertebr. Pathol. 64, 100-106. Becnel, J. J., and Andreadis, T. G. 1999. Microsporidia in insects. pp. 447-501. In M. Wittner and L. M. Weiss (eds.), The Microsporidia and Microsporidiosis. ASM Press, Washington. Biderre, C., Canning, E.U., Méténier, and G., Vivars, C.P. 1999. Comparison of two isolates of Encephalitozoon hellem and E. intestinalis (Microspora) by pulsed field gel electrophoresis. Eur. J. Protistol. 35, 194-196. Biderre, C., Pagès, M., Méténier, G., Canning, E.U., and Vivarès, C.P. 1995. Evidence for the smallest nuclear genome (2.9 Mb) in the microsporidium Encephalitozoon cuniculi. Mol. Biochem. Parasitol. 74, 229-231. Brooks, W. M. 1988. Entomogenous protozoa. pp. 1-149. In C. M. Ignoffo (ed.), Handbook of Natural Pesticides, Vol. 5, CRC Press, Boca Raton, Fla. Burges, H.D., Canning, E.U., Hulls, I.K., 1974. Ultrastructure of Nosema oryzaephili and the taxanomic value of the polar filament. J. Invertebr. Pathol. 23, 135-139. Canning, E.U. 1993. Microsporidia, pp. 299-385. In J. P. Kreier, and J. R. Baker (Eds.), Parasitic protozoa, 2nd ed. Academic Press, New York, USA. Canning, E.U., Curry,A., Cheney, S., Lafranchi-Tristem, N.J., and Haque, M.A., 1999. Vairimorpha imperfecta n.sp., a microsporidian exhibiting an abortive octosporous sporogony in Plutella xylostella L. (Lepidoptera: Yponomeutidae). Parasitology 119, 273-286. Canning, E.U., and Lom, J. 1986. The Microsporidia of Veterbrates. Academic Press, London, UK. Curgy, J.J., Vávra, J., and Vivarè, C.P., 1980. Presence of ribosomal RNAs with prokaryotic properties in Microsporidia, eukaryotic organisms. Biol. Cell 38, 49-51. De Rijk, P., and De Wachter, R., 1993. DCSE, an interactive tool for sequence alignment and secondary structure research. Comput. Appl. Biosci. 9, 735-740. De Rijk, P., and De Wachter, R., 1997. RnaViz, a program for the visualization of RNA secondary structure. Nucleic Acids Res. 25, 4679-4684. De Rijk, P., Caers, A., Van de Peer, Y. and De Wachter, R., 1998a. Database on the structure of large ribosomal subunit RNA. Nucleic Acids Res. 26, 183-186. De Rijk, P., Gatehouse, H.S., and De Wachter, R., 1998b. The secondary structure of Nosema apis large subunit ribosomal RNA. Biochim. Biophys. Acta 1442, 326-328. De Rijk, P., Wuyts, J., and De Wachter, R., 2003. RnaViz 2: an improved representation of RNA secondary structure. Bioinformatics 19, 299-300. Delihas, N., Anderson, J., and Singhal, R.P., 1984. Structure, function and evolution of 5-S ribosomal RNAs. Prog. Nucleic Acid Res. Mol. Biol. 31, 161-190.Desportes, I., Le Charpentier, Y., Galian, A., Bernard, F., Cochand Priollet, B., Lavergne, A., Ravisse, P., and Modigliani, R. 1985. Occurrence of a new microsporidan: Enterocytozoon bieneusi n.g., n. sp., in the enterocytes of a human patient with AIDS. J. Protozool. 32, 250-254. Desportes-Livage, I. 2000. Biology of microsporidia. Contrib. Microbiol 6, 140-165. Didier, E.S., Vossbrinck, C.R., Baker, M.D., Rogers, L.B., Bertucci, D.C., and Shadduck, J.A., 1995. Identification and characterization of three Encephalitozoon cuniculi strains. Parasitology 111, 411-421. Didier, E.S., and Weiss, L.M. 2006. Microsporidiosis: current status. Curr Opin Infect Dis. 19, 485-492. Edlind, T., Katiyar, S., Visvesvara, G., and Li, J. 1996. Evolutionary origins of microsporidia and basis for bezimidazole sensitivity: an update. J. Eukaryot. Microbiol. 43, 109. Edlined, T.D., Li, J., Visvesvara, G.S., Voodkin, M.H., McLaughlin, G.L., and Katiyar, S.K., 1996. Phylogenetic analysis of beta-tubulin sequences from amitochondrial protozoa. Mol. Phylognet. Evol. 5, 359-367. Farrar, C.L. 1942. Nosema disease contributes to winter losses and queen supersedure. Glean. Bee Cult. 70, 660-661. Fast, N.M., Logsdon, J.M., Jr, Doolittle, W.F. 1999. Phylogenetic analysis of the TATA box binding protein (TBP) gene from Nosema locustae: Evidence for a microsporidia–fungi relationship and spliceosomal intron loss. Mol. Biol. Evol. 16, 1415-1419. Fries, I., 1989. Observation on the development and transmission of Nosema apis Z. in the ventriculus of the honeybee. J. Apic. Res. 28, 107-117. Fries, I., 1993. Nosema apis - a parasite in the honey bee colony. Bee world 74, 5-19. Fries, I., 1997. Protozoa, in: Morse R.A. (ed). Honey Bee Pests, Predators, and Diseases. 3rd ed., A.I Root Company, Medina, Ohio, USA, pp. 57-76. Fries, I. 1988. Infectivity and multiplication of Nosema apis Z. in the ventriculus of the honey bee. Apidologie 19, 319-328. Fries, I., Ekbohm, G., and Villumstad, E. 1984. Nosema apis, sampling techniques and honey yield. J. Apicul. Res. 23, 102-105. Fries, I., Feng, F., da Silva, A., Slemenda, S.B., and Pieniazek, N.J., 1996. Nosema ceranae n. sp. (Microspora, Nosematidae), morphological and molecular characterization of a microsporidian parasite of the Asian honey bee Apis cerana (Hymenoptera, Apidae). Eur. J. Protistol. 32, 356-365. Fries, I., Granados, R.R., and Morse, R.A. 1992. Intracellular germination of spores of Nosema apis Z. Apidologie 23, 61-70. Galtier, N., and Gouy, M., 1995. Inferring phylogenies from DNA sequences of unequal base compositions. Proc. Natl. Acad. Sci. USA 92, 11317-11321. Gatehouse, H.S., and Malone, L.A., 1998. The ribosomal RNA gene region of Nosema apis (Microspora): DNA sequence for small and large subunit rRNA genes and evidence of a large tandem repeat unit size. J. Invertebr. Pathol. 71, 97-105. Germot, A., Philippe, H., and Le Guyader, H. 1997. Evidence for loss of mitochondria in microsporidia from a mitochondrial-type HSP70 in Nosema locustae. Mol. Biochem. Parasitol. 87, 159-168. Goodwin, M., Ten Houten, A., Perry, J., Blackmann, R., 1990. Cost benefit analysis of using fumagillin to treat Nosema. NZ Beekeeper, 208, 11-12. Gresoviac, S.J., Khattra, J.S., Nadler, S.A., Kent, M.L., Devlin, R.H., Vivares, C.P., Fuente, E.DeLa and Hedrick, R.P., 2000. Comparison of small subunit ribosomal RNA gene and internal transcribed spacer sequences among isolates of the intranuclear microsporidian Nucleospora salmonis. J. Eukaryot. Microbiol. 47, 379-387. Hatakeyama, Y., Kawakami, Y., Iwano, H., Inoue,T. and Ishihara, R., 1997. Analyses and taxonomic inferences of small subunit ribosomal RNA sequences of five microsporidia pathogenic to the silkworm, Bombyx mori. J. Seric. Sci. Jpn. 66, 242-252. Higes, M., Martín, R., and Meana, A., 2006. Nosema ceranae, a new microsporidian parasite in honeybees in Europe. J. Invertebr. Pathol. 92, 93-95. Hirt, R. P., Healy, B., Vossbrinck, C.R., Canning, E.U., and Embley, T.M. 1997. A mitochondrial Hsp70 orthologue in Vairimorpha necatrix: molecular evidence that microsporidia once contained mitochondria. Curr. Biol. 7, 995-998. Hirt, R.P., Logsdon, J.M., Jr, Healy, B., Dorey, M.W., Doolittle, W.F., and Embley, T.M. 1999. Microsporidia are related to Fungi: Evidence from the largest subunit of RNA polymerase II and other proteins. Proc. Natl. Acad. Sci. 96, 580-585. Huang, H.W., Lo, C.F., Tseng, C.C., Peng, S.E., Chou, C.M. and Kou, C.H., 1998. The small subunit ribosomal RNA gene sequence of Pleistophora anguillarum and the use of PCR primers of diagnostic detection of the parasite. J. Eukaryot. Microbiol. 45, 556-560. Huang, W.F., Jiang, J.H., Chen, Y.W., Wang, C.H., 2006. A Nosema ceranae isolate from the honeybee Apis mellifera. Apidologie in press. Huang W.F., Tsai S.J., Lo C.F., Soichi Y., Wang C.H., 2004. The novel organization and complete sequence of the ribosomal gene of Nosema bombycis. Fung. Genet. Biol. 41, 473-481. Ishihara, R., and Hayashi, Y., 1968. Some properties of ribosomes from the sporoplasm of Nosema bombycis. J. Invertebr. Pathol. 11, 377-385. Katinka, M.D., Duprat, S., Cornillot, E., Méténier, G., Thomarat, F., Prensier, G., Barbe, V., Peyretaillade, E., Brottier, P., Wincker, P., Delbac, F., El alaoui, H., Peyret, P., Saurin, W., Gouy, M., Weissenbach, J., Vivarès, C.P. 2001. Genome sequence and gene compaction of the eukaryote parasite Encephalitozoon cuniculi. Nature 414, 450-453. Kawakami, Y., Inoue, T., Kikuchi, M., Takayanagi, M., Sunairi, M., Ando, T. and Ishihara, R., 1992. Primary and secondary structures of 5S ribosomal RNA of Nosema bombycis (Nosematidae, Microsporidia). J. Seric. Sci. Jpn. 61, 321-329. Keeling, P.J. and Fast, N.M. 2002. Microsporidia: Biology and evolution of highly reduced intracellular parasites. Ann. Rev. Microbiol. 56:93-116 Keeling, P. J., Luker, M.A., and Palmer, J.D. 2000. Evidence from beta-tubulin that microsporidia evolved from fungi. Mol. Biol. Evol. 17, 1-9. Keeling, P.J., Macfadden, G.I., 1998. Origins of microsporidia. Trends Microbiol. 6, 19-23. Keeling, P. J. and Slamovits, C. H. 2004. Simplicity and complexity of microsporidian genomes. Eukaryotic Cell 3, 1363-1369. Keohane, E.M., and Weiss, L.M. 1998. Characterization and function of the microsporidian polar tube: a review. Folia Parasitol. 45, 117-127. Klee, J., Tay, W.T., and Paxton, R.J., 2006. Specific and sensitive detection of Nosema bombi (Microsporidia: Nosematidae) in bumble bees (Bombus spp.; Hymenoptera: Apidae) by PCR of partial rRNA gene sequences. J. Invertebr Pathol. 91, 98-104. Larsson, J. I. R. 1999. Identification of Microsporidia. Acta Protozool. 38, 161-197. Larsson, J.I.R., 2005. Fixation of microsporidian spores for electron microscopy. J. Invertebr. Pathol. 90, 47-50. Leiro, J., Iglesias, R., Parama, A., Aragort, W., and Sanmartin, M.L., 2002. PCR detection of Tetramicra breviWlum (Microspora) infection in turbot (Scophthalmus maximus L.) musculature. Parasitology 124, 145-151. Lui, T.P., 1973. The fine structure of frozen-etched spore of Nosema apis Zander. Tissue and Cell 5, 315-322. Lui, T.P., Lui, H.J., 1974. Evaluation of some morphological characteristics of spore from two species of microsporidia by scanning electron microscope and frozen-etching techniques. J. Morphol. 143, 337-339. Malone, L.A., and McIvor, C.A., 1996. Pulsed-field gel electrophoresis of DNA from four microsporidian isolates. J. Invertebr. Pathol. 68, 231-238. Matheson, A., 1996. World bee health update 1996. Bee World 77, 45-51. Mathis, A., Tanner, I., Weber, R., Deplazes, P., 1999. Genetic and phenotypic intraspecific variation in the microsporidian Encephalitozoon hellem. Int. J. Parasitol. 29, 767-770. Müller, A., Trammer, T., Ghioralia, G., Seitz, H. M., Diehl, V., and Franzen, E., 2000. Ribosomal RNA of Nosema algerae and phylogenetic relationship to other microsporidia. Parasitol. Res. 86, 18-23. Naegeli, C. 1857. Uber die neue Krankheit der Seidenraupe und verwandte Organismen. Botan Zeit. 15, 760-761. Nilsen, F., Endresen, C., and Hordvik, I., 1998. Molecular phylogeny of microsporidia with particular reference to species that infect the muscles of fish. J. Eukaryot. Microbiol. 45, 535-543. Peyretaillade, E., Biderre, C., Peyret, P., Duffieux, F., Metenier, G., Gouy, M., Michot, B., and Vivares, C. P., 1998. Microsporidian Encephalitozoon cuniculi, a unicellular eukaryote with an unusual chromosomal dispersion of ribosomal genes and a LSUrRNA reduced to the universal core. Nucleic Acids Res. 26, 3513-3520. Pieniazek, N.J., ‘Silva, A.J., Sleimenda, S.B., Visvesvara, G.S., Kurtti, T.J., and Yasunaga, C., 1996. Nosema trichoplusiae is a synonym of Nosema bombycis based on the sequence of the small subunit ribosomal RNA coding region. J. Invertebr. Pathol. 67, 316-317. Refardt, D., and Ebert, D., 2006. Quantitative PCR to detect, discriminate and quantifyintracellular parasites in their host: an example from three microsporidians in Daphnia. Parasitology 133, 1-8. Reynolds, E.S., 1963. The use of lead citrate at high pH as an electron-opaque stain in electron microscopy. J. Cell Biol. 17, 208-212. Shyamala, H., Ames, G.F., 1989. Genome walking by single-specific-primer polymerase chain reaction: SSP-PCR. Gene 84, 1-8. Singh, Y., 1975. Nosema in Indian honey bee (Apis cerana indica). Am. Bee J. 115, 59. Slamovits, C.H., Willams, B.A.P., Keeling, P.J., 2004. Transfer of Nosema locustae (Microsporidia) to Antonospora locustae n. comb. Based on molecular and ultrastructure data. J. Eukaryot. Microbiol. 51, 207-213. Steinhaus, E.A., 1963. Insect Pathology: An Advanced treatise. Vol. 2 Academic Press, NY., AF, London. Sparague, V., Becnel, J.J., and Hazard, E.I., 1992. Taxonomy of phylum Microspora. Crit. Rev. Microbiol. 18, 285-395. Swofford, D. L. 2003. PAUP*, Phylogenetic analysis using parasimony (* and other methods). Sinauer Associates, Sunderland, MA. Szymanski, M., Barciszewska, M. Z., Erdmann, V. A. and Barciszewski, J. 2003. 5 S rRNA: structure and interactions. J. Biochem. 371, 641-651. Takvorian, P.M. and Cali, A. 1994. Enzyme histochemical identification of the Golgi apparatus in the microsporidian, Glugea stephani. J. Eukaryot. Microbiol. 29, 63-64. Tanada, Y., and Kaya, H.K. 1993. Protozoan infections: Apicomplexa, Microspora. In Insect Pathology, Academic Press, San Diego, USA. pp. 414-458. Thompson, J.D., Gibson, T.J., Plewniak, F., Jeanmougin, F., Higgins, D.G., 1997. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nuclei Acids Res. 25, 4876-4882. Tsai, S.J., Kou, G.H., Lo, C.F., and Wang, C.H., 2002. Complete sequence and structure of ribosomal RNA gene of Heterosporis anguillarum. Dis. Aquat. Org. 49, 199-206. Tanada, Y., and Kaya, H.K., 1993. Insect Pathology. Academic Press, INC. Tsai, S.J., Kou, G.H., Lo, C.F. and Wang, C.H., 2002. Complete sequence and structure of ribosomal RNA gene of Heterosporis anguillarum. Dis. Aquat. Org. 49, 199-206. Tsai, S.J., Lo, C.F., Soichi, Y., and Wang, C.H., 2003. The characterization of microsporidian isolates (Nosematidae: Nosema) from five important lepidopteran pests in Taiwan. J. Invertebr. Pathol. 83, 51-59. Undeen, A.H., and Cockburn, A.F., 1989. The extraction of DNA from microsporidia spores. J. Invertebr. Pathol. 54, 132-133. Van de Peer, Y., De Rijk, P., Wuyts, J., Winkelmans, T., and De Wachter, R., 2000. The Europen small subunit ribosomal RNA database. Nucleic Acids Res. 28, 175-176. Vavra J, and Larsson, R. 1999. Structure of the microsporidia. pp. 7-84. In Wittner M., Weiss L.M. (eds.), The Microsporidia and Microsporidiosis. Washington, DC.: American Society for Microbiology. Visvesvara, G.S., Leitch, G.J., Da Silva, A.J., Croppo, G.P., Moura, H., Wallace, S., Slemenda, S.B., Schwartz, D.A., Moss, D., Bryan, R.T., and Pieniazek, N.J., 1994. Polyclonal and monoclonal antibody and PCR-amplified small-subunit rRNA identification of a microsporidian Encephalitozoon hellem, isolated from an AIDS patient with disseminated infection. J. Clin. Microbiol. 32, 2760-2768. Vivarès, C.P., Gouy, M., Thomarat, F., Méténier, G. 2002. Functional and evolutionary analysis of a eukaryotic parasitic genome. Curr. Opin. Microbiol. 5, 499-505. Vivarès, C.P., and Méténier, G. 2004. The microsporidia genome: living with minimal genes as an intracellular eukaryote. pp. 215-242. In D.S. Lindsay and L.M. Weiss (eds.), Opportunistic Infections: Toxoplasma, Sarcocystis and Microsporidia. World Class Parasites. Vol. 9. Kluwer Academic Publishers, Boston. Vossbrinck, C.R., Baker, M.D., Didier, E.S., Debrunner-Vossbrinck, B.A., and Shadduck, J.A., 1993. Ribosomal DNA sequences of Encephalitozoon hellem and Encephalitozoon cuniculi: species identification and phylogentic construction. J. Eukaryot. Microbiol. 40, 354-362. Vossbrinck, C.R., Maddox, J.V., Friedman, S., Debrunner-Vossbrinck, B.A. and Woese, C.R. 1987. Ribosomal RNA sequence suggests microsporidia are extremely ancient eukaryotes. Nature 326, 411-414. Vossbrinck, C.R., and Woese, C.R., 1986. Eukaryotic ribosomes that lack a 5.8S RNA. Nature 320, 287-288. Vossbrinck, C.R., Andreadis, T.G.., Vavra, J., and Becnel, J.J. 2004. Molecular phylogeny and evolution of mosquito parasitic Microsporidia (Microsporidia: Amblyosporidae). J. Eukaryot Microbiol. 51, 88-95. Weiss, L.M., Vossbrinck, C.R., 1999. Molecular biology, molecular phylogeny, and molecular diagnostic approaches to the microsporidia. in: Wittner M. & Weiss L.M. (eds.). The Microsporidia and Microsporidiosis. American Society for Microbiology, Washington, DC, pp. 129-171. Weiss, L.M., Edlind, T.D., Vossbrinck, C.R., and Hashimoto, T. 1999. Microsporidian molecular phylogeny: The fungal connection' J. Eukaryot. Microbiol. 46, 17-18. Williams, B.A., Hirt, K.P., Lucocq, J.M., and Embley, T.M. 2002. A mitochondrial remnant in the microsporidian Trachipleistophora hominis. Nature 418, 865-869. Wittner, M. 1999. The Microsporidia and Microsporidiosis, ASM Press, Washington, D.C., 553 pp. Wuyts, J., de Rijk,P., van de Peer,Y, Winkelmans,T., and de Wachter,R., 2001. The European large subunit ribosomal RNA database. Nucleic Acids Res. 29, 175-177. Zander, E., 1909. Tierische Parasiten als Krankenheitserreger bei der Biene. Leipziger Bienenzeitung 24, 147-150; 164-166. Zhu, X., Wittner, M., Tanowitz, H. B., Cali, A. and Weiss, L. M. 1994. Ribosomal RNA sequences of Enterocytozoon bieneusi, Septata intestinalis and Ameson michaelis: phylogenetic construction and structural correspondence. J. Eukaryot. Microbiol. 41, 204-209. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/31112 | - |
dc.description.abstract | The full length of ribosomal RNA (rRNA) genes of N. bombycis has been examined and presented in this thesis, and the DNA sequence data has been submitted (4,301 bp, GenBank Accession No. AY259631). The organization of N. bombycis rRNA genes is unique in arrangement, 5′- LSUrRNA- ITS- SSUrRNA- IGS- 5S rRNA -3′. By sequencing the rRNA gene of the closely related species, N. spodopterae, its rRNA genes organization follows a similar pattern to N. bombycis. The secondary structures of the N. bombycis LSU and SSUrRNA genes were constructed and compared with those of other microsporidia. The secondary structures of N. bombycis and N. spodopterae rRNAs showed few differences between those of other known microsporidia. This finding implies that the rRNA genes organization might be an important characteristic of the members in genus Nosema.
Recently, N. ceranae has been reported causing nosema disease in Apis mellifera which was considered infected by N. apis only. Furthermore, the ratio of N. ceranae to other pathogens causing nosema disease in some areas is quite high. The full length rRNA genes of N. ceranae has also been examined and found identical to those of N. apis. Further sequencing the rRNA genes, the rRNA organization of N. ceranae is found to be 5′- 5S rRNA- IGS- SSUrRNA- ITS- LSUrRNA- 3′, and the orientation of 5S rRNA is reversed of LSU and SSUrRNA. However, it is not found in related species. Comparing the rRNA sequences of the isolates from A. mellifera and A. ceranae, it showed no difference in phylogeny, and it may represent no differentiation between the isolates from different hosts. Moreover, the N. ceranae isolates from different areas of the world were obtained through abroad researchers, and these isolates showed little difference in IGS phylogenetic analyses. It might imply that no isolation between these isolates. Recent researches showed that there may be more than two species causing honeybee nosema disease, and it raised the questions about the accuracy of records that attributed the Nosema species infection of A. mellifera. Therefore, a multuplex PCR diagnosis method that could discriminate N. apis and N. ceranae was established in this study. It could discriminate the pathogen within one PCR and prevent the misidentification of species in the nosema disease researches. Furthermore, it could be applied in a large scale survey to clarify the distribution and interaction of different pathogens causing nosema disease of Apis spp. | en |
dc.description.provenance | Made available in DSpace on 2021-06-13T02:30:26Z (GMT). No. of bitstreams: 1 ntu-96-F90632004-1.pdf: 2158740 bytes, checksum: d466696e140efacf8f1c771d1b78cca6 (MD5) Previous issue date: 2007 | en |
dc.description.tableofcontents | 口試委員會審定書………………………………………………………………….. i
誌謝…..……..……………………………………………………………………….. ii 中文摘要…………………………………………………………………………….. iii Abstract……..……………………………………………………………………….. v General Introduction ...……………………………………………………………1 Chapter 1 A novel organization and complete sequence of ribosomal DNA gene of Nosema bombycis 13 1.1 Introduction ...…………………………………………………….. 14 1.2 Materials and methods ...………………………………………….. 16 1.3 Results ……………………………………………………………. 18 1.4 Discussion ………………………………………………………... 22 References ……...…………………………………………………….. 27 Chapter 2 Complete sequence and gene organization of the Nosema spodopterae rRNA Gene 35 2.1 Introduction ………………………………………………………. 36 2.2 Materials and methods ……………………………………………. 36 2.3 Results and discussion ……………………………………………. 37 References ……...…………………………………………………….. 41 Chapter 3 A Nosema ceranae isolate from the honeybee Apis mellifera 45 3.1 Introduction ………………………………………………………. 46 3.2 Materials and methods ……………………………………………. 47 3.3 Results ……………………………………………………………. 50 3.4 Discussion ………………………………………………………... 53 References ……...…………………………………………………….. 58 Chapter 4 The unique rDNA organization of Nosema ceranae and comparison of the isolates from different areas 65 4.1 Introduction ………………………………………………………. 66 4.2 Materials and methods ……………………………………………. 67 4.3 Results ……………………………………………………………. 69 4.4 Discussion ...……………………………………………………… 71 References ……...…………………………………………………….. 76 Chapter 5 Molecular diagnosis method for nosema disease 82 5.1 Introduction ………………………………………………………. 83 5.2 Materials and methods ……………………………………………. 84 5.3 Results ……………………………………………………………. 87 5.4 Discussion ………………………………………………………… 89 References ……...…………………………………………………….. 93 Appendix ….……………….…………………………………………. 101 | |
dc.language.iso | en | |
dc.title | 微粒子蟲核醣體基因與其應用 | zh_TW |
dc.title | The rRNA genes of Nosema species and its applications | en |
dc.type | Thesis | |
dc.date.schoolyear | 95-1 | |
dc.description.degree | 博士 | |
dc.contributor.oralexamcommittee | 吳文哲,羅竹芳,侯豐男,柯俊成,高穗生 | |
dc.subject.keyword | 微孢子蟲,微粒子蟲,核醣體,家蠶,蜜蜂, | zh_TW |
dc.subject.keyword | microsporidia,Nosema,rRNA,Bombyx mori,Apis mellifera, | en |
dc.relation.page | 102 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2007-01-25 | |
dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
dc.contributor.author-dept | 昆蟲學研究所 | zh_TW |
顯示於系所單位: | 昆蟲學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-96-1.pdf 目前未授權公開取用 | 2.11 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。