請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/30962完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 周涵怡(Han-Yi Chou) | |
| dc.contributor.author | Ya-Pei Peng | en |
| dc.contributor.author | 彭雅珮 | zh_TW |
| dc.date.accessioned | 2021-06-13T02:22:56Z | - |
| dc.date.available | 2014-10-03 | |
| dc.date.copyright | 2011-10-03 | |
| dc.date.issued | 2011 | |
| dc.date.submitted | 2011-08-20 | |
| dc.identifier.citation | REFERENCE
1. Reya, T., Morrison, S. J., Clarke, M. F., and Weissman, I. L. (2001) Stem cells, cancer, and cancer stem cells, Nature 414, 105-111. 2. Bjerkvig, R., Tysnes, B. B., Aboody, K. S., Najbauer, J., and Terzis, A. J. (2005) Opinion: the origin of the cancer stem cell: current controversies and new insights, Nat Rev Cancer 5, 899-904. 3. Daley, G. Q. (2008) Common themes of dedifferentiation in somatic cell reprogramming and cancer, Cold Spring Harb Symp Quant Biol 73, 171-174. 4. Bao, S., Wu, Q., McLendon, R. E., Hao, Y., Shi, Q., Hjelmeland, A. B., Dewhirst, M. W., Bigner, D. D., and Rich, J. N. (2006) Glioma stem cells promote radioresistance by preferential activation of the DNA damage response, Nature 444, 756-760. 5. Diehn, M., Cho, R. W., Lobo, N. A., Kalisky, T., Dorie, M. J., Kulp, A. N., Qian, D., Lam, J. S., Ailles, L. E., Wong, M., Joshua, B., Kaplan, M. J., Wapnir, I., Dirbas, F. M., Somlo, G., Garberoglio, C., Paz, B., Shen, J., Lau, S. K., Quake, S. R., Brown, J. M., Weissman, I. L., and Clarke, M. F. (2009) Association of reactive oxygen species levels and radioresistance in cancer stem cells, Nature 458, 780-783. 6. Frank, N. Y., Schatton, T., and Frank, M. H. (2010) The therapeutic promise of the cancer stem cell concept, J Clin Invest 120, 41-50. 7. Schatton, T., Frank, N. Y., and Frank, M. H. (2009) Identification and targeting of cancer stem cells, Bioessays 31, 1038-1049. 8. Zhou, J., and Zhang, Y. (2008) Cancer stem cells: Models, mechanisms and implications for improved treatment, Cell Cycle 7, 1360-1370. 9. Jeter, C. R., Badeaux, M., Choy, G., Chandra, D., Patrawala, L., Liu, C., Calhoun-Davis, T., Zaehres, H., Daley, G. Q., and Tang, D. G. (2009) Functional evidence that the self-renewal gene NANOG regulates human tumor development, Stem Cells 27, 993-1005. 10. Chang, C. C., Shieh, G. S., Wu, P., Lin, C. C., Shiau, A. L., and Wu, C. L. (2008) Oct-3/4 expression reflects tumor progression and regulates motility of bladder cancer cells, Cancer Res 68, 6281-6291. 11. Fan, X., Matsui, W., Khaki, L., Stearns, D., Chun, J., Li, Y. M., and Eberhart, C. G. (2006) Notch pathway inhibition depletes stem-like cells and blocks engraftment in embryonal brain tumors, Cancer Res 66, 7445-7452. 12. Pardal, R., Clarke, M. F., and Morrison, S. J. (2003) Applying the principles of stem-cell biology to cancer, Nat Rev Cancer 3, 895-902. 13. Bar, E. E., Chaudhry, A., Lin, A., Fan, X., Schreck, K., Matsui, W., Piccirillo, S., Vescovi, A. L., DiMeco, F., Olivi, A., and Eberhart, C. G. (2007) Cyclopamine-mediated hedgehog pathway inhibition depletes stem-like cancer cells in glioblastoma, Stem Cells 25, 2524-2533. 14. Feinberg, A. P., Ohlsson, R., and Henikoff, S. (2006) The epigenetic progenitor origin of human cancer, Nat Rev Genet 7, 21-33. 15. Clarke, M. F. (2005) Epigenetic regulation of normal and cancer stem cells, Ann N Y Acad Sci 1044, 90-93. 16. Jones, P. A., and Baylin, S. B. (2007) The epigenomics of cancer, Cell 128, 683-692. 17. Wilmut, I., Schnieke, A. E., McWhir, J., Kind, A. J., and Campbell, K. H. (1997) Viable offspring derived from fetal and adult mammalian cells, Nature 385, 810-813. 18. Cowan, C. A., Atienza, J., Melton, D. A., and Eggan, K. (2005) Nuclear reprogramming of somatic cells after fusion with human embryonic stem cells, Science 309, 1369-1373. 19. Takahashi, K., and Yamanaka, S. (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors, Cell 126, 663-676. 20. Liu, N., Lu, M., Tian, X., and Han, Z. (2007) Molecular mechanisms involved in self-renewal and pluripotency of embryonic stem cells, J Cell Physiol 211, 279-286. 21. Wang, J., Rao, S., Chu, J., Shen, X., Levasseur, D. N., Theunissen, T. W., and Orkin, S. H. (2006) A protein interaction network for pluripotency of embryonic stem cells, Nature 444, 364-368. 22. Yang, D., Jiang, Y., and He, F. C. (2007) [KAP-1, a scaffold protein in transcription regulation], Yi Chuan 29, 131-136. 23. Zhang, J., and Li, L. (2008) Stem cell niche: microenvironment and beyond, J Biol Chem 283, 9499-9503. 24. Gilbertson, R. J., and Rich, J. N. (2007) Making a tumour's bed: glioblastoma stem cells and the vascular niche, Nat Rev Cancer 7, 733-736. 25. Hill, R. P., Marie-Egyptienne, D. T., and Hedley, D. W. (2009) Cancer stem cells, hypoxia and metastasis, Semin Radiat Oncol 19, 106-111. 26. Keith, B., and Simon, M. C. (2007) Hypoxia-inducible factors, stem cells, and cancer, Cell 129, 465-472. 27. Ruan, K., Song, G., and Ouyang, G. (2009) Role of hypoxia in the hallmarks of human cancer, J Cell Biochem 107, 1053-1062. 28. Ezashi, T., Das, P., and Roberts, R. M. (2005) Low O2 tensions and the prevention of differentiation of hES cells, Proc Natl Acad Sci U S A 102, 4783-4788. 29. Cipolleschi, M. G., Dello Sbarba, P., and Olivotto, M. (1993) The role of hypoxia in the maintenance of hematopoietic stem cells, Blood 82, 2031-2037. 30. Parmar, K., Mauch, P., Vergilio, J. A., Sackstein, R., and Down, J. D. (2007) Distribution of hematopoietic stem cells in the bone marrow according to regional hypoxia, Proc Natl Acad Sci U S A 104, 5431-5436. 31. Yoshida, Y., Takahashi, K., Okita, K., Ichisaka, T., and Yamanaka, S. (2009) Hypoxia enhances the generation of induced pluripotent stem cells, Cell Stem Cell 5, 237-241. 32. Li, Z., and Rich, J. N. (2010) Hypoxia and hypoxia inducible factors in cancer stem cell maintenance, Curr Top Microbiol Immunol 345, 21-30. 33. Soeda, A., Park, M., Lee, D., Mintz, A., Androutsellis-Theotokis, A., McKay, R. D., Engh, J., Iwama, T., Kunisada, T., Kassam, A. B., Pollack, I. F., and Park, D. M. (2009) Hypoxia promotes expansion of the CD133-positive glioma stem cells through activation of HIF-1alpha, Oncogene 28, 3949-3959. 34. Bao, S., Wu, Q., Sathornsumetee, S., Hao, Y., Li, Z., Hjelmeland, A. B., Shi, Q., McLendon, R. E., Bigner, D. D., and Rich, J. N. (2006) Stem cell-like glioma cells promote tumor angiogenesis through vascular endothelial growth factor, Cancer Res 66, 7843-7848. 35. Gustafsson, M. V., Zheng, X., Pereira, T., Gradin, K., Jin, S., Lundkvist, J., Ruas, J. L., Poellinger, L., Lendahl, U., and Bondesson, M. (2005) Hypoxia requires notch signaling to maintain the undifferentiated cell state, Dev Cell 9, 617-628. 36. Chen, Y., De Marco, M. A., Graziani, I., Gazdar, A. F., Strack, P. R., Miele, L., and Bocchetta, M. (2007) Oxygen concentration determines the biological effects of NOTCH-1 signaling in adenocarcinoma of the lung, Cancer Res 67, 7954-7959. 37. Covello, K. L., Kehler, J., Yu, H., Gordan, J. D., Arsham, A. M., Hu, C. J., Labosky, P. A., Simon, M. C., and Keith, B. (2006) HIF-2alpha regulates Oct-4: effects of hypoxia on stem cell function, embryonic development, and tumor growth, Genes Dev 20, 557-570. 38. Gidekel, S., Pizov, G., Bergman, Y., and Pikarsky, E. (2003) Oct-3/4 is a dose-dependent oncogenic fate determinant, Cancer Cell 4, 361-370. 39. Urrutia, R. (2003) KRAB-containing zinc-finger repressor proteins, Genome Biol 4, 231. 40. Cammas, F., Janoshazi, A., Lerouge, T., and Losson, R. (2007) Dynamic and selective interactions of the transcriptional corepressor TIF1 beta with the heterochromatin protein HP1 isotypes during cell differentiation, Differentiation 75, 627-637. 41. Cammas, F., Herzog, M., Lerouge, T., Chambon, P., and Losson, R. (2004) Association of the transcriptional corepressor TIF1beta with heterochromatin protein 1 (HP1): an essential role for progression through differentiation, Genes Dev 18, 2147-2160. 42. Cammas, F., Oulad-Abdelghani, M., Vonesch, J. L., Huss-Garcia, Y., Chambon, P., and Losson, R. (2002) Cell differentiation induces TIF1beta association with centromeric heterochromatin via an HP1 interaction, J Cell Sci 115, 3439-3448. 43. Rooney, J. W., and Calame, K. L. (2001) TIF1beta functions as a coactivator for C/EBPbeta and is required for induced differentiation in the myelomonocytic cell line U937, Genes Dev 15, 3023-3038. 44. Cammas, F., Mark, M., Dolle, P., Dierich, A., Chambon, P., and Losson, R. (2000) Mice lacking the transcriptional corepressor TIF1beta are defective in early postimplantation development, Development 127, 2955-2963. 45. Weber, P., Cammas, F., Gerard, C., Metzger, D., Chambon, P., Losson, R., and Mark, M. (2002) Germ cell expression of the transcriptional co-repressor TIF1beta is required for the maintenance of spermatogenesis in the mouse, Development 129, 2329-2337. 46. Hu, G., Kim, J., Xu, Q., Leng, Y., Orkin, S. H., and Elledge, S. J. (2009) A genome-wide RNAi screen identifies a new transcriptional module required for self-renewal, Genes Dev 23, 837-848. 47. Fazzio, T. G., Huff, J. T., and Panning, B. (2008) An RNAi screen of chromatin proteins identifies Tip60-p400 as a regulator of embryonic stem cell identity, Cell 134, 162-174. 48. Seki, Y., Kurisaki, A., Watanabe-Susaki, K., Nakajima, Y., Nakanishi, M., Arai, Y., Shiota, K., Sugino, H., and Asashima, M. (2010) TIF1beta regulates the pluripotency of embryonic stem cells in a phosphorylation-dependent manner, Proc Natl Acad Sci U S A 107, 10926-10931. 49. Beausoleil, S. A., Jedrychowski, M., Schwartz, D., Elias, J. E., Villen, J., Li, J., Cohn, M. A., Cantley, L. C., and Gygi, S. P. (2004) Large-scale characterization of HeLa cell nuclear phosphoproteins, Proc Natl Acad Sci U S A 101, 12130-12135. 50. Chang, C. W., Chou, H. Y., Lin, Y. S., Huang, K. H., Chang, C. J., Hsu, T. C., and Lee, S. C. (2008) Phosphorylation at Ser473 regulates heterochromatin protein 1 binding and corepressor function of TIF1beta/KAP1, BMC Mol Biol 9, 61. 51. Pine, S. R., Marshall, B., and Varticovski, L. (2008) Lung cancer stem cells, Dis Markers 24, 257-266. 52. Sullivan, J. P., Minna, J. D., and Shay, J. W. (2010) Evidence for self-renewing lung cancer stem cells and their implications in tumor initiation, progression, and targeted therapy, Cancer Metastasis Rev 29, 61-72. 53. Dean, M. (2009) ABC transporters, drug resistance, and cancer stem cells, J Mammary Gland Biol Neoplasia 14, 3-9. 54. Sung, J. M., Cho, H. J., Yi, H., Lee, C. H., Kim, H. S., Kim, D. K., Abd El-Aty, A. M., Kim, J. S., Landowski, C. P., Hediger, M. A., and Shin, H. C. (2008) Characterization of a stem cell population in lung cancer A549 cells, Biochem Biophys Res Commun 371, 163-167. 55. Heddleston, J. M., Li, Z., Lathia, J. D., Bao, S., Hjelmeland, A. B., and Rich, J. N. (2010) Hypoxia inducible factors in cancer stem cells, Br J Cancer 102, 789-795. 56. Li, Z., Wang, D., Na, X., Schoen, S. R., Messing, E. M., and Wu, G. (2003) The VHL protein recruits a novel KRAB-A domain protein to repress HIF-1alpha transcriptional activity, EMBO J 22, 1857-1867. 57. Majmundar, A. J., Wong, W. J., and Simon, M. C. (2010) Hypoxia-inducible factors and the response to hypoxic stress, Mol Cell 40, 294-309. 58. Xu, A., Lam, M. C., Chan, K. W., Wang, Y., Zhang, J., Hoo, R. L., Xu, J. Y., Chen, B., Chow, W. S., Tso, A. W., and Lam, K. S. (2005) Angiopoietin-like protein 4 decreases blood glucose and improves glucose tolerance but induces hyperlipidemia and hepatic steatosis in mice, Proc Natl Acad Sci U S A 102, 6086-6091. 59. Yoshida, K., Shimizugawa, T., Ono, M., and Furukawa, H. (2002) Angiopoietin-like protein 4 is a potent hyperlipidemia-inducing factor in mice and inhibitor of lipoprotein lipase, J Lipid Res 43, 1770-1772. 60. Padua, D., Zhang, X. H., Wang, Q., Nadal, C., Gerald, W. L., Gomis, R. R., and Massague, J. (2008) TGFbeta primes breast tumors for lung metastasis seeding through angiopoietin-like 4, Cell 133, 66-77. 61. Lal, A., Peters, H., St Croix, B., Haroon, Z. A., Dewhirst, M. W., Strausberg, R. L., Kaanders, J. H., van der Kogel, A. J., and Riggins, G. J. (2001) Transcriptional response to hypoxia in human tumors, J Natl Cancer Inst 93, 1337-1343. 62. Le Jan, S., Amy, C., Cazes, A., Monnot, C., Lamande, N., Favier, J., Philippe, J., Sibony, M., Gasc, J. M., Corvol, P., and Germain, S. (2003) Angiopoietin-like 4 is a proangiogenic factor produced during ischemia and in conventional renal cell carcinoma, Am J Pathol 162, 1521-1528. 63. Manalo, D. J., Rowan, A., Lavoie, T., Natarajan, L., Kelly, B. D., Ye, S. Q., Garcia, J. G., and Semenza, G. L. (2005) Transcriptional regulation of vascular endothelial cell responses to hypoxia by HIF-1, Blood 105, 659-669. 64. Li, Z., Bao, S., Wu, Q., Wang, H., Eyler, C., Sathornsumetee, S., Shi, Q., Cao, Y., Lathia, J., McLendon, R. E., Hjelmeland, A. B., and Rich, J. N. (2009) Hypoxia-inducible factors regulate tumorigenic capacity of glioma stem cells, Cancer Cell 15, 501-513. 65. Venturini, L., You, J., Stadler, M., Galien, R., Lallemand, V., Koken, M. H., Mattei, M. G., Ganser, A., Chambon, P., Losson, R., and de The, H. (1999) TIF1gamma, a novel member of the transcriptional intermediary factor 1 family, Oncogene 18, 1209-1217. 66. Dupont, S., Zacchigna, L., Cordenonsi, M., Soligo, S., Adorno, M., Rugge, M., and Piccolo, S. (2005) Germ-layer specification and control of cell growth by Ectodermin, a Smad4 ubiquitin ligase, Cell 121, 87-99. 67. Lee, Y. K., Thomas, S. N., Yang, A. J., and Ann, D. K. (2007) Doxorubicin down-regulates Kruppel-associated box domain-associated protein 1 sumoylation that relieves its transcription repression on p21WAF1/CIP1 in breast cancer MCF-7 cells, J Biol Chem 282, 1595-1606. 68. Li, X., Lee, Y. K., Jeng, J. C., Yen, Y., Schultz, D. C., Shih, H. M., and Ann, D. K. (2007) Role for KAP1 serine 824 phosphorylation and sumoylation/desumoylation switch in regulating KAP1-mediated transcriptional repression, J Biol Chem 282, 36177-36189. 69. Berta, M. A., Mazure, N., Hattab, M., Pouyssegur, J., and Brahimi-Horn, M. C. (2007) SUMOylation of hypoxia-inducible factor-1alpha reduces its transcriptional activity, Biochem Biophys Res Commun 360, 646-652. 70. Green, S. L., and Giaccia, A. J. (1998) Tumor hypoxia and the cell cycle: implications for malignant progression and response to therapy, Cancer J Sci Am 4, 218-223. 71. Durand, R. E., and Raleigh, J. A. (1998) Identification of nonproliferating but viable hypoxic tumor cells in vivo, Cancer Res 58, 3547-3550. 72. Pouyssegur, J., Dayan, F., and Mazure, N. M. (2006) Hypoxia signalling in cancer and approaches to enforce tumour regression, Nature 441, 437-443. 73. Lando, D., Peet, D. J., Gorman, J. J., Whelan, D. A., Whitelaw, M. L., and Bruick, R. K. (2002) FIH-1 is an asparaginyl hydroxylase enzyme that regulates the transcriptional activity of hypoxia-inducible factor, Genes Dev 16, 1466-1471. 74. Mahon, P. C., Hirota, K., and Semenza, G. L. (2001) FIH-1: a novel protein that interacts with HIF-1alpha and VHL to mediate repression of HIF-1 transcriptional activity, Genes Dev 15, 2675-2686. 75. Cheng, J., Kang, X., Zhang, S., and Yeh, E. T. (2007) SUMO-specific protease 1 is essential for stabilization of HIF1alpha during hypoxia, Cell 131, 584-595. 76. Simiantonaki, N., Jayasinghe, C., Michel-Schmidt, R., Peters, K., Hermanns, M. I., and Kirkpatrick, C. J. (2008) Hypoxia-induced epithelial VEGF-C/VEGFR-3 upregulation in carcinoma cell lines, Int J Oncol 32, 585-592. 77. Krishnamachary, B., Berg-Dixon, S., Kelly, B., Agani, F., Feldser, D., Ferreira, G., Iyer, N., LaRusch, J., Pak, B., Taghavi, P., and Semenza, G. L. (2003) Regulation of colon carcinoma cell invasion by hypoxia-inducible factor 1, Cancer Res 63, 1138-1143. 78. Semenza, G. L. (2003) Targeting HIF-1 for cancer therapy, Nat Rev Cancer 3, 721-732. 79. Rohwer, N., and Cramer, T. (2011) Hypoxia-mediated drug resistance: Novel insights on the functional interaction of HIFs and cell death pathways, Drug Resist Updat 14, 191-201. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/30962 | - |
| dc.description.abstract | 癌症幹細胞被認為具有類似幹細胞特性,能夠自我更新,促進腫瘤的增生與分化並負責腫瘤轉移。另外,它還具有抗化學治療及放射治療的能力。輔助轉錄因子TIF1β是一個epigenetic的調控者,其重要功能為藉由與HP1蛋白或其他染色質調控因子的結合,影響染色質的重組,進而去調控基因的表現。另外,TIF1β本身也被認為能夠被後轉譯修飾,包含磷酸化及sumo化。TIF1β的Serine473位於其與HP1蛋白結合的序列附近,已被證實能夠藉由磷酸化來調控與HP1蛋白的結合。而TIF1β高度參與在維持胚胎幹細胞多能性的蛋白交互網絡之中,並能夠調控胚胎幹細胞多能性的維持與分化的過程。本文的研究利用肺癌幹細胞探討,發現了當細胞在失去了幹性之後,在S473磷酸化的TIF1β有明顯的受到調控,顯示出TIF1β-S473的磷酸化會參與癌症幹細胞的幹性維持。藉由免疫組織染色我們也發現TIF1β-S473的磷酸化確實與癌細胞侵犯及抗藥性相關。此外,在使細胞暴露於缺氧的系統之下,TIF1β-磷酸化的狀態和HIF1α的誘導有相反的情況,並且會影響到HIF1α的轉錄活性,而且在具有抗化療的病人組織中,TIF1β和HIF1α有高度相似的表現。這些證據暗示了TIF1β-S473的磷酸化可能在癌症幹細胞的幹性維持上扮演了重要角色,且可能經由與HIF1α交互調控,進而導致腫瘤的復發,轉移及抗性的發展。 | zh_TW |
| dc.description.abstract | Cancer stem cells were initially defined by their extensive self-renewal capacity, tumorigenicity, multipotentiality, and drug resistance. Transcription intermediary factor 1 beta (TIF1β) is an epigenetic modulator that can regulate chromatin remodeling and gene expression through the interaction with heterochromatin protein 1 (HP1) among other chromatin factors. The serine 473 residue of TIF1β is located just upstream of the HP1 binding domain of TIF1β, and has been shown to alter its association with HP1. Furthermore, TIF1β was previously identified as a component of the central protein interaction networks for maintenance of pluripotency in mouse embryonic stem cells. TIF1β is highly expressed in cancer; however, the role of TIF1β in tumorigenesis and its contribution to the maintenance of stemness properties in cancer stem cells have never been addressed. Using lung cancer stem cell models, we report that phosphorylation of TIF1β at the S473 residue is suppressed upon loss of stemness properties, and this phosphorylation state could occur in cancer progression events by immunohistochemistry analysis. Interestingly, we found that the phosphorylation status of TIF1β Ser473 inversely correlates with HIF1α induction during hypoxic stress. We also found that this phosphorylation state could influence the transcriptional activity of HIF1α, but we could not identify that HIF1α is associated with TIF1β-containing immunocomplexes. In addition, TIF1β is highly colocalized with HIF1α in chemo-resistant lung cancer patients. Taken together, our results suggest that phosphorylation of TIF1β at the S473 residue may play roles in regulating stemness in cancer stem cells, and may hence contribute to tumor recurrence, metastasis and the development of resistance to therapy. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-13T02:22:56Z (GMT). No. of bitstreams: 1 ntu-100-R98450003-1.pdf: 31461941 bytes, checksum: a82fe234ab75c8c9763826c89dbc563f (MD5) Previous issue date: 2011 | en |
| dc.description.tableofcontents | CONTENTS
中文摘要 …………………………………………………………………...………...I ABSTRACT …………………………………………..…………….…....…..……...II CONTENTS ………………………………………………………….…….…..…….1 INTRODUCTION …………………………………………………………...……....7 -- Concept of cancer stem cells ……………….............................................................7 -- Hypothesis and Approach ………………………...……………...…………..…......8 -- Hypoxia and cancer stem cells .……………………………..….…………………..9 -- Transcription intermediary factor 1 beta (TIF1β) ……………………....…....……11 MATERIALS AND METHODS ……………………………..…..………..….…...14 -- DNA constructs and antibodies ………………………..………………….....…....14 -- Cell culture and transfection …………………………..……..………..…...…...…14 -- Hypoxia experiments …………………………………………………...…………15 -- Side population and Immunoflurorescence staining ………………………………16 -- Immunopreipitation ………………...……………………………...……………...17 -- Western blot analysis …...........................................................................................17 -- Immunohistochemistry …………………………………………………….….…..18 -- Luciferase assay ………………………………………………………….………..18 RESULTS ……………………………………………………………….………......20 -- Context sequence around TIF1β-S473 is conserved among mammals …………...20 -- Phosphorylation of TIF1β at S473 may be involved in regulating stemness of cancer stem cells …………………………………………………………………..20 -- Fluctuation of TIF1β-S473 phosphorylation during cancer progression ………….23 -- TIF1β-pS473 inversely correlates with HIF1α induction upon hypoxic induction..23 -- TIF1β-pS473 could affect on the transcriptional activity of HIF1 proteins ...…….26 -- The enhancement of HIF1α transcriptional activity is independent from the sumoylation status of TIF1β …………………………………...………..28 -- TIF1β-pS473 is highly expressed in stage IIIA of non-small cell lung cancer with chemo-resistance …………………….……………………………………………29 DISCUSSION …………………………………………………….……...…………31 FUTURE WORK …………………………………………………………………..36 -- Part 1: The functional studies of TIF1β-pS473 on HIF1α transactivation ………..36 -- Part 2: The correlation between TIF1β-pS473 and cancer stem cells in vivo ….….36 -- Part 3: SUMOylation research of TIF1β and HIF1α ……………………….……..37 -- Part 4: The studies of HIF2α involving in TIF1β-pS473 ………………………….37 REFERENCES ……………………………………………………..……...…….....39 FIGURES LEGENDS ……………………………………………….…...….……..52 -- Sequence context around S473 is highly conserved among mammals ………...…52 -- Phosphorylation of TIF1β at S473 is suppressed in lung cancer stem-like cells ....53 -- Isolation of lung cancer stem-like cells by side population cells sorting from A549 cells …………………………………………………………………….…..54 -- Phosphorylation of TIF1β at S473 is suppressed in cancer stem-like side population A549 cells ……………………………………………….……….55 -- Phosphorylation of TIF1β at S473 is suppressed in cancer stem-like side population A549 cells ……………………………………………….……….56 -- Phosphorylation of TIF1β at S473 is suppressed under long-term hypoxic Conditions ………………………………………………………………………...57 -- Long-term hypoxic conditions suppres phosphorylation of TIF1β at S473 in the interphase cell population …………………………………………………………58 -- Phosphorylation of TIF1β at S473 is suppressed during cancer progression ……..59 -- Phosphorylation of TIF1β at S473 inversely correlates with HIF1α induction upon hypoxic induction …………………………………………………………………60 -- TIF1β phosphorylation at S473 inversely correlates with HIF1α induction upon hypoxic-mimicking induction ………………………………………………...…..61 -- Fluctuation of TIF1β phosphorylation at S473 upon hypoxic treatment ………….62 -- TIF1β phosphorylation at S473 inversely correlates with HIF1α induction upon hypoxic-mimicking induction in HEK293T cells ………………………………...63 -- S473 non-phosphorylatable form of TIF1β promotes transactivation of HIF1α ….64 -- TIF1β transactivation on HIF1α transcriptional activity in the presence of ectopically expressed HIF1α ………………………………………………..…….65 -- Effect of TIF1β transactivation on ectopically expressed HIF1α ODD mutants ….66 -- Immunocomplex analysis for HIF1α components associated with TIF1β ……..…67 -- HIF2α is presented in TIF1β-containing immunocomplexes ..................................68 -- Sumoylation of TIF1β is independent of hypoxic mimicking stimulation ……..…69 -- HIF1α may contribute to the de-sumoylation of TIF1β ………………….………..70 -- Expression of HIF1α in chemoresistant lung cancer is highly correlated with TIF1β-pS473 …………………………………………………………………...…71 SUPPLEMENTARY DATA ………………………………………………....…….72 -- Isolation and establishment of lung cancer stem-like cell lines CLS1 and CLS1-2 …………………………………………………………………………....72 -- Experimental scheme of the procedures for hypoxic induction ……………….….73 -- Schematic representation of the plasmid expression vectors harboring Flag-TIF1β-WT, Flag-TIF1β-S473A , and Flag-TIF1β-S473E constructs ……….74 -- Schematic representation of the phosphorylation of TIF1β at S473 status and transactivation effect of HIF1α in cancer or cancer stem cells …………..……….75 APPENDIX ………………………………………………………………..…….….76 -- The hypothesis of cancer stem cells ……………………………………...……….76 -- Acquired capabilities of cancer stem cells …………………………………..……76 -- Mutations in stem cells and/or progenitor cells might give rise to cancer stem cells ………………………………………………………….………77 -- Factors and signaling pathways involved in the regulation of self-renewal of stem cells ………………………………………………………………………77 -- A protein interaction network for pluripotency of embryonic stem cells ………...78 -- The expression of TIF1β in various cancer tissues which were published from Human Protein Atlas website ……………………………………………………..79 -- Hypoxia and the hypoxia inducible factors (HIFs) can promote the stem-like phenotype …………………………………………..……………………………..80 -- Characterization of monoclonal anti-TIF1β and rabbit polyclonal anti-phosphorylated TIF1β on S473 antibodies …………………………………..80 -- Proposed mechanism that represses the HIF-1a transactivation by pVHL, VHLaK protein and TIF1β/KAP1 ………………………………..……………….81 -- Schematic of the HIF1α domain structure, function of individual domains, and the sites of post-translational modifications …………………………………………..81 -- Oxygen sensors contribute to the destruction and inactivation of HIF-1α by addition of hydroxyl group on Pro402, Pro564, and Asn803 ………….………….82 -- The HIF1 pathway in normoxia and hypoxia ……………………………………..82 -- Genes that are transcriptionally activated by HIF-1 …………………………...….83 -- The mechanism of SUMOylation …………………………………….…………...84 -- Coordinating posttranslational modifications of HIF1α ……………….………….84 -- Efficiently knockdown TIF1β by four different siRNAs and result in increasing the percentage of differentiation cells …………………………………………….85 | |
| dc.language.iso | en | |
| dc.subject | 癌症幹細胞 | zh_TW |
| dc.subject | HIF1α | zh_TW |
| dc.subject | 幹性維持 | zh_TW |
| dc.subject | 缺氧 | zh_TW |
| dc.subject | TIF1β | zh_TW |
| dc.subject | cancer stem cells | en |
| dc.subject | TIF1β | en |
| dc.subject | stemness | en |
| dc.subject | hypoxia | en |
| dc.subject | HIF1α | en |
| dc.title | 探討TIF1β於癌幹細胞之幹性維持上所扮演的角色 | zh_TW |
| dc.title | Participation of TIF1β in Regulating Stemness of Cancer Stem Cells | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 99-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 陳敏慧(Min-Huey Chen),沈湯龍(Tang-Long Shen) | |
| dc.subject.keyword | 癌症幹細胞,TIF1β,幹性維持,缺氧,HIF1α, | zh_TW |
| dc.subject.keyword | cancer stem cells,TIF1β,stemness,hypoxia,HIF1α, | en |
| dc.relation.page | 85 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2011-08-21 | |
| dc.contributor.author-college | 牙醫專業學院 | zh_TW |
| dc.contributor.author-dept | 口腔生物科學研究所 | zh_TW |
| 顯示於系所單位: | 口腔生物科學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-100-1.pdf 未授權公開取用 | 30.72 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
