請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/30957完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 林俊宏(Chun-Hung Lin) | |
| dc.contributor.author | Sheng-Wei Lin | en |
| dc.contributor.author | 林聖偉 | zh_TW |
| dc.date.accessioned | 2021-06-13T02:22:42Z | - |
| dc.date.issued | 2007 | |
| dc.date.submitted | 2007-01-29 | |
| dc.identifier.citation | 1. Parsonnet, J. (1995) The incidence of Helicobacter pylori infection, Alimentary pharmacology & therapeutics 9 Suppl 2, 45-51.
2. Dubois, A. (1995) Spiral bacteria in the human stomach: the gastric helicobacters, Emerging infectious diseases 1, 79-85. 3. Peterson, W. L. (1991) Helicobacter pylori and peptic ulcer disease, The New England journal of medicine 324, 1043-1048. 4. Parsonnet, J. (1996) Helicobacter pylori in the stomach--a paradox unmasked, The New England journal of medicine 335, 278-280. 5. Nakamura, S., Yao, T., Aoyagi, K., Iida, M., Fujishima, M., and Tsuneyoshi, M. (1997) Helicobacter pylori and primary gastric lymphoma. A histopathologic and immunohistochemical analysis of 237 patients, Cancer 79, 3-11. 6. NIH, C. C. (1994) NIH Consensus Conference. Helicobacter pylori in peptic ulcer disease. NIH Consensus Development Panel on Helicobacter pylori in Peptic Ulcer Disease, in The Journal of the American Medical Association, pp 65-69. 7. Webb, P. M., Crabtree, J. E., and Forman, D. (1999) Gastric cancer, cytotoxin-associated gene A-positive Helicobacter pylori, and serum pepsinogens: an international study. The Eurogst Study Group, Gastroenterology 116, 269-276. 8. Segal, E. D., Cha, J., Lo, J., Falkow, S., and Tompkins, L. S. (1999) Altered states: involvement of phosphorylated CagA in the induction of host cellular growth changes by Helicobacter pylori, Proceedings of the National Academy of Sciences of the United States of America 96, 14559-14564. 9. Selbach, M., Moese, S., Hauck, C. R., Meyer, T. F., and Backert, S. (2002) Src is the kinase of the Helicobacter pylori CagA protein in vitro and in vivo, The Journal of biological chemistry 277, 6775-6778. 10. Higashi, H., Nakaya, A., Tsutsumi, R., Yokoyama, K., Fujii, Y., Ishikawa, S., Higuchi, M., Takahashi, A., Kurashima, Y., Teishikata, Y., Tanaka, S., Azuma, T., and Hatakeyama, M. (2004) Helicobacter pylori CagA induces Ras-independent morphogenetic response through SHP-2 recruitment and activation, The Journal of biological chemistry 279, 17205-17216. 11. Atherton, J. C., Cao, P., Peek, R. M., Jr., Tummuru, M. K., Blaser, M. J., and Cover, T. L. (1995) Mosaicism in vacuolating cytotoxin alleles of Helicobacter pylori. Association of specific vacA types with cytotoxin production and peptic ulceration, The Journal of biological chemistry 270, 17771-17777. 12. Leunk, R. D., Johnson, P. T., David, B. C., Kraft, W. G., and Morgan, D. R. (1988) Cytotoxic activity in broth-culture filtrates of Campylobacter pylori, Journal of medical microbiology 26, 93-99. 13. Cover, T. L., and Blanke, S. R. (2005) Helicobacter pylori VacA, a paradigm for toxin multifunctionality, Nature reviews 3, 320-332. 14. Radosz-Komoniewska, H., Bek, T., Jozwiak, J., and Martirosian, G. (2005) Pathogenicity of Helicobacter pylori infection, Clin Microbiol Infect 11, 602-610. 15. Ilver, D., Arnqvist, A., Ogren, J., Frick, I. M., Kersulyte, D., Incecik, E. T., Berg, D. E., Covacci, A., Engstrand, L., and Boren, T. (1998) Helicobacter pylori adhesin binding fucosylated histo-blood group antigens revealed by retagging, Science 279, 373-377. 16. Guruge, J. L., Falk, P. G., Lorenz, R. G., Dans, M., Wirth, H. P., Blaser, M. J., Berg, D. E., and Gordon, J. I. (1998) Epithelial attachment alters the outcome of Helicobacter pylori infection, Proceedings of the National Academy of Sciences of the United States of America 95, 3925-3930. 17. Mahdavi, J., Sonden, B., Hurtig, M., Olfat, F. O., Forsberg, L., Roche, N., Angstrom, J., Larsson, T., Teneberg, S., Karlsson, K. A., Altraja, S., Wadstrom, T., Kersulyte, D., Berg, D. E., Dubois, A., Petersson, C., Magnusson, K. E., Norberg, T., Lindh, F., Lundskog, B. B., Arnqvist, A., Hammarstrom, L., and Boren, T. (2002) Helicobacter pylori SabA adhesin in persistent infection and chronic inflammation, Science 297, 573-578. 18. Linden, S., Boren, T., Dubois, A., and Carlstedt, I. (2004) Rhesus monkey gastric mucins: oligomeric structure, glycoforms and Helicobacter pylori binding, The Biochemical journal 379, 765-775. 19. Greenwell, P. (1997) Blood group antigens: molecules seeking a function?, Glycoconjugate journal 14, 159-173. 20. Izawa, M., Kumamoto, K., Mitsuoka, C., Kanamori, C., Kanamori, A., Ohmori, K., Ishida, H., Nakamura, S., Kurata-Miura, K., Sasaki, K., Nishi, T., and Kannagi, R. (2000) Expression of sialyl 6-sulfo Lewis X is inversely correlated with conventional sialyl Lewis X expression in human colorectal cancer, Cancer research 60, 1410-1416. 21. Pratt, M. R., and Bertozzi, C. R. (2004) Syntheses of 6-sulfo sialyl Lewis X glycans corresponding to the L-selectin ligand 'sulfoadhesin', Organic letters 6, 2345-2348. 22. Lowe, J. B. (2002) Glycosylation in the control of selectin counter-receptor structure and function, Immunological reviews 186, 19-36. 23. Galustian, C., Lawson, A. M., Komba, S., Ishida, H., Kiso, M., and Feizi, T. (1997) Sialyl-Lewis(x) sequence 6-O-sulfated at N-acetylglucosamine rather than at galactose is the preferred ligand for L-selectin and de-N-acetylation of the sialic acid enhances the binding strength, Biochemical and biophysical research communications 240, 748-751. 24. Hakomori, S. (1992) Le(X) and related structures as adhesion molecules, The Histochemical journal 24, 771-776. 25. Boren, T., Falk, P., Roth, K. A., Larson, G., and Normark, S. (1993) Attachment of Helicobacter pylori to human gastric epithelium mediated by blood group antigens, Science 262, 1892-1895. 26. Wirth, H. P., Yang, M., Karita, M., and Blaser, M. J. (1996) Expression of the human cell surface glycoconjugates Lewis x and Lewis y by Helicobacter pylori isolates is related to cagA status, Infection and immunity 64, 4598-4605. 27. Monteiro, M. A., Chan, K. H., Rasko, D. A., Taylor, D. E., Zheng, P. Y., Appelmelk, B. J., Wirth, H. P., Yang, M., Blaser, M. J., Hynes, S. O., Moran, A. P., and Perry, M. B. (1998) Simultaneous expression of type 1 and type 2 Lewis blood group antigens by Helicobacter pylori lipopolysaccharides. Molecular mimicry between h. pylori lipopolysaccharides and human gastric epithelial cell surface glycoforms, The Journal of biological chemistry 273, 11533-11543. 28. Edwards, N. J., Monteiro, M. A., Faller, G., Walsh, E. J., Moran, A. P., Roberts, I. S., and High, N. J. (2000) Lewis X structures in the O antigen side-chain promote adhesion of Helicobacter pylori to the gastric epithelium, Molecular microbiology 35, 1530-1539. 29. Appelmelk, B. J., Martino, M. C., Veenhof, E., Monteiro, M. A., Maaskant, J. J., Negrini, R., Lindh, F., Perry, M., Del Giudice, G., and Vandenbroucke-Grauls, C. M. (2000) Phase variation in H type I and Lewis a epitopes of Helicobacter pylori lipopolysaccharide, Infection and immunity 68, 5928-5932. 30. Lozniewski, A., Haristoy, X., Rasko, D. A., Hatier, R., Plenat, F., Taylor, D. E., and Angioi-Duprez, K. (2003) Influence of Lewis antigen expression by Helicobacter pylori on bacterial internalization by gastric epithelial cells, Infection and immunity 71, 2902-2906. 31. Mahdavi, J., Boren, T., Vandenbroucke-Grauls, C., and Appelmelk, B. J. (2003) Limited role of lipopolysaccharide Lewis antigens in adherence of Helicobacter pylori to the human gastric epithelium, Infection and immunity 71, 2876-2880. 32. Takata, T., El-Omar, E., Camorlinga, M., Thompson, S. A., Minohara, Y., Ernst, P. B., and Blaser, M. J. (2002) Helicobacter pylori does not require Lewis X or Lewis Y expression to colonize C3H/HeJ mice, Infection and immunity 70, 3073-3079. 33. Negrini, R., Savio, A., Poiesi, C., Appelmelk, B. J., Buffoli, F., Paterlini, A., Cesari, P., Graffeo, M., Vaira, D., and Franzin, G. (1996) Antigenic mimicry between Helicobacter pylori and gastric mucosa in the pathogenesis of body atrophic gastritis, Gastroenterology 111, 655-665. 34. Moran, A. P., Prendergast, M. M., and Appelmelk, B. J. (1996) Molecular mimicry of host structures by bacterial lipopolysaccharides and its contribution to disease, FEMS immunology and medical microbiology 16, 105-115. 35. Moran, A. P., Knirel, Y. A., Senchenkova, S. N., Widmalm, G., Hynes, S. O., and Jansson, P. E. (2002) Phenotypic variation in molecular mimicry between Helicobacter pylori lipopolysaccharides and human gastric epithelial cell surface glycoforms. Acid-induced phase variation in Lewis(x) and Lewis(y) expression by H. Pylori lipopolysaccharides, The Journal of biological chemistry 277, 5785-5795. 36. Henry, S., Oriol, R., and Samuelsson, B. (1995) Lewis histo-blood group system and associated secretory phenotypes, Vox sanguinis 69, 166-182. 37. Wang, G., Ge, Z., Rasko, D. A., and Taylor, D. E. (2000) Lewis antigens in Helicobacter pylori: biosynthesis and phase variation, Molecular microbiology 36, 1187-1196. 38. Kelley, L. A., MacCallum, R. M., and Sternberg, M. J. (2000) Enhanced genome annotation using structural profiles in the program 3D-PSSM, Journal of molecular biology 299, 499-520. 39. de Vries, T., Knegtel, R. M., Holmes, E. H., and Macher, B. A. (2001) Fucosyltransferases: structure/function studies, Glycobiology 11, 119R-128R. 40. Taniguchi, N., Honke, K., Fukuda, M., (Ed.) (2002) Handbook of glycosyltransferase and related genes. 41. Lowe, J. B., Kukowska-Latallo, J. F., Nair, R. P., Larsen, R. D., Marks, R. M., Macher, B. A., Kelly, R. J., and Ernst, L. K. (1991) Molecular cloning of a human fucosyltransferase gene that determines expression of the Lewis x and VIM-2 epitopes but not ELAM-1-dependent cell adhesion, The Journal of biological chemistry 266, 17467-17477. 42. Natsuka, S., Gersten, K. M., Zenita, K., Kannagi, R., and Lowe, J. B. (1994) Molecular cloning of a cDNA encoding a novel human leukocyte alpha-1,3-fucosyltransferase capable of synthesizing the sialyl Lewis x determinant, The Journal of biological chemistry 269, 20806. 43. Kaneko, M., Kudo, T., Iwasaki, H., Ikehara, Y., Nishihara, S., Nakagawa, S., Sasaki, K., Shiina, T., Inoko, H., Saitou, N., and Narimatsu, H. (1999) Alpha1,3-fucosyltransferase IX (Fuc-TIX) is very highly conserved between human and mouse; molecular cloning, characterization and tissue distribution of human Fuc-TIX, FEBS letters 452, 237-242. 44. Paulson, J. C., and Colley, K. J. (1989) Glycosyltransferases. Structure, localization, and control of cell type-specific glycosylation, The Journal of biological chemistry 264, 17615-17618. 45. Breton, C., Oriol, R., and Imberty, A. (1998) Conserved structural features in eukaryotic and prokaryotic fucosyltransferases, Glycobiology 8, 87-94. 46. Xu, Z., Vo, L., and Macher, B. A. (1996) Structure-function analysis of human alpha1,3-fucosyltransferase. Amino acids involved in acceptor substrate specificity, The Journal of biological chemistry 271, 8818-8823. 47. Wang, G., Boulton, P. G., Chan, N. W., Palcic, M. M., and Taylor, D. E. (1999) Novel Helicobacter pylori alpha1,2-fucosyltransferase, a key enzyme in the synthesis of Lewis antigens, Microbiology (Reading, England) 145 ( Pt 11), 3245-3253. 48. Wang, G., Rasko, D. A., Sherburne, R., and Taylor, D. E. (1999) Molecular genetic basis for the variable expression of Lewis Y antigen in Helicobacter pylori: analysis of the alpha (1,2) fucosyltransferase gene, Molecular microbiology 31, 1265-1274. 49. Ma, B., Wang, G., Palcic, M. M., Hazes, B., and Taylor, D. E. (2003) C-terminal amino acids of Helicobacter pylori alpha1,3/4 fucosyltransferases determine type I and type II transfer, The Journal of biological chemistry 278, 21893-21900. 50. Ge, Z., Chan, N. W., Palcic, M. M., and Taylor, D. E. (1997) Cloning and heterologous expression of an alpha1,3-fucosyltransferase gene from the gastric pathogen Helicobacter pylori, The Journal of biological chemistry 272, 21357-21363. 51. Wakarchuk, W. W., Cunningham, A., Watson, D. C., and Young, N. M. (1998) Role of paired basic residues in the expression of active recombinant galactosyltransferases from the bacterial pathogen Neisseria meningitidis, Protein engineering 11, 295-302. 52. Rasko, D. A., Wang, G., Palcic, M. M., and Taylor, D. E. (2000) Cloning and characterization of the alpha(1,3/4) fucosyltransferase of Helicobacter pylori, The Journal of biological chemistry 275, 4988-4994. 53. Nilsson, C., Skoglund, A., Moran, A. P., Annuk, H., Engstrand, L., and Normark, S. (2006) An enzymatic ruler modulates Lewis antigen glycosylation of Helicobacter pylori LPS during persistent infection, Proceedings of the National Academy of Sciences of the United States of America 103, 2863-2868. 54. van Belkum, A., Scherer, S., van Alphen, L., and Verbrugh, H. (1998) Short-sequence DNA repeats in prokaryotic genomes, Microbiol Mol Biol Rev 62, 275-293. 55. Appelmelk, B. J., Shiberu, B., Trinks, C., Tapsi, N., Zheng, P. Y., Verboom, T., Maaskant, J., Hokke, C. H., Schiphorst, W. E., Blanchard, D., Simoons-Smit, I. M., van den Eijnden, D. H., and Vandenbroucke-Grauls, C. M. (1998) Phase variation in Helicobacter pylori lipopolysaccharide, Infection and immunity 66, 70-76. 56. de Vries, T., Srnka, C. A., Palcic, M. M., Swiedler, S. J., van den Eijnden, D. H., and Macher, B. A. (1995) Acceptor specificity of different length constructs of human recombinant alpha 1,3/4-fucosyltransferases. Replacement of the stem region and the transmembrane domain of fucosyltransferase V by protein A results in an enzyme with GDP-fucose hydrolyzing activity, The Journal of biological chemistry 270, 8712-8722. 57. De Vries, T., Palcic, M. P., Schoenmakers, P. S., Van Den Eijnden, D. H., and Joziasse, D. H. (1997) Acceptor specificity of GDP-Fuc:Gal beta 1-->4GlcNAc-R alpha 3-fucosyltransferase VI (FucT VI) expressed in insect cells as soluble, secreted enzyme, Glycobiology 7, 921-927. 58. Du, M., and Hindsgaul, O. (1996) Recognition of beta-D-Gal p-(1-->3)-beta-D-Glc pNAc-OR acceptor analogues by the Lewis alpha-(1-->3/4)-fucosyltransferase from human milk, Carbohydrate research 286, 87-105. 59. Gosselin, S., and Palcic, M. M. (1996) Acceptor hydroxyl group mapping for human milk alpha 1-3 and alpha 1-3/4 fucosyltransferases, Bioorganic & medicinal chemistry 4, 2023-2028. 60. Martin, S. L., Edbrooke, M. R., Hodgman, T. C., van den Eijnden, D. H., and Bird, M. I. (1997) Lewis X biosynthesis in Helicobacter pylori. Molecular cloning of an alpha(1,3)-fucosyltransferase gene, The Journal of biological chemistry 272, 21349-21356. 61. Rabbani, S., Miksa, V., Wipf, B., and Ernst, B. (2005) Molecular cloning and functional expression of a novel Helicobacter pylori alpha-1,4 fucosyltransferase, Glycobiology 15, 1076-1083. 62. Coutinho, P. M., Deleury, E., Davies, G. J., and Henrissat, B. (2003) An evolving hierarchical family classification for glycosyltransferases, Journal of molecular biology 328, 307-317. 63. Vrielink, A., Ruger, W., Driessen, H. P., and Freemont, P. S. (1994) Crystal structure of the DNA modifying enzyme beta-glucosyltransferase in the presence and absence of the substrate uridine diphosphoglucose, The EMBO journal 13, 3413-3422. 64. Breton, C., Snajdrova, L., Jeanneau, C., Koca, J., and Imberty, A. (2006) Structures and mechanisms of glycosyltransferases, Glycobiology 16, 29R-37R. 65. Lesk, A. M. (1995) NAD-binding domains of dehydrogenases, Current opinion in structural biology 5, 775-783. 66. Davies, G., and Henrissat, B. (1995) Structures and mechanisms of glycosyl hydrolases, Structure 3, 853-859. 67. Qasba, P. K., Ramakrishnan, B., and Boeggeman, E. (2005) Substrate-induced conformational changes in glycosyltransferases, Trends in biochemical sciences 30, 53-62. 68. Lariviere, L., Sommer, N., and Morera, S. (2005) Structural evidence of a passive base-flipping mechanism for AGT, an unusual GT-B glycosyltransferase, Journal of molecular biology 352, 139-150. 69. Hu, Y., Chen, L., Ha, S., Gross, B., Falcone, B., Walker, D., Mokhtarzadeh, M., and Walker, S. (2003) Crystal structure of the MurG:UDP-GlcNAc complex reveals common structural principles of a superfamily of glycosyltransferases, Proceedings of the National Academy of Sciences of the United States of America 100, 845-849. 70. Mulichak, A. M., Losey, H. C., Lu, W., Wawrzak, Z., Walsh, C. T., and Garavito, R. M. (2003) Structure of the TDP-epi-vancosaminyltransferase GtfA from the chloroeremomycin biosynthetic pathway, Proceedings of the National Academy of Sciences of the United States of America 100, 9238-9243. 71. Mulichak, A. M., Losey, H. C., Walsh, C. T., and Garavito, R. M. (2001) Structure of the UDP-glucosyltransferase GtfB that modifies the heptapeptide aglycone in the biosynthesis of vancomycin group antibiotics, Structure 9, 547-557. 72. Mulichak, A. M., Lu, W., Losey, H. C., Walsh, C. T., and Garavito, R. M. (2004) Crystal structure of vancosaminyltransferase GtfD from the vancomycin biosynthetic pathway: interactions with acceptor and nucleotide ligands, Biochemistry 43, 5170-5180. 73. Offen, W., Martinez-Fleites, C., Yang, M., Kiat-Lim, E., Davis, B. G., Tarling, C. A., Ford, C. M., Bowles, D. J., and Davies, G. J. (2006) Structure of a flavonoid glucosyltransferase reveals the basis for plant natural product modification, The EMBO journal 25, 1396-1405. 74. Buschiazzo, A., Ugalde, J. E., Guerin, M. E., Shepard, W., Ugalde, R. A., and Alzari, P. M. (2004) Crystal structure of glycogen synthase: homologous enzymes catalyze glycogen synthesis and degradation, The EMBO journal 23, 3196-3205. 75. Gibson, R. P., Tarling, C. A., Roberts, S., Withers, S. G., and Davies, G. J. (2004) The donor subsite of trehalose-6-phosphate synthase: binary complexes with UDP-glucose and UDP-2-deoxy-2-fluoro-glucose at 2 A resolution, The Journal of biological chemistry 279, 1950-1955. 76. Gibson, R. P., Turkenburg, J. P., Charnock, S. J., Lloyd, R., and Davies, G. J. (2002) Insights into trehalose synthesis provided by the structure of the retaining glucosyltransferase OtsA, Chemistry & biology 9, 1337-1346. 77. Ni, L., Sun, M., Yu, H., Chokhawala, H., Chen, X., and Fisher, A. J. (2006) Cytidine 5'-monophosphate (CMP)-induced structural changes in a multifunctional sialyltransferase from Pasteurella multocida, Biochemistry 45, 2139-2148. 78. Chiu, C. P., Watts, A. G., Lairson, L. L., Gilbert, M., Lim, D., Wakarchuk, W. W., Withers, S. G., and Strynadka, N. C. (2004) Structural analysis of the sialyltransferase CstII from Campylobacter jejuni in complex with a substrate analog, Nature structural & molecular biology 11, 163-170. 79. Breton, C., and Imberty, A. (1999) Structure/function studies of glycosyltransferases, Current opinion in structural biology 9, 563-571. 80. Kapitonov, D., and Yu, R. K. (1999) Conserved domains of glycosyltransferases, Glycobiology 9, 961-978. 81. Murray, B. W., Takayama, S., Schultz, J., and Wong, C. H. (1996) Mechanism and specificity of human alpha-1,3-fucosyltransferase V, Biochemistry 35, 11183-11195. 82. Persson, K., Ly, H. D., Dieckelmann, M., Wakarchuk, W. W., Withers, S. G., and Strynadka, N. C. (2001) Crystal structure of the retaining galactosyltransferase LgtC from Neisseria meningitidis in complex with donor and acceptor sugar analogs, Nature structural biology 8, 166-175. 83. Sambrook, J., Fritsch, E. F., and Maniatis, T. (1989) Molecular Cloning- A Laboratory Manual, 2nd ed, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY. 84. Murray, B. W., Wittmann, V., Burkart, M. D., Hung, S. C., and Wong, C. H. (1997) Mechanism of human alpha-1,3-fucosyltransferase V: glycosidic cleavage occurs prior to nucleophilic attack, Biochemistry 36, 823-831. 85. Kerek, I. C. a. F. (1984) A simple and rapid method for the permethylation of carbohydrates, Carbohydrate research 131, 209-217. 86. Sreerama, N., and Woody, R. W. (2004) Computation and analysis of protein circular dichroism spectra, Methods in enzymology 383, 318-351. 87. Sreerama, N., and Woody, R. W. (2000) Estimation of protein secondary structure from circular dichroism spectra: comparison of CONTIN, SELCON, and CDSSTR methods with an expanded reference set, Analytical biochemistry 287, 252-260. 88. Sreerama, N., Venyaminov, S. Y., and Woody, R. W. (2000) Estimation of protein secondary structure from circular dichroism spectra: inclusion of denatured proteins with native proteins in the analysis, Analytical biochemistry 287, 243-251. 89. Lebowitz, J., Lewis, M. S., and Schuck, P. (2002) Modern analytical ultracentrifugation in protein science: a tutorial review, Protein Sci 11, 2067-2079. 90. Kaminska, J., Wisniewska, A., and Koscielak, J. (2003) Chemical modifications of alpha1,6-fucosyltransferase define amino acid residues of catalytic importance, Biochimie 85, 303-310. 91. Britten, C. J., and Bird, M. I. (1997) Chemical modification of an alpha 3-fucosyltransferase; definition of amino acid residues essential for enzyme activity, Biochimica et biophysica acta 1334, 57-64. 92. Dong, Q., Liu, F., Myers, A. M., and Fromm, H. J. (1991) Evidence for an arginine residue at the substrate binding site of Escherichia coli adenylosuccinate synthetase as studied by chemical modification and site-directed mutagenesis, The Journal of biological chemistry 266, 12228-12233. 93. Wu, D., and Hersh, L. B. (1995) Identification of an active site arginine in rat choline acetyltransferase by alanine scanning mutagenesis, The Journal of biological chemistry 270, 29111-29116. 94. Roepstorff, P., and Fohlman, J. (1984) Proposal for a common nomenclature for sequence ions in mass spectra of peptides, Biomedical mass spectrometry 11, 601. 95. Fenteany, F. H., and Colley, K. J. (2005) Multiple signals are required for alpha2,6-sialyltransferase (ST6Gal I) oligomerization and Golgi localization, The Journal of biological chemistry 280, 5423-5429. 96. El-Battari, A., Prorok, M., Angata, K., Mathieu, S., Zerfaoui, M., Ong, E., Suzuki, M., Lombardo, D., and Fukuda, M. (2003) Different glycosyltransferases are differentially processed for secretion, dimerization, and autoglycosylation, Glycobiology 13, 941-953. 97. Qian, R., Chen, C., and Colley, K. J. (2001) Location and mechanism of alpha 2,6-sialyltransferase dimer formation. Role of cysteine residues in enzyme dimerization, localization, activity, and processing, The Journal of biological chemistry 276, 28641-28649. 98. Rasko, D. A., Wang, G., Monteiro, M. A., Palcic, M. M., and Taylor, D. E. (2000) Synthesis of mono- and di-fucosylated type I Lewis blood group antigens by Helicobacter pylori, European journal of biochemistry / FEBS 267, 6059-6066. 99. Appelmelk, B. J., Martin, S. L., Monteiro, M. A., Clayton, C. A., McColm, A. A., Zheng, P., Verboom, T., Maaskant, J. J., van den Eijnden, D. H., Hokke, C. H., Perry, M. B., Vandenbroucke-Grauls, C. M., and Kusters, J. G. (1999) Phase variation in Helicobacter pylori lipopolysaccharide due to changes in the lengths of poly(C) tracts in alpha3-fucosyltransferase genes, Infection and immunity 67, 5361-5366. 100. Ma, B., Lau, L. H., Palcic, M. M., Hazes, B., and Taylor, D. E. (2005) A single aromatic amino acid at the carboxyl terminus of Helicobacter pylori {alpha}1,3/4 fucosyltransferase determines substrate specificity, The Journal of biological chemistry 280, 36848-36856. 101. Oriol, R., Mollicone, R., Cailleau, A., Balanzino, L., and Breton, C. (1999) Divergent evolution of fucosyltransferase genes from vertebrates, invertebrates, and bacteria, Glycobiology 9, 323-334. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/30957 | - |
| dc.description.abstract | 幽門螺旋桿菌 (Helicobacter pylori)已被證實會造成人類宿主胃炎、胃或十二
指腸潰瘍,進而發展成胃癌。此致病菌的lipopolysaccharide (LPS)末端通常表現 路易士抗原 (Lewis antigen),模擬胃上皮細胞表面上醣類分子,藉此躲避宿主的 免疫攻擊。而岩藻醣轉移酶 (fucosyltransferase)是負責最後的催化合成步驟,將 活化態岩藻醣 (fucose)轉移到受質上(如N-acetyllactosamine),形成路易士抗原。 關於此酵素的研究,主要受限於此蛋白質低表現量或低可溶性。本論文首先有系 統地截去不同長度的C 端胺基酸序列,發現大大地改善酵素的可溶度,藉此方 便進行之後深入的研究。利用旋光光譜儀或分析型離心機,了解C 端多帶正電 區域及五個胺基酸重複序列 (heptad repeat)共80 個胺基酸是可以被截去的,並不 會影響整體結構及催化活性。若是截去更多胺基酸則會導致二級及四級(雙體變 單體)結構變化,進而關係到活性的喪失。保留越多個重複序列越會維持此酵素 雙體結構,而在高溫處理下也越能穩定酵素構形。 我們探討此酵素的基質選擇性,也利用化學修飾法和定點突變法來了解酵素 的重要特定胺基酸。在受質基質選擇性方面,α1,3-岩藻醣轉移酶只辨識β1,4-鍵 結的受質,受質上的兩個單醣種類都不可替換。在Gal 上的C2、C3 或還原端位 置,可允許有多餘醣的修飾,而C4 和C6 則否。OligoLacNAc 也是受質,每個 LacNAc 單位都可以任意接上岩藻醣。在化學修飾實驗中發現有重要的Histidine 和Arginine 參與催化反應,如Arg79、Arg89、Arg118 和Arg354 主要參與受質 的鍵結,而Arg79 和Arg195 則是與兩個基質鍵結有關。雖然Cysteine 與催化無 關,但Cys159 和Cys237 會形成分子內雙硫鍵,其餘兩個Cys168 和Cys353 則 是自由態存在。 我們也成功得到C 端截去115 個胺基酸的酵素晶體,並且解出酵素、酵素/ 基質(GDP-fucose)和酵素/產物(GDP)複合物晶體結構。此酵素結構主要是由二個 Rossmann 構形組成,是屬於典型的glycosyltransferase-B (GT-B)型。當GDP 或 GDP-fucose 進入催化區時會誘導酵素構形的些微變化。與其它GT-B 酵素結構比 較,Glu95 是扮演催化的general base 角色。Arg195、Tyr246、Glu249 和Lys250 是與GDP-fucose 有氫鍵鍵結。在反應進行時,推論帶正電的Glu249 可以穩定 oxonium cation 的過渡態。雖然此晶體結構是缺乏C 端但在晶格內仍是以雙體組 成,故可推測出C 端位置及可能的雙體結構。我們推論出此酵素反應機制及模 擬出polysaccharide 結合區,可以幫助解釋H. pylori 之LPS 的多變性,更可進而 發展出有用的抑制劑。綜合上述,本篇論文清楚地了解H. pylori α1,3-岩藻醣轉 移酶結構及功能之間的相關性。 | zh_TW |
| dc.description.abstract | Helicobacter pylori is well known as the primary cause of gastritis, duodenal
ulcers, and gastric cancer. The lipopolysaccharide (LPS) of this pathogen contains Lewis x and Lewis y structures in the terminus to mimic the surface carbohydrates of gastric epithelial cells, which is proposed to escape the surveillance of host immune system. H. pylori α1,3-fucosyltransferase catalyzes the fucose transfer from the donor GDP-fucose to the acceptor N-acetyllactosamine (LacNAc). The research progress was previously hampered by either poor protein expression or the marginal solubility of the protein. The work in the thesis at first greatly improved the marginal solubility of the full-length protein by systematic deletion of the C terminus of H. pylori α1,3-FucT, which made it possible for further investigations. Based on the biophysical characterizations, including CD spectroscopy and analytical ultracentrifugation, up to 80 residues, including the tail rich in positive and hydrophobic residues (sequence 434-478) and half of the ten heptad repeats (399-433), can be removed without significant change in structure and catalysis. Half of the heptad repeats are required to maintain both secondary and native quaternary structures (dimeric form). Removal of more residues in the C terminus led to major structural alteration, which was correlated with the loss of enzymatic activity. In accordance with the thermal denaturation studies, the results support the idea that a higher number of tandem repeats, functioning to facilitate a dimeric structure, helps to prevent the protein from unfolding when incubated at higher temperatures. H. pylori α1,3-FucT was also subjected to biochemical characterizations, such as substrate specificity, specific chemical modifications, and site-directed mutagenesis. H. pylori α1,3-FucT is highly specific to the β1,4-linkage and does tolerate modification in the reducing end. Both sugar residues of LacNAc are essential for activity. H. pylori α1,3-FucT can sterically accommodate an additional sugar introduced at either C2 or C3 of galactose, but not C4 and C6 at the same sugar. Furthermore, when oligomeric LacNAc was subjected to the enzymatic fucosylation, one to several fucose residues observed in the mass spectra. Every LacNAc unit can be fucosylated in a random manner. H. pylori α1,3-FucT is sensitive to the modification of diethylpyrocarbonate (His-specific) and phenylglyoxal (Arg), but not N-ethylmaleimide (Cys), indicating that His and Arg play an important role in the reaction. The site-directed mutagenesis study showed that Arg79, Arg89, Arg118, and Arg354 are mainly involved in the acceptor binding, while Arg79 and Arg195 are essential for the binding with both substrates. Although cysteine residues do not participate in the catalysis, an intramolecular disulfide linkage between Cys159 and Cys237 are determined. The other residues, Cys168 and Cys353, have free thiol in their side chains. Additionally, protein crystallization was successful with the C-terminal deletion of 115 residues. Three crystal structures have been solved, including the enzyme/GDP-fucose complex and the enzyme/GDP complex. The structure is composed of two Rossmann-like fold domains, typical of the glycosyltransferase-B (GT-B) family. Specific interactions with GDP and GDP-fucose bound to the active site induce conformational changes in the C-terminal domain. Structural comparison with other GT-B members suggests Glu95 to serve as the general base in catalysis. The residues Arg195, Tyr246, Glu249 and Lys250 function to interact with the donor substrate. Asn240 is involved in the binding with the acceptor. Glu249 is proposed to stabilize the developing oxonium cation during the reaction. Although the crystallized protein lacks a substantial C terminus, these structures not only reveal subunit interactions for a dimeric structure, but also predict the location of the missing heptad repeats. We propose a catalytic mechanism and a model of polysaccharide binding to explain the observed variations in H. pylori LPS, as well as to facilitate the development of potent inhibitors. Taken together, this thesis provides clear understanding for the structure and function relationship of H. pylori α1,3-FucT. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-13T02:22:42Z (GMT). No. of bitstreams: 1 ntu-96-D91242004-1.pdf: 4547034 bytes, checksum: fb3142e29c9a9646a8d5bafe0db6819f (MD5) Previous issue date: 2007 | en |
| dc.description.tableofcontents | 1 Introduction.....................................................................................................1
1.1 Helicobacter pylori.................................................................................1 1.2 Lewis Antigens .......................................................................................3 1.3 Fucosyltransferases ................................................................................5 1.3.1 Human FucTs................................................................................5 1.3.2 H. pylori FucTs .............................................................................7 1.4 Phase Variation .......................................................................................9 1.5 Substrate Specificity...............................................................................10 1.6 Structures and Mechanism of Glycosyltransferases...............................12 2 Materials and Methods...................................................................................16 2.1 Materials.................................................................................................16 2.2 Methods..................................................................................................17 2.2.1 DNA Manipulation and Cloning of Chimeric FucTs....................17 2.2.2 Protein Expression and Purification .............................................18 2.2.3 Immunoblot Analysis of ΔFucT Expression.................................19 2.2.4 Chemical Inactivation of FucT by Residue-Specific Modification ......................................................................................................19 2.2.5 Fluorometric Assay for FucT Activity ..........................................20 2.2.6 Kinetic Analysis and Study of Acceptor Specificity.....................21 2.2.7 Identification of the Fucosylated Products by Mass Spectrometry ................................................................................21 2.2.8 Circular Dichroism Analysis.........................................................23 2.2.9 Determination Molecular Weight of ΔFucTs by Analytical Ultracentrifugation.......................................................................23 2.2.10 Thermal Denaturation...................................................................25 2.2.11 Isothermal Titration Calorimetry ..................................................25 3 Results ..............................................................................................................27 3.1 Systematic Truncations of C terminus to Improve the FucT Solubility.27 3.2 Catalytic Characterizations of ΔFucTs ...................................................28 3.3 Thermostability of ΔFucTs.....................................................................29 3.4 Structural Characterizations of ΔFucTs by CD and AUC ......................32 3.5 Acceptor Substrate Specificity of α1,3-FucT ........................................35 3.6 Effects of Various Amino Acid Residues-Specific Reagents on FucT Activity...................................................................................................42 3.7 Identification of the Disulfide Linkage of FucT by Tandem Mass Spectrometry ..........................................................................................43 3.8 Substrate Protection against Chemical Modification .............................44 3.9 Identification of the Important His and Arg Residues by Site-Directed Mutagenesis............................................................................................45 3.10 Thermodynamics of Substrate and Product Binding to FucT and Mutant ................................................................................................................47 3.11 Refinement of the Crystallizable Conditions .........................................48 3.12 Overall Structure of FucT, FucT/GDP and FucT/GDP-fucose Complexes ................................................................................................................49 3.13 Conformation Change and Plausible Catalytic Mechanism...................51 4 Discussion.........................................................................................................54 5 Reference .........................................................................................................63 6 Tables and Figures ..........................................................................................73 Table 1. Comparison of poly(A)-(C) nucleotides and heptad repeats of H. pylori FucTs ....................................................................................73 Table 2. Primer sequences used in the PCR experiments to construct the desired plasmids..............................................................................74 Table 3. Kinetic parameters of ΔFucTs.........................................................75 Table 4. Percentage of the secondary structure contents of ΔFTs ................76 Table 5. Relative activities of various acceptor substrates of FTΔ45...........77 Table 6. Deduced compositions of the fucosylated oligoLacNAc................78 Table 7. Relative activities of various acceptor substrates of FTΔ115 .........79 Table 8. Primer sequences used in site-directed mutagenesis experiments to construct the desired mutants......................................................80 Table 9. Relative activities of the mutant enzymes compared with wild-type .........................................................................................82 Table 10. Kinetic parameters of His and Arg mutants....................................83 Table 11. Kinetic parameters of the mutant proteins that are modified at catalytic residues.............................................................................84 Figure 1. Comparison of the biosynthesis of Lewis antigens in human and H. pylori ................................................................................85 Figure 2. Schematic structures of mammalian and H. pylori FucTs ...........86 Figure 3. Sequence alignment of eukaryotic and H. pylori FucTs ..............87 Figure 4. Alignment of H. pylori FucTs......................................................88 Figure 5. Model of Lewis x glycosylation in H. pylori...............................89 Figure 6. Poly(A)-(C) region of H. pylori FucT genes ...............................90 Figure 7. Ribbon diagram of GTs with the three different glycosyltransferase folds..............................................................91 Figure 8. Proposed reaction mechanism for glycosyltransferase reactions.92 Figure 9. Fluorometric assay for FucT activity...........................................93 Figure 10. Schematic diagram of various truncation mutants and full length H. pylori α1,3-FucT..........................................................94 Figure 11. Protein expression and supernatant analysis of various ΔFucTs .95 Figure 12. SDS-PAGE analysis of various purified ΔFucTs .........................96 Figure 13. The molecular weight of FTΔ45 and FTΔ115 were confirmed by ESI-MS. .......................................................................................97 Figure 14. Thermal stability of various truncated ΔFucTs monitored by the optical density of protein aggregates ...........................................98 Figure 15. Thermal unfolding of FTΔ45, FTΔ80 and FTΔ115 monitored by CD spectroscopy at 222 nm ....................................................99 Figure 16. CD spectra of FTΔ28, FTΔ45, FTΔ66, FTΔ80 and FTΔ115 in the far UV region .........................................................................100 Figure 17. Sedimentation velocity studies of various truncated ΔFucTs ....101 Figure 18. Sedimentation equilibrium studies of FTΔ45 and FTΔ115 .........103 Figure 19. Mass spectra of fucosylated tri-saccharides (12) and (13)...........104 Figure 20. Mass spectra of fucosylated tri-saccharides (14) and (15)...........105 Figure 21. Mass spectra of fucosylated oligosaccharide (21) .......................106 Figure 22. Mass spectra of fucosylated oligosaccharide (16) .......................107 Figure 23. Mass spectra of fucosylated oligosaccharide (22) .......................108 Figure 24. Mass spectra of fucosylated oligosaccharides (26), (27) and (28) ......................................................................................................109 Figure 25. Mass spectra of the fucosylation products prepared from the FucT reaction of oligoLacNAc ....................................................110 Figure 26. MALDI-TOF/TOF analysis spectra of the fucosylated (Galβ1,4GlcNAc)4β1,3Gal ..........................................................111 Figure 27. Inactivation of FucT by varying concentration of selective chemical modification reagents ...................................................112 Figure 28. Tandem mass spectrum of the precursor ion at 952.8 (M+3H)3+ to indicate the existence of the disulfide-containing peptide.......113 Figure 29. Substrate protection against the inactivation by chemical modification .................................................................................114 Figure 30. Titration calorimetry of product or substrate binding to the wild-type and R195A mutant .......................................................115 Figure 31. Sedimentation velocity studies of FTΔ45, FTΔ115 and FTΔ115 Cys mutants under different conditions .......................................116 Figure 32. Crystals of FTΔ101 and FTΔ115 .................................................117 Figure 33. Overall structure of the FucT/GDP-fucose complex ...................118 Figure 34. Electron densities of the bound ligands (GDP or GDP-fucose) and surrounding residues .............................................................119 Figure 35. Three superimposed structures to indicate significant conformational changes ...............................................................120 Figure 36. A proposed FucT reaction mechanism.........................................121 Figure 37. A modeled structure with the LacNAc octasaccharide was constructed ...................................................................................122 Figure 38. Putative model of FucT dimer .....................................................123 7. Appendix ............................................................................................................124 | |
| dc.language.iso | en | |
| dc.subject | Helicobacter pylori | en |
| dc.subject | Fucosyltransferase | en |
| dc.title | 幽門螺旋桿菌岩藻醣轉移酶結構及功能之研究 | zh_TW |
| dc.title | Structure and Function of Helicobacter pylori Fucosyltransferase | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 95-1 | |
| dc.description.degree | 博士 | |
| dc.contributor.oralexamcommittee | 王惠鈞(Andrew H.-J. Wang),張固剛(Gu-Gang Chang),張文章(Wen-Chang Chang),陳新(Xin Chen),馬徹 | |
| dc.subject.keyword | 幽門螺旋桿菌,岩藻醣轉移酶, | zh_TW |
| dc.subject.keyword | Helicobacter pylori,Fucosyltransferase, | en |
| dc.relation.page | 129 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2007-01-30 | |
| dc.contributor.author-college | 生命科學院 | zh_TW |
| dc.contributor.author-dept | 生化科學研究所 | zh_TW |
| 顯示於系所單位: | 生化科學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-96-1.pdf 未授權公開取用 | 4.44 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
