請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/30943完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 邱繼輝 | |
| dc.contributor.author | Arwen Lee | en |
| dc.contributor.author | 李雅雯 | zh_TW |
| dc.date.accessioned | 2021-06-13T02:22:02Z | - |
| dc.date.available | 2007-02-01 | |
| dc.date.copyright | 2007-02-01 | |
| dc.date.issued | 2007 | |
| dc.date.submitted | 2007-01-29 | |
| dc.identifier.citation | (1) Corbett, E. L., Watt, C. J., Walker, N., Maher, D., Williams, B. G., Raviglione,
M. C., and Dye, C. (2003) The growing burden of tuberculosis: global trends and interactions with the HIV epidemic. Arch Intern Med 163, 1009-21. (2) (2000) World Health Organization on multi-drug resistance and TB., Washington, D.C. ASM Press. (3) Mukherjee, J. S., Rich, M. L., Socci, A. R., Joseph, J. K., Viru, F. A., Shin, S. S., Furin, J. J., Becerra, M. C., Barry, D. J., Kim, J. Y., Bayona, J., Farmer, P., Smith Fawzi, M. C., and Seung, K. J. (2004) Programmes and principles in treatment of multidrug-resistant tuberculosis. Lancet 363, 474-81. (4) Cole, S. T., and Barrell, B. G. (1998) Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence. Nature 393, 537-44. (5) Smith, I. (2003) Mycobacterium tuberculosis pathogenesis and molecular determinants of virulence. Clin Microbiol Rev 16, 463-96. (6) Young, D. B. (2003) Ten years of research progress and what's to come. Tuberculosis (Edinb) 83, 77-81. (7) Barnes, P. F., Modlin, R. L., and Ellner, J. J. (1994) in Tuberculosis; pathogenesis, protection and control (ed. Bloom, B.R.), ASM Press, Washington D.C. (8) Dannenberg, A. M. R., G.A.W. (1994) Tuberculosis pathogenesis, protection, and control, Bloom, B.R ed., ASM Press, Washington, DC. (9) Flynn, J. L., and Chan, J. (2001) Immunology of tuberculosis. Annu Rev Immunol 19, 93-129. (10) Doffinger, R., Dupuis, S., Picard, C., Fieschi, C., Feinberg, J., Barcenas-Morales, G., and Casanova, J. L. (2002) Inherited disorders of IL-12- and IFNgamma-mediated immunity: a molecular genetics update. Mol Immunol 38, 903-9. (11) Lichtenauer-Kaligis, E. G., de Boer, T., and Ottenhoff, T. H. (2003) Severe Mycobacterium bovis BCG infections in a large series of novel IL-12 receptor beta1 deficient patients and evidence for the existence of partial IL-12 receptor beta1 deficiency. Eur J Immunol 33, 59-69. (12) Fieschi, C., Dupuis, S., and Casanova, J. L. (2003) Low penetrance, broad resistance, and favorable outcome of interleukin 12 receptor beta1 deficiency: medical and immunological implications. J Exp Med 197, 527-35. (13) Hingley-Wilson, S. M., Sambandamurthy, V. K., and Jacobs, W. R., Jr. (2003) 149 Survival perspectives from the world's most successful pathogen, Mycobacterium tuberculosis. Nat Immunol 4, 949-55. (14) Armstrong, J. A., and Hart, P. D. (1971) Response of cultured macrophages to Mycobacterium tuberculosis, with observations on fusion of lysosomes with phagosomes. J. Exp. Med. 134, 713-740. (15) Xu, S., Cooper, A., Sturgill-Koszycki, S., van Heyningen, T., Chatterjee, D., Orme, I., Allen, P., and Russell, D. G. (1994) Intracellular trafficking in Mycobacterium tuberculosis and Mycobacterium avium-infected macrophages. J Immunol 153, 2568-78. (16) Schlesinger, L. S., Bellinger-Kawahara, C. G., Payne, N. R., and Horwitz, M. A. (1990) Phagocytosis of Mycobacterium tuberculosis is mediated by human monocyte complement receptors and complement component C3. J Immunol 144, 2771-80. (17) Wright, S. D., and Silverstein, S. C. (1983) Receptors for C3b and C3bi promote phagocytosis but not the release of toxic oxygen from human phagocytes. J. Exp. Med. 161, 2016-2023. (18) Jackett, A. S., Aber, V. R., and Lowrie, D. B. (1978) Virulence and resistance to superoxide, low pH and hydrogen peroxide among strains of Mycobacterium tuberculosis. J. Gen. Micro. 104, 37. (19) Middlebrook, G. (1954) Tubercul. Amer. Rev. 69, 471-472. (20) Hickman, S. P., Chan, J., and Salgame, P. (2002) Mycobacterium tuberculosis induces differential cytokine production from dendritic cells and macrophages with divergent effects on naive T cell polarization. J Immunol 168, 4636-42. (21) Nau, G. J., Richmond, J. F., Schlesinger, A., Jennings, E. G., Lander, E. S., and Young, R. A. (2002) Human macrophage activation programs induced by bacterial pathogens. Proc Natl Acad Sci U S A 99, 1503-8. (22) Noss, E. H., Harding, C. V., and Boom, W. H. (2000) Mycobacterium tuberculosis inhibits MHC class II antigen processing in murine bone marrow macrophages. Cell Immunol 201, 63-74. (23) Ting, L. M., Kim, A. C., Cattamanchi, A., and Ernst, J. D. (1999) Mycobacterium tuberculosis inhibits IFN-gamma transcriptional responses without inhibiting activation of STAT1. J Immunol 163, 3898-906. (24) Chan, J., Fan, X. D., Hunter, S. W., Brennan, P. J., and Bloom, B. R. (1991) Lipoarabinomannan, a possible virulence factor involved in persistence of Mycobacterium tuberculosis within macrophages. Infect Immun 59, 1755-61. (25) Sly, L. M., Hingley-Wilson, S. M., Reiner, N. E., and McMaster, W. R. (2003) Survival of Mycobacterium tuberculosis in host macrophages involves resistance to apoptosis dependent upon induction of antiapoptotic Bcl-2 family 150 member Mcl-1. J Immunol 170, 430-7. (26) Allen, B. W. (1969) Mycobacterium tuberculosis strain H37Rv. J. Med. Lab. Technol. 26, 389-390. (27) Steenken, W. (1934) Biological studies of the tubercle bacillus. III Dissociation and pathogenicity of the human tubercle bacillus (H37). J. Exp. Med. 60, 515. (28) Ordway, D. J., Sonnenberg, M. G., Donahue, S. A., Belisle, J. T., and Orme, I. M. (1995) Drug-resistant strains of Mycobacterium tuberculosis exhibit a range of virulence for mice. Infect Immun 63, 741-3. (29) Draper, P. (1984) Host-grown Mycobacterium leprae: a credible microorganism. Acta Leprol, 99-112. (30) Daffe, M., Brennan, P. J., and McNeil, M. (1990) Predominant structural features of the cell wall arabinogalactan of Mycobacterium tuberculosis as revealed through characterization of oligoglycosyl alditol fragments by gas chromatography/mass spectrometry and by 1H and 13C NMR analyses. J Biol Chem 265, 6734-43. (31) Daffe, M., McNeil, M., and Brennan, P. J. (1993) Major structural features of the cell wall arabinogalactans of Mycobacterium, Rhodococcus, and Nocardia spp. Carbohydr Res 249, 383-98. (32) Chatterjee, D., Hunter, S. W., McNeil, M., and Brennan, P. J. (1992) Lipoarabinomannan. Multiglycosylated form of the mycobacterial mannosylphosphatidylinositols. J Biol Chem 267, 6228-33. (33) Chatterjee, D., and Khoo, K. H. (1998) Mycobacterial lipoarabinomannan: an extraordinary lipoheteroglycan with profound physiological effects. Glycobiology 8, 113-20. (34) Prinzis, S., Chatterjee, D., and Brennan, P. J. (1993) Structure and antigenicity of lipoarabinomannan from Mycobacterium bovis BCG. J Gen Microbiol 139, 2649-58. (35) Stackebrandt, E., Sproer, C., Rainey, F. A., Burghardt, J., Pauker, O., and Hippe, H. (1997) Phylogenetic analysis of the genus Desulfotomaculum: evidence for the misclassification of Desulfotomaculum guttoideum and description of Desulfotomaculum orientis as Desulfosporosinus orientis gen. nov., comb. nov. Int J Syst Bacteriol 47, 1134-9. (36) Gibson, K. J., Gilleron, M., Constant, P., Puzo, G., Nigou, J., and Besra, G. S. (2003) Identification of a novel mannose-capped lipoarabinomannan from Amycolatopsis sulphurea. Biochem J 372, 821-9. (37) Brennan, P. J. (2003) Structure, function, and biogenesis of the cell wall of Mycobacterium tuberculosis. Tuberculosis (Edinb) 83, 91-7. 151 (38) Glickman, M. S., and Jacobs, W. R., Jr. (2001) Microbial pathogenesis of Mycobacterium tuberculosis: dawn of a discipline. Cell 104, 477-85. (39) Brennanm, P. J., and Nikaido, H. (1995) The envelope of mycobacteria. Annu. Rev. Biochem. 64, 29-63. (40) Ghuysen, J. M. (1968) Use of bacteriolytic enzymes in determination of wall structure and their role in cell metabolism. Bacteriol Rev 32, 425-464. (41) Schleifer, K. H., and Kandler, O. (1972) Peptidoglycan types of bacterial cell walls and their taxonomic implications. Bacteriol Rev 36, 407-477. (42) Petit, J. F., and Lederer, E. (1984) The structure of the mycobacterial cell wall., Kubica, GP wayne, LG. ed., Marcel Dekker, New York. (43) Wietzerbin-Falszpan, J., Das, B. C., Azuma, I., Adam, A., Petit, J. F., and Lederer, E. (1970) Isolation and mass spectrometric identification of the peptide subunits of mycobacterial cell walls. Biochem Biophys Res Commun 40, 57-63. (44) Wietzerbin, J., Das, B. C., and Petit, J. F. (1974) Occurrence of D-alanyl-(D)- meso-diaminopimelic acid and meso-diaminopimelyl- meso-diaminopimelic acid interpeptide linkages in the peptidoglycan of mycobacteria. Biochemistry 263, 3471-3476. (45) McNeil, M., Daffe, M., and Brennan, P. J. (1990) Evidence for the nature of the link between the arabinogalactan and peptidoglycan of mycobacterial cell walls. J Biol Chem 265, 18200-6. (46) Liu, J., Barry, C. E., 3rd, and Nikaido, H. (1999) In Mycobacteria: Molecular Biology and Virulence, Blackwee Science, Oxford ed. (47) Brennan, P. J., and Nikaido, H. (1995) The envelope of mycobacteria. Annu Rev Biochem 64, 29-63. (48) Barry, C. E., 3rd, Lee, R. E., Mdluli, K., Sampson, A. E., Schroeder, B. G., Slayden, R. A., and Yuan, Y. (1998) Mycolic acids: structure, biosynthesis and physiological functions. Prog Lipid Res 37, 143-79. (49) Jarlier, V., and Nikaido, H. (1994) Mycobacterial cell wall: structure and role in natural resistance to antibiotics. FEMS Microbiol Lett 123, 11-8. (50) Wang, L., Slayden, R. A., Barry, C. E., 3rd, and Liu, J. (2000) Cell wall structure of a mutant of Mycobacterium smegmatis defective in the biosynthesis of mycolic acids. J Biol Chem 275, 7224-9. (51) McNeil, M. R., Robuck, K. G., Harter, M., and Brennan, P. J. (1994) Enzymatic evidence for the presence of a critical terminal hexa-arabinoside in the cell walls of Mycobacterium tuberculosis. Glycobiology 4, 165-73. (52) McNeil, M., Daffe, M., and Brennan, P. J. (1991) Location of the mycolyl ester substituents in the cell walls of mycobacteria. J Biol Chem 266, 152 13217-23. (53) Besra, G. S., Khoo, K. H., McNeil, M. R., Dell, A., Morris, H. R., and Brennan, P. J. (1995) A new interpretation of the structure of the mycolyl-arabinogalactan complex of Mycobacterium tuberculosis as revealed through characterization of oligoglycosylalditol fragments by fast-atom bombardment mass spectrometry and 1H nuclear magnetic resonance spectroscopy. Biochemistry 34, 4257-66. (54) Draper, P., Khoo, K. H., Chatterjee, D., Dell, A., and Morris, H. R. (1997) Galactosamine in walls of slow-growing mycobacteria. Biochem J 327 (Pt 2), 519-25. (55) Venisse, A., Berjeaud, J. M., Chaurand, P., Gilleron, M., and Puzo, G. (1993) Structural features of lipoarabinomannan from Mycobacterium bovis BCG. Determination of molecular mass by laser desorption mass spectrometry. J Biol Chem 268, 12401-11. (56) Besra, G. S., and Brennan, P. J. (1997) The mycobacterial cell wall: biosynthesis of arabinogalactan and lipoarabinomannan. Biochem Soc Trans 25, 845-50. (57) Nigou, J., Gilleron, M., and Puzo, G. (2003) Lipoarabinomannans: from structure to biosynthesis. Biochimie 85, 153-66. (58) Gibson, K. J., Gilleron, M., Constant, P., Puzo, G., Nigou, J., and Besra, G. S. (2003) Structural and functional features of Rhodococcus ruber lipoarabinomannan. Microbiology 149, 1437-45. (59) Hunter, S. W., and Brennan, P. J. (1990) Evidence for the presence of a phosphatidylinositol anchor on the lipoarabinomannan and lipomannan of Mycobacterium tuberculosis. J Biol Chem 265, 9272-9. (60) Khoo, K. H., Dell, A., Morris, H. R., Brennan, P. J., and Chatterjee, D. (1995) Structural definition of acylated phosphatidylinositol mannosides from Mycobacterium tuberculosis: definition of a common anchor for lipomannan and lipoarabinomannan. Glycobiology 5, 117-27. (61) Nigou, J., Gilleron, M., and Puzo, G. (1999) Lipoarabinomannans: characterization of the multiacylated forms of the phosphatidyl-myo-inositol anchor by NMR spectroscopy. Biochem J 337 (Pt 3), 453-60. (62) Khoo, K. H., Douglas, E., Azadi, P., Inamine, J. M., Besra, G. S., Mikusova, K., Brennan, P. J., and Chatterjee, D. (1996) Truncated structural variants of lipoarabinomannan in ethambutol drug-resistant strains of Mycobacterium smegmatis. Inhibition of arabinan biosynthesis by ethambutol. J Biol Chem 271, 28682-90. (63) Khoo, K. H., Dell, A., Morris, H. R., Brennan, P. J., and Chatterjee, D. (1995) 153 Inositol phosphate capping of the nonreducing termini of lipoarabinomannan from rapidly growing strains of Mycobacterium. J Biol Chem 270, 12380-9. (64) Chatterjee, D., Lowell, K., Rivoire, B., McNeil, M. R., and Brennan, P. J. (1992) Lipoarabinomannan of Mycobacterium tuberculosis. Capping with mannosyl residues in some strains. J Biol Chem 267, 6234-9. (65) Chatterjee, D., Bozic, C. M., McNeil, M., and Brennan, P. J. (1991) Structural features of the arabinan component of the lipoarabinomannan of Mycobacterium tuberculosis. J Biol Chem 266, 9652-60. (66) Chatterjee, D., Khoo, K. H., McNeil, M. R., Dell, A., Morris, H. R., and Brennan, P. J. (1993) Structural definition of the non-reducing termini of mannose-capped LAM from Mycobacterium tuberculosis through selective enzymatic degradation and fast atom bombardment-mass spectrometry. Glycobiology 3, 497-506. (67) Nigou, J., Vercellone, A., and Puzo, G. (2000) New structural insights into the molecular deciphering of mycobacterial lipoglycan binding to C-type lectins: lipoarabinomannan glycoform characterization and quantification by capillary electrophoresis at the subnanomole level. J Mol Biol 299, 1353-62. (68) Torrelles, J. B., Khoo, K. H., Sieling, P. A., Modlin, R. L., Zhang, N., Marques, A. M., Treumann, A., Rithner, C. D., Brennan, P. J., and Chatterjee, D. (2004) Truncated structural variants of lipoarabinomannan in Mycobacterium leprae and an ethambutol-resistant strain of Mycobacterium tuberculosis. J Biol Chem 279, 41227-39. (69) Gilleron, M., Himoudi, N., Adam, O., Constant, P., Venisse, A., Riviere, M., and Puzo, G. (1997) Mycobacterium smegmatis phosphoinositols-glyceroarabinomannans. Structure and localization of alkali-labile and alkali-stable phosphoinositides. J Biol Chem 272, 117-24. (70) Guerardel, Y., Maes, E., Elass, E., Leroy, Y., Timmerman, P., Besra, G. S., Locht, C., Strecker, G., and Kremer, L. (2002) Structural study of lipomannan and lipoarabinomannan from Mycobacterium chelonae. Presence of unusual components with alpha 1,3-mannopyranose side chains. J Biol Chem 277, 30635-48. (71) Delmas, C., Gilleron, M., Brando, T., Vercellone, A., Gheorghui, M., Riviere, M., and Puzo, G. (1997) Comparative structural study of the mannosylated-lipoarabinomannans from Mycobacterium bovis BCG vaccine strains: characterization and localization of succinates. Glycobiology 7, 811-7. (72) Guerardel, Y., Maes, E., Briken, V., Chirat, F., Leroy, Y., Locht, C., Strecker, G., and Kremer, L. (2003) Lipomannan and lipoarabinomannan from a clinical isolate of Mycobacterium kansasii: novel structural features and 154 apoptosis-inducing properties. J Biol Chem 278, 36637-51. (73) Treumann, A., Xidong, F., McDonnell, L., Derrick, P. J., Ashcroft, A. E., Chatterjee, D., and Homans, S. W. (2002) 5-Methylthiopentose: a new substituent on lipoarabinomannan in Mycobacterium tuberculosis. J Mol Biol 316, 89-100. (74) Ludwiczak, P., Gilleron, M., Bordat, Y., Martin, C., Gicquel, B., and Puzo, G. (2002) Mycobacterium tuberculosis phoP mutant: lipoarabinomannan molecular structure. Microbiology 148, 3029-37. (75) Schlesinger, L. S., Hull, S. R., and Kaufman, T. M. (1994) Binding of the terminal mannosyl units of lipoarabinomannan from a virulent strain of Mycobacterium tuberculosis to human macrophages. J Immunol 152, 4070-9. (76) Geijtenbeek, T. B., Van Vliet, S. J., Koppel, E. A., Sanchez-Hernandez, M., Vandenbroucke-Grauls, C. M., Appelmelk, B., and Van Kooyk, Y. (2003) Mycobacteria target DC-SIGN to suppress dendritic cell function. J Exp Med 197, 7-17. (77) Maeda, N., Nigou, J., Herrmann, J. L., Jackson, M., Amara, A., Lagrange, P. H., Puzo, G., Gicquel, B., and Neyrolles, O. (2003) The cell surface receptor DC-SIGN discriminates between Mycobacterium species through selective recognition of the mannose caps on lipoarabinomannan. J Biol Chem 278, 5513-6. (78) Means, T. K., Lien, E., Yoshimura, A., Wang, S., Golenbock, D. T., and Fenton, M. J. (1999) The CD14 ligands lipoarabinomannan and lipopolysaccharide differ in their requirement for Toll-like receptors. J Immunol 163, 6748-55. (79) Nigou, J., Gilleron, M., Rojas, M., Garcia, L. F., Thurnher, M., and Puzo, G. (2002) Mycobacterial lipoarabinomannans: modulators of dendritic cell function and the apoptotic response. Microbes Infect 4, 945-53. (80) Strohmeier, G. R., and Fenton, M. J. (1999) Roles of lipoarabinomannan in the pathogenesis of tuberculosis. Microbes Infect 1, 709-17. (81) Sieling, P. A., Chatterjee, D., Porcelli, S. A., Prigozy, T. I., Mazzaccaro, R. J., Soriano, T., Bloom, B. R., Brenner, M. B., Kronenberg, M., Brennan, P. J., and et al. (1995) CD1-restricted T cell recognition of microbial lipoglycan antigens. Science 269, 227-30. (82) Beckman, E. M., Melian, A., Behar, S. M., Sieling, P. A., Chatterjee, D., Furlong, S. T., Matsumoto, R., Rosat, J. P., Modlin, R. L., and Porcelli, S. A. (1996) CD1c restricts responses of mycobacteria-specific T cells. Evidence for antigen presentation by a second member of the human CD1 family. J Immunol 157, 2795-803. (83) Wolucka, B. A., and de Hoffmann, E. (1995) The presence of 155 beta-D-ribosyl-1-monophosphodecaprenol in mycobacteria. J Biol Chem 270, 20151-5. (84) Takayama, K., and Goldman, D. S. (1970) Enzymatic synthesis of mannosyl-1-phosphoryl-decaprenol by a cell-free system of Mycobacterium tuberculosis. J Biol Chem 245, 6251-7. (85) Schultz, J., and Elbein, A. D. (1974) Biosynthesis of mannosyl--and glucosyl-phosphoryl polyprenols in Mycobacterium smegmatis. Evidence for oligosaccharide-phosphoryl-polyprenols. Arch Biochem Biophys 160, 311-22. (86) Scherman, M., Weston, A., Duncan, K., Whittington, A., Upton, R., Deng, L., Comber, R., Friedrich, J. D., and McNeil, M. (1995) Biosynthetic origin of mycobacterial cell wall arabinosyl residues. J Bacteriol 177, 7125-30. (87) Klutts, J. S., Hatanaka, K., Pan, Y. T., and Elbein, A. D. (2002) Biosynthesis of d-arabinose in Mycobacterium smegmatis: specific labeling from d-glucose. Arch Biochem Biophys 398, 229-39. (88) Scherman, M. S., Kalbe-Bournonville, L., Bush, D., Xin, Y., Deng, L., and McNeil, M. (1996) Polyprenylphosphate-pentoses in mycobacteria are synthesized from 5-phosphoribose pyrophosphate. J Biol Chem 271, 29652-8. (89) Huang, H., Scherman, M. S., D'Haeze, W., Vereecke, D., Holsters, M., Crick, D. C., and McNeil, M. R. (2005) Identification and active expression of the Mycobacterium tuberculosis gene encoding 5-phospho-{alpha}-d-ribose-1-diphosphate: decaprenyl-phosphate 5-phosphoribosyltransferase, the first enzyme committed to decaprenylphosphoryl-d-arabinose synthesis. J Biol Chem 280, 24539-43. (90) Mikusova, K., Huang, H., Yagi, T., Holsters, M., Vereecke, D., D'Haeze, W., Scherman, M. S., Brennan, P. J., McNeil, M. R., and Crick, D. C. (2005) Decaprenylphosphoryl arabinofuranose, the donor of the D-arabinofuranosyl residues of mycobacterial arabinan, is formed via a two-step epimerization of decaprenylphosphoryl ribose. J Bacteriol 187, 8020-5. (91) Takayama, K., and Kilburn, J. O. (1989) Inhibition of synthesis of arabinogalactan by ethambutol in Mycobacterium smegmatis. Antimicrob Agents Chemother 33, 1493-9. (92) Telenti, A., Philipp, W. J., Sreevatsan, S., Bernasconi, C., Stockbauer, K. E., Wieles, B., Musser, J. M., and Jacobs, W. R., Jr. (1997) The emb operon, a gene cluster of Mycobacterium tuberculosis involved in resistance to ethambutol. Nat Med 3, 567-70. (93) Escuyer, V. E., Lety, M. A., Torrelles, J. B., Khoo, K. H., Tang, J. B., Rithner, C. D., Frehel, C., McNeil, M. R., Brennan, P. J., and Chatterjee, D. (2001) The role of the embA and embB gene products in the biosynthesis of the terminal 156 hexaarabinofuranosyl motif of Mycobacterium smegmatis arabinogalactan. J Biol Chem 276, 48854-62. (94) Zhang, N., Torrelles, J. B., McNeil, M. R., Escuyer, V. E., Khoo, K. H., Brennan, P. J., and Chatterjee, D. (2003) The Emb proteins of mycobacteria direct arabinosylation of lipoarabinomannan and arabinogalactan via an N-terminal recognition region and a C-terminal synthetic region. Mol Microbiol 50, 69-76. (95) Deng, L., Mikusova, K., Robuck, K. G., Scherman, M., Brennan, P. J., and McNeil, M. R. (1995) Recognition of multiple effects of ethambutol on metabolism of mycobacterial cell envelope. Antimicrob Agents Chemother 39, 694-701. (96) Mikusova, K., Slayden, R. A., Besra, G. S., and Brennan, P. J. (1995) Biogenesis of the mycobacterial cell wall and the site of action of ethambutol. Antimicrob Agents Chemother 39, 2484-9. (97) Lety, M. A., Nair, S., Berche, P., and Escuyer, V. (1997) A single point mutation in the embB gene is responsible for resistance to ethambutol in Mycobacterium smegmatis. Antimicrob Agents Chemother 41, 2629-33. (98) Berg, S., Starbuck, J., Torrelles, J. B., Vissa, V. D., Crick, D. C., Chatterjee, D., and Brennan, P. J. (2005) Roles of Conserved Proline and Glycosyltransferase Motifs of EmbC in Biosynthesis of Lipoarabinomannan. J Biol Chem 280, 5651-63. (99) Xin, Y., Huang, Y., and McNeil, M. R. (1999) The presence of an endogenous endo-D-arabinase in Mycobacterium smegmatis and characterization of its oligoarabinoside product. Biochim Biophys Acta 1473, 267-71. (100) Pandey, A., and Mann, M. (2000) Proteomics to study genes and genomes. Nature 405, 837-46. (101) Medzihradszky, K. F., Campbell, J. M., Baldwin, M. A., Falick, A. M., Juhasz, P., Vestal, M. L., and Burlingame, A. L. (2000) The characteristics of peptide collision-induced dissociation using a high-performance MALDI-TOF/TOF tandem mass spectrometer. Anal Chem 72, 552-8. (102) Baldwin, M. A., Medzihradszky, K. F., Lock, C. M., Fisher, B., Settineri, T. A., and Burlingame, A. L. (2001) Matrix-assisted laser desorption/ionization coupled with quadrupole/orthogonal acceleration time-of-flight mass spectrometry for protein discovery, identification, and structural analysis. Anal Chem 73, 1707-20. (103) Aebersold, R., and Mann, M. (2003) Mass spectrometry-based proteomics. Nature 422, 198-207. (104) Shevchenko, A., Loboda, A., Shevchenko, A., Ens, W., and Standing, K. G. 157 (2000) MALDI quadrupole time-of-flight mass spectrometry: a powerful tool for proteomic research. Anal Chem 72, 2132-41. (105) Harvey, D. J. (1999) Matrix-assisted laser desorption/ionization mass spectrometry of carbohydrates. Mass Spectrom Rev 18, 349-450. (106) Kanetsuna, F. (1968) Chemical analyses of mycobacterial cell walls. Biochim Biophys Acta 158, 130-43. (107) Misaki, A., and Yukawa, S. (1966) Studies on cell walls of Mycobacteria. II. Constitution of polysaccharides from BCG cell walls. J Biochem (Tokyo) 59, 511-20. (108) Hunter, S. W., Gaylord, H., and Brennan, P. J. (1986) Structure and antigenicity of the phosphorylated lipopolysaccharide antigens from the leprosy and tubercle bacilli. J Biol Chem 261, 12345-51. (109) Venisse, A., Riviere, M., Vercauteren, J., and Puzo, G. (1995) Structural analysis of the mannan region of lipoarabinomannan from Mycobacterium bovis BCG. Heterogeneity in phosphorylation state. J Biol Chem 270, 15012-21. (110) Belanger, A. E., Besra, G. S., Ford, M. E., Mikusova, K., Belisle, J. T., Brennan, P. J., and Inamine, J. M. (1996) The embAB genes of Mycobacterium avium encode an arabinosyl transferase involved in cell wall arabinan biosynthesis that is the target for the antimycobacterial drug ethambutol. Proc Natl Acad Sci U S A 93, 11919-24. (111) Turnbull, W. B., Shimizu, K. H., Chatterjee, D., Homans, S. W., and Treumann, A. (2004) Identification of the 5-methylthiopentosyl substituent in Mycobacterium tuberculosis lipoarabinomannan. Angew Chem Int Ed Engl 43, 3918-22. (112) Crick, D. C., Brennan, P. J., and Mcneil, M. R. (2004) The cell wall of mycobacterium thuberculosis, in Tuberculosis, second edition (William N. Rom, Stuart M. Garay, and Wilkins, L. W. a., Eds.) pp 115-134, Philadelphia. (113) Dell, A., Reason, A. J., Khoo, K. H., Panico, M., McDowell, R. A., and Morris, H. R. (1994) Mass spectrometry of carbohydrate-containing biopolymers. Methods Enzymol 230, 108-32. (114) Dong, X., Bhamidi, S., Scherman, M., Xin, Y., and McNeil, M. R. (2006) Development of a quantitative assay for mycobacterial endogenous arabinase and ensuing studies of arabinase levels and arabinan metabolism in Mycobacterium smegmatis. Appl Environ Microbiol 72, 2601-5. (115) Harvey, D. J., Bateman, R. H., and Green, M. R. (1997) High-energy collision-induced fragmentation of complex oligosaccharides ionized by matrix-assisted laser desorption/ionization mass spectrometry. J Mass 158 Spectrom 32, 167-87. (116) Spina, E., Sturiale, L., Romeo, D., Impallomeni, G., Garozzo, D., Waidelich, D., and Glueckmann, M. (2004) New fragmentation mechanisms in matrix-assisted laser desorption/ionization time-of-flight/time-of-flight tandem mass spectrometry of carbohydrates. Rapid Commun Mass Spectrom 18, 392-8. (117) Hancock, I. C., Carman, S., Besra, G. S., Brennan, P. J., and Waite, E. (2002) Ligation of arabinogalactan to peptidoglycan in the cell wall of Mycobacterium smegmatis requires concomitant synthesis of the two wall polymers. Microbiology 148, 3059-67. (118) Domon, B., and Costello, C. E. (1988) Structure elucidation of glycosphingolipids and gangliosides using high-performance tandem mass spectrometry. Biochemistry 27, 1534-43. (119) Lee, R. E., Li, W., Chatterjee, D., and Lee, R. E. (2005) Rapid structural characterization of the arabinogalactan and lipoarabinomannan in live mycobacterial cells using 2D and 3D HR-MAS NMR: structural changes in the arabinan due to ethambutol treatment and gene mutation are observed. Glycobiology 15, 139-51. (120) Kall, L., Krogh, A., and Sonnhammer, E. L. (2004) A combined transmembrane topology and signal peptide prediction method. J Mol Biol 338, 1027-36. (121) Alderwick, L. J., Radmacher, E., Seidel, M., Gande, R., Hitchen, P. G., Morris, H. R., Dell, A., Sahm, H., Eggeling, L., and Besra, G. S. (2005) Deletion of Cg-emb in corynebacterianeae leads to a novel truncated cell wall arabinogalactan, whereas inactivation of Cg-ubiA results in an arabinan-deficient mutant with a cell wall galactan core. J Biol Chem 280, 32362-71. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/30943 | - |
| dc.description.abstract | 阿拉伯聚醣 (arabinan) 是結核桿菌細胞壁重要的多聚醣體之一, 分別銜接起半乳聚醣 (galactan) 或是脂化甘露聚醣 (lipomannan) 來形成兩個複雜的大分子- 阿拉伯半乳聚醣 (arabinogalactan, AG) 和脂化阿拉伯甘露聚醣 (lipoarabinomannan, LAM)。 一般結核菌 ( Mycobacterium sp.) 都含有這兩個多醣體。常見的致病性結核菌會引起兩個嚴重的法定傳染病包括了肺結核 (tuberculosis) 以及痲瘋 (leprosy)。 現有的抗結核病用藥中, 胺丁醇(Ethambutol), 被認為是可抑制阿拉伯醣聚合化酵素 (arabinan transferases) 基因 embCAB。 此基因分別的是去影響阿拉伯醣化的形成 (arabinosylation)。 近年來利用一快速生長的結核桿菌Mycobacterium smegmatis 所進行的一些遺傳和基因缺陷的實驗中, 顯示由 embCAB 所轉錄的基因產物, EmbB/A 和 EmbC 蛋白質, 可分別調控 AG 和 LAM 的阿拉伯醣聚合化。 儘管AG 和LAM 的阿拉伯聚醣結構相似,生化實驗分析結果指示, 相較於AG 的支鏈結構, LAM 明顯的多了直鏈結構式的阿拉伯聚醣鏈末端, 且可能是由 EmbC 蛋白質所調控或轉錄。 從EmbC 缺陷菌種中得到的結果發現它已經不能合成正常菌種的LAM, 取而代之的是類似AG 的結構產生。到目前為止, 也還不能很清楚的了解這種結果發生的原因以及阿拉伯聚醣生合成的分子機制。
進一步的去了解阿拉伯醣聚合化過程是一迫切需要的事, 這有利於我們去對抗此全球性的疾病的蔓延。 本論文將是要朝向去鑑定一個完整的阿拉伯聚醣初始化、 延伸、 分支、 最後終結及末端甘露糖 (Mannose) 修飾等等的機制。 在結構分析上, 首先我們去建立起一關鍵性技術: 有效的應用一內切性阿拉伯聚醣酵素 (endogenous arabinannase) 去水解複雜的阿拉伯聚醣而獲得如同過去所推測的由之22 個阿拉伯糖組成的大分子片斷。 配合各種俱高解析度、精準度且敏感的質譜設備去快速的分析結構與定序。 在此, 分別的去分析來自於各種不同結核桿菌屬像是M. smegmatis、 M. leprae、 M. tuberculosis Rv37、 Emb-resistant M. tuberculosis clinical isolates CSU20等的阿拉伯半乳聚醣 (arabinogalactan, AG) 和脂化阿拉伯甘露聚醣 (lipoarabinomannan, LAM) 結構並做比較。 最後可以將所獲得的結果配合上目前我們對於結核桿菌所的知識做一有系統的整合, 以了解細胞壁的整個結構功能以及生合成之始末原由。 由質譜數據分析證明了來自於 AG 上的阿拉伯聚醣結構是由18 個阿拉伯單糖所組成的且俱有高度分支狀, 符合於過去文獻所推測; 而 LAM 上的阿拉伯聚醣主要是直鏈狀所延伸的結構且變異度高。 在一些慢速生長的且俱致病性的結核菌種中, 半乳糖氨化 (galactosaminylation) 是修飾於AG 上 3,5 鍵結的阿拉伯單糖上面的C-2 位置。 運用基因突變缺陷的技術去建構一可能是影響 LAM 阿拉伯醣聚合化的其中一轉化酵素之轉錄基因末端缺陷的突變株 (embC)。 在基因缺陷實驗所得知的結果中, LAM的阿拉伯聚醣已經形成較為接近 AG 形式的阿拉伯聚醣, 此基因被證明確實影響 LAM 的阿拉伯醣聚合化。 在慢速生長的結核菌種中 (H37Rv、 CSU20 以及leprae), 皆為有甘露糖 (mannose) 末端修飾種類的阿拉伯聚醣 (ManLAM), 且各有不同程度的結構複雜度。 我們定義了過去不被報告過的結構及一個更大可能的模型, 且認為雖然這些菌種的阿拉伯聚醣變異性很高, 但應該都是經由一個共通性的結構所組成的。 | zh_TW |
| dc.description.abstract | D-arabinofurans are unique polymers present in the mycobacterial cell wall, attached either to a galactofuran or a mannan. Studies on D-arabinofurans from arabinogalactan (AG) and lipoarabinomannan (LAM) have been hampered because of the complexity of the structure, and unavailability of sufficient tools to aid analyses. The main thrust of this thesis work is the development of refined analytical methodology using a newly available endogenous arabinanase to release intact large fragments of arabinan oligomers from mycobacterial AG and LAM for high sensitivity structural motif mapping and sequencing by a combination of low and high collision energy induced dissociation (CID) tandem mass spectrometry.
Collectively, the data demonstrated that the arabinans of AG are highly branched and structured into a well defined 18 mers, whereas those of LAM may be further extended with linear chains, giving rise to a highly heterogeneous ensemble. Significantly, evidence was obtained for the first time which validated the linkages and branching pattern of the previously inferred Ara22 structural motif of AG, on which the preferred cleavage sites of the novel arabinanase could be localized. The established linkage-specific MS/MS fragmentation characteristics further led to identification of a galactosamine substituent on the C-2 position of a portion of the internal 3,5-branched Ara residue of the AG of M. tuberculosis, but not that of the nonpathogenic, fast growing M. smegmatis. Similar analysis on LAM arabinan isolated from the genetic mutants of M. smegmatis showed that C-terminal truncation of the EmbC gene encoding for the putative arabinan transferase specific for LAM halts LAM-specific linear extension from an AG-like inner arabinan core structure. Collectively, the data reveal a new model, which implicates an inner branched Ara-(18 –22)-mer core structure as a common structural motif for both LAM and AG. However, direct structural analyses of the mannose-capped LAMs from M. tuberculosis and M. leprae showed them to be distinct from that of the fast growing, non-pathogenic species, a feature which was not previously recognized. Man4Ara10 and Man6Ara13 were identified as distinct terminal motifs whereas Man2Ara7 probably represents an internal repeat motif variably found in various strains of M. tuberculosis and M. leprae. The new insights on the arabinan structure provided by the current analysis lead us to a broader perspective on the assembly and biogenesis of the mycobacterial arabinan never before realized and addressed. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-13T02:22:02Z (GMT). No. of bitstreams: 1 ntu-96-D89242002-1.pdf: 7913765 bytes, checksum: e7338ad4c8cfd475892016766fd53824 (MD5) Previous issue date: 2007 | en |
| dc.description.tableofcontents | Chapter 1 Introduction ……………………….…………………………………1~26 1.1 Tuberculosis and immunity …………….…………………………………………1 1.2 Classification …...…………………………...……………………….…………....2 1.3 D-Arabinofurans structure ………………………………………………………...5 1.4 Mycobacterial cell wall …………………………………………………………...6
(1) Peptidoglycan structure ……….………..…………………………...………...7 (2) Mycolic acid structure ……...……………………………………...…….…....7 (3) Arabinogalactan (AG) structure ……………………………………...………..8 (4) Lipoarabinomannan (LAM) structure ………………………………………..10 1.5 The immunomodulatory activities of LAM …………………………………..…13 1.6 Biosynthesis of mycobacterial D-arabinofurans ……………………………...…14 1.7 D-Arabinanase enzyme ………………………………………………………….17 1.8 Strategy for structural analysis of polysaccharides …………………………….18 1.9 Mass spectrometry ……………………………………………………………….19 1.10 History of structural analysis of AG and LAM arabinan ………………………20 Chapter 2 Objective ……………………………………………………..……..27~29 Chapter 3 Materials and instruments ………………………………………30~31 3.1 Reagent ….……………………………………………………………………….30 3.2 Strains ……………………………………………………………………………30 3.3 Instruments and apparatus ….……………………………………………………30 Chapter 4 Methods ………………………………………………………..……32~39 4.1 Preparation of soluble arabinogalactan and lipoarabinomannan ………………32 4.2 Purification of endogenous arabinanase …………………………………………33 4.3 Arabinanase activity assay and arabinan digestion ……………………………33 4.4 Fractionation and desalting ……………………………………………………34 4.5 Digestion with α-mannosidase …………………………………………………35 4.6 Digestion with Endoarabinanase ………………………………………………35 4.7 Chemical derivatization ………………………………………………………… 35 (1) Permethylation ……………………………………………………….………35 (2) Peracetylation .……...………………………………………………..………36 (3) Reduction …………………………………………………………………….36 4.8 Sep-Pak C18 ……………………………………………………………..………36 4.9 Zip-Tip C18 ………………………………………………………………...……37 4.10 Phenol-sulfuric acid assay ……………………………………………...………37 4.11 Sugar composition analysis …………………………………………………….37 4.12 Gel electrophoresis ……………………………………………………………..38 4.13 Mass spectrometry analysis …………………………………………………….38 (1) MALDI-TOF and MALDI-Q-TOF ………………………………………….38 (2) MALDI-TOF/TOF ……………………………………………………….…..39 Chapter 5 Preparation of arabinan and determination of its high-energy CID MS/MS fragmentation pattern ………………………………………..……40~54 5.1 General workup strategy ……………………………………………………….40 5.2 Msm-arabinanase ………………………………………………………………41 5.3 Separation of arabinan …………………………………………………………...42 (1) Size exclusion HPLC …………………………………………………...……42 (2) Bio-Gel P-10 column ……………………………………………………...…43 (3) PGC (porous graphitized carbon) column …………………………...………43 5.4 Rule of fragmentation in high-energy CID MS/MS ……………………………..43 5.5 Discussion ………………………………………………………….……………46 Chapter 6 Mycobacterium smegmatis AG ………………………….………55~71 6.1 Mass spectra of Mycobacterium smegmatis AG-arabinan ………………………55 6.2 Characterization of arabinan in low-energy CID ……………………..…………56 (1) Characterization of Ara7 by low-energy CID MS/MS ……………………….57 (2) Characterization of Ara8 by low-energy CID MS/MS …………….…………57 (3) Characterization of Ara11,12 by low-energy CID MS/MS ……………………58 (4) Characterization of Ara18 by low-energy CID MS/MS ……………………58 6.3 High-energy CID in MALDI TOF-TOF..…………………………………...……59 (1) Characterization of Ara18 by high-energy CID MS/MS ……………………..59 (2) Characterization of Ara7 and Ara12 by high-energy CID MS/MS …………...60 6.4 Characterization of Ara19/Ara20 by low and high-energy CID MS/MS …………61 6.5 Discussion ………………………………………………………………….……61 Chapter 7 M. tuberculosis CSU20AG and Leprae AG …………………..…72 ~91 7.1 Mass spectra of M. tuberculosis CSU20AG-arabinan ………………………..72 7.2 Characterization of GalN by high-energy CID MS/MS………………………….75 (1) Characterization of Ara13-GalN (m/z 2374) …………………………………75 (2) Characterization of Ara6-GalN (m/z 1238) …………………………………..76 (3) Characterization of Ara18,20-GalN (m/z 3174, 3494) in high-energy CID …...77 7.3 Mass spectra of M. Leprae AG-arabinan ………………………………...………78 7.4 Discussion ……………………………………………………………………….79 Chapter 8 LAM from M. smegmatis and EmbC mutants ………….………92~110 8.1 Mass spectra of M. smegmatis LAM-arabinan …………………………………..92 8.2 Characterization of LAM-Ara18 by high-energy CID ………………………...…92 8.3 EmbC and C-terminal mutation LAM-arabinan ………………………..….……93 8.4 Mass Spectra of LAM-arabinan derived from EmbC C-terminal mutants ……...94 8.5 Characterization of Msm- and EmbCΔ358c –LAM arabinans by low-energy CID…………………………………………………………………………………...96 8.6 Discussion …………………………………………………………….…………99 Chapter 9 M. tuberculosis and M. leprae LAM ………………………….…111~131 9.1 The evidence of SDS-PAGE in LAM ……………………………….…………111 9.2 Mass Spectra of M. tuberculosis CSU20LAM-arabinan ……………………….111 9.3 Characterization of CSU20LAM-arabinan by high-energy CID MS/MS …...…113 9.4 Mass spectra of M. tuberculosis RvLAM-arabinan …………………………….114 9.5 Characterization of RvLAM by high-energy CID MS/MS …………………….115 9.6 Mass spectra of LepLAM-arabinan …………………………………………….116 9.7 Characterization of LepLAM-arabinan by high-energy CID ………..…………117 9.8 MS/MS comparison of LAM-Ara10, 13 …………………………………………118 9.9 Discussion ………………………………………………………………...……119 Chapter 10 Discussion……………………………………………………..…132~147 References…………………………………..………………………….…..…148~158 Publications …..……………………………...……………………………….159~185 List of Figures and Supplementary I. Figures Figure 1.1 A schematic diagram of bacterial cell wall ………………………………23 Figure 1.2 A chemical model of the mycobaterial cell wall …………………………23 Figure 1.3 Structure of arabinogalactan (AG) ……………………………………….24 Figure 1.4 Structural mode of AG-arabinan …………………………………………25 Figure 1.5 Structural model of mycobacterial LAM ……………………...…………26 Figure 1.6 A cartoon representing how the Emb proteins function ………………….26 Figure 5.1 A flow chart for the characterization of arabinan structure……………….49 Figure 5.2 Purification of crude Msm-arabinanase and examination of enzymatic activity ……………………………………………………………………………….50 Figure 5.3 Separation of the arabinan oligomers by Superdex peptide HPLC ……...51 Figure 5.4 Fractionation of AG digestion by Bio-gel ……………….…………….....52 Figure 5.5 High-energy MALDI CID MS/MS spectrum of Ara4 standard ……….…53 Figure 5.6 High-energy MALDI CID MS/MS spectrum of Ara5 standard ………….54 Figure 5.7 High-energy MALDI CID MS/MS spectrum of Ara6 standard ………….54 Figure 6.1 MALDI-MS spectra of Msm-arabinanase digested MsmAG-arabinan .…64 Figure 6.2 MALDI MS/MS of permethylated Ara7, Ara8, Ara11, and Ara12 from MsmAG …………...…………………………………………………………………65 Figure 6. 3 MALDI MS/MS spectrum of permethylated Ara18 ………………….…..66 Figure 6.4 Expanded high-energy CID MS/MS spectrum of permethylated Ara18 …67 Figure 6.5 A complete assignment of the high-energy CID MS/MS fragment ions given by the Ara18 structure ………………………………………………………….68 Figure 6.6 MALDI MS/MS spectra of permethylated Ara7 and Ara12 ………………69 Figure 6.7 MALDI MS/MS analysis of permethylated Ara19, and Ara20 ……………70 Figure 6.8 The major components of MsmAG-arabinan released by Msm-arabinanase ……………………………………………………………………71 Figure 7.1 MALDI MS spectra of CSU20AG-arabinan …………………………….82 Figure 7.2 Mass spectra of permethylated CSU20 AG-arabinan after sub-fractionation ……………………………………………………………………..83 Figure 7.3 Mass spectra of permethylated, reduced arabinan in HPLC fractions ...…84 Figure 7.4 MALDI MS spectra of the permethyl derivatives of HPLC fraction D after further digestion by endoarabinanase …………..……………………………………85 Figure 7.5 MALDI MS/MS spectrum of permethylated Ara13-GalN and Ara6-GalN .86 Figure 7.6 MALDI MS/MS spectrum of permethylated Ara18, 20-GalN ……….……87 Figure 7.7 MALDI MS spectrum of the permethyl derivatives of LepAG-arabinan ..88 Figure 7.8 MALDI MS/MS spectrum of permethylated reduced Ara7 from LepAG-arabinan ……………………………..………………………………………89 Figure 7.9 MALDI MS/MS spectrum of permethylated reduced Ara18 from LepAG-arabinan …………..…………………………………………………………90 Figure 7.10 GalN-containing arabinan of Msm-arabinanase digestion product from CSU20AG …………………………………………………………………………...91 Figure 8.1 MALDI MS spectrum of permethylated derivatives of MsmLAM-arabinan …………………………………………………………...……101 Figure 8.2 High-energy CID MS/MS spectrum of permethylated reduced Ara18 from MsmLAM ……………………………………………………………………..……102 Figure 8.3 Predicted TM-topology of MsmEmbC ………………………………....103 Figure 8.4 Analysis of LAM and LM of Msm wild-type and the mutants by SDS-PAGE …………………………………………………………………………104 Figure 8.5 MALDI-MS spectra of permethyl derivatives of arabinan from EmbC C-terminal mutants of Msm ……………………………………………………..…105 Figure 8.6 Low-energy CID MALDI-MS/MS analysis of arabinosyl oligomers derived from Msm-arabinanase digestion ………………………………….………106 Figure 8.7 Low energy CID MALDI MS/MS analysis of arabinosyl oligomers derived from Msm-arabinanase digestion …………………………………………………..107 Figure 8.8 Low-energy CID MALDI-MS/MS analysis of arabinosyl oligomers derived from Msm-arabinanase digestion ………………………………………… 108 Figure 8.9 Arabinan structure deduced from low energy CID MS/MS analysis ..…109 Figure 8.10 High-energy CID MS/MS spectrum of permethylated reduced Ara18 derived from EmbCΔ358cLAM ……………………………………………………110 Figure 9.1 Evaluation of the degree of LAM digestion by gel electrophoresis ……121 Figure 9.2 Evaluation of Microspin efficiency …………………………………….121 Figure 9.3 MALDI MS spectra for the permethyl derivatives of CSU20LAM-arabinan …………………………………………………………...…122 Figure 9.4 MALDI MS/MS spectrum of permethyl derivatives of CSU20LAM Man4Ara10 ……..……………………………………………………………………123 Figure 9.5 MALDI MS/MS spectrum of permethyl derivatives of CSU20LAM Man6Ara13 …………………………………………………………………………..124 Figure 9.6 MALDI MS spectra of the permethyl derivatives of RvLAM-arabinan .125 Figure 9.7 MALDI MS/MS spectrum of permethyl derivatives of H37RvLAM Man2Ara7 ……………………………………………………………………….…..126 Figure 9.8 MALDI-MS spectrum of permethylated, reduced LepLAM-arabinan …127 Figure 9.9 MALDI MS/MS spectrum of permethylated, reduced Man2Ara10 from LepLAM and CSU20LAM ……………………………………………………...…128 Figure 9.10 MALDI MS/MS spectrum of permethylated reduced Ara10 of LAM …129 Figure 9.11 MALDI MS/MS spectrum of permethylated reduced Ara13 of LAM ....130 Figure 9.12 Summary of ManLAM arabinan motifs ………………………………131 Figure 10.1 Models for assembly of AG ……...……………………………………144 Figure 10.2 Model for assembly of LAM ………………………………………….145 Figure 10.3 Model for assembly of ManLAM ……………………………………..146 Figure 10.4 Summary of arabinan structures, model and arabinosylation …………147 II. Supplementary Table1 Table of nominal, monoisotopic, and average mass of arabinofuranose …...186 | |
| dc.language.iso | en | |
| dc.subject | 質譜儀 | zh_TW |
| dc.subject | 結核桿菌 | zh_TW |
| dc.subject | 阿拉伯聚醣 | zh_TW |
| dc.subject | MS/MS | en |
| dc.subject | and Glycan sequencing | en |
| dc.subject | Mass spectrometry | en |
| dc.subject | Mycobacterium | en |
| dc.subject | Arabinan | en |
| dc.title | 結核桿菌細胞壁多醣體結構之研究 | zh_TW |
| dc.title | Sequencing of Arabinans from Mycobacterial Cell Wall Arabinogalactan and Lipoarabinomannan by Advanced Tandem Mass Spectrometry | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 95-1 | |
| dc.description.degree | 博士 | |
| dc.contributor.oralexamcommittee | 方俊民,陳水田,楊文彬,華國媛 | |
| dc.subject.keyword | 阿拉伯聚醣,結核桿菌,質譜儀, | zh_TW |
| dc.subject.keyword | Arabinan,Mycobacterium,Mass spectrometry,MS/MS,and Glycan sequencing, | en |
| dc.relation.page | 186 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2007-01-30 | |
| dc.contributor.author-college | 生命科學院 | zh_TW |
| dc.contributor.author-dept | 生化科學研究所 | zh_TW |
| 顯示於系所單位: | 生化科學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-96-1.pdf 未授權公開取用 | 7.73 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
