Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
    • Advisor
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 管理學院
  3. 資訊管理學系
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/30936
Full metadata record
???org.dspace.app.webui.jsptag.ItemTag.dcfield???ValueLanguage
dc.contributor.advisor李瑞庭
dc.contributor.authorTing-Wei Changen
dc.contributor.author張庭維zh_TW
dc.date.accessioned2021-06-13T02:21:42Z-
dc.date.available2007-02-02
dc.date.copyright2007-02-02
dc.date.issued2007
dc.date.submitted2007-01-30
dc.identifier.citation[1] C.C. Chiang, C.J. Huang, “A robust method for detecting arbitrarily tilted human faces in color images,” Pattern Recognition Letters 26 (16), 2005, pp. 2518-2536.
[2] C.C. Chiang, W.K. Tai, “A novel method for detecting lips, eyes and faces in real time,” Real-Time Imaging 9 (4), 2003, pp. 277–287.
[3] R.L. Hsu, M. Abdel-Mottaleb, “Face detection in color images,” IEEE Transactions on Pattern Analysis and Machine Intelligence 24 (5), 2002, pp. 696–706.
[4] H.A. Rowley, S. Baluja, “Neural network-based face detection,” IEEE Transactions on Pattern Analysis and Machine Intelligence 20 (1), 1998, pp. 23–38.
[5] H.A. Rowley, S. Baluja, “Rotation invariant neural network-based face detection,” in Proceedings of IEEE International Conference on Computer Vision and Pattern Recognition, 1998, pp. 38–44.
[6] K.K Sung, T. Poggio, “Example-based learning for view-based human face detection,” IEEE Transactions on Pattern Analysis and Machine Intelligence 20 (1), 1998, pp. 39–51.
[7] M.H. Yang, D. Kriegman, N. Ahuja, “Detecting faces in images: a survey,” IEEE Transactions on Pattern Analysis and Machine Intelligence 24 (1) , 2002, pp. 34–58.
[8] P. Viola, M. Jones, “Rapid object detection using a boosted cascade of simple features,” International Journal of Computer Vision 57, 2002, pp. 137–154.
[9] L.L. Huang, A. Shimizu, Y. Hagihara, H. Kobatake, “Face detection from cluttered images using a polynomial neural network,” Neurocomputing 51, 2003, pp. 197–211.
[10] L.L. Huang, A. Shimizu, Y. Hagihara, H. Kobatake, “Gradient feature extraction for classification-based face detection,” Pattern Recognition 36, 2003, pp. 2502–2511.
[11] L.L. Huang, A. Shimizu, H. Kobatake, “A multi-expert approach for robust face detection,” in Proceedings of the 17th International Conference on Pattern Recognition, 2004, pp. 942-945.
[12] J. Wu and Z.H. Zhou, “Efficient face candidate selector for face detection,” Pattern Recognition 36, 2004, pp. 1175-1186.
[13] M.A. Bhuiyan, V. Ampornaramveth, S.Y. Muto, and H. Ueno, “Face detection and facial feature localization for human-machine interface,” NII Journal 5, 2003, pp. 25-39.
[14] J. Pei, J. Han, B. Mortazavi-Asl, H. Pinto, Q. Chen, U. Dayal, M.C. Hsu, “PrefixSpan: mining sequential patterns efficiently by prefix-projected pattern growth,” in Proceedings of the 17th International Conference on Data Engineering, Heidelberg, Germany, 2001, pp. 215-224.
[15] A. Samal and P.A. Iyengar, “Human face detection using silhouettes,” International Journal of Pattern Recognition and Artificial Intelligence 9(6), 1995, pp. 845-867.
[16] B. Heisele, “Hierarchical classification and feature reduction for fast face detection with support vector machines,” Pattern Recognition 36, 2003, pp. 2007-2017.
[17] D. Burdick, M. Calimlim, J. Gehrke, “MAFIA: a maximal frequent itemset algorithm for transactional databases,” in Proceedings of International Conference on Data Engineering, 2001, pp. 443-452.
[18] H. Rowley, S. Baluja, and T. Kanade, “Human face detection in visual scenes,” Advances in Neural Information Processing Systems 8, 1996, pp. 875-881.
[19] Y. Freund and R.E. Schapire, “A decision-theoretic generalization of on-line learning and an application to boosting,” in Proceedings of the 2nd European Conference on Computational Learning Theory, 1995, pp. 119-139.
[20] B. Heisele, T. Poggio, M. Pontil, “Face detection in still gray images,” A.I. Memo 1687, Center for Biological and Computational Learning, MIT, Cambridge, MA, 2000.
[21] H. Schneiderman, T. Kanade, “A statistical method for 3D object detection applied to faces and cars,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2000, pp. 746-751.
[22] P. Shih, C. Liu, “Face detection using discriminating feature analysis and support vector machine,” Pattern Recognition 39, 2006, pp. 260-276.
[23] M.P. Dubuisson, A.K. Jain, “A modified Hausdorff distance for object matching,” Pattern Recognition 1, 1994, pp. 566-568.
[24] http://himalaya-tools.sourceforge.net/, Himalaya data mining tools, Cornell Database Group, Cornell University
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/30936-
dc.description.abstract在本篇論文中,我們提出了一個新的偵測人臉方法。我們所提出的方法包括兩個階段:訓練階段與測試階段。在訓練階段,我們使用Sobel的測邊運算、型態學的運算、以及閥值擷取將一張影像形成邊的影像(edge image)。然後,利用MAFIA演算法去探勘這些邊的影像或非邊的影像以得到這些訓練影像的最大頻繁樣式(maximal frequent pattern),並產生正向特徵樣式(positive feature pattern)與負向特徵樣式(negative feature pattern)。在測試階段,我們利用滑動視窗法在測試影像的任何位置偵測不同大小的人臉。對於每個視窗,我們計算此視窗之邊的影像與特徵樣式的Hausdorff距離。如果此距離小於預先設定的閥值,我們接著檢查此一視窗是否包含正向特徵樣式中絕大多數的部份。如果一個視窗通過以上所有檢查就被認為是人臉。實驗結果顯示出,我們的方法在MIT-CMU的測試資料庫與我們自己的測試資料庫中分別達到98.35%與95.45%的偵測率,勝過由Schneiderman與Kanade所提出的方法。zh_TW
dc.description.abstractIn this thesis, we propose a novel face detection method based on the MAFIA algorithm. Our proposed method consists of two phases. In the training phase, we first apply Sobel’s edge detection operator, morphological operator, and thresholding to each training image, and transform it into an edge image. Then, we use the MAFIA algorithm to mine the maximal frequent patterns from those edge images and obtain the positive feature pattern. Similarly, we can obtain the negative feature pattern from the non-edge images, each of which is a complement of an edge-image. In the detection phase, we apply a sliding window to the test image in different scales. For each sliding window, we first compute the modified Hausdorff distances between the edge image of the sliding window and the feature patterns obtained. If the distances are less than the predefined thresholds, we check if the edge image of the sliding window contains most components of the positive feature pattern. If yes, the sliding window is considered as a human face. The experimental results show that our method achieves 98.35% detection rate in the MIT-CMU database and 95.45% in our own database, and outperforms the method proposed by Schneiderman and Kanade.en
dc.description.provenanceMade available in DSpace on 2021-06-13T02:21:42Z (GMT). No. of bitstreams: 1
ntu-96-R94725006-1.pdf: 2271903 bytes, checksum: e881567e8b2861ae7fb2c7368e03ddde (MD5)
Previous issue date: 2007
en
dc.description.tableofcontentsTable of Contents i
List of Figures ii
List of Tables iii
Chapter 1 Introduction 1
1.1 Knowledge-based and Feature Invariant Methods 1
1.2 Template Matching Methods 2
1.3 Appearance-based Methods 3
Chapter 2 Preliminary Concept and Problem Definition 7
Chapter 3 Our Proposed Approach 9
3.1 Edge Image 9
3.2 Maximal Frequent Patterns 10
3.2.1 The MAFIA Algorithm 11
3.3 The Detector 14
3.4 Pruning Techniques 16
3.5 Discussion 17
Chapter 4 Performance Analysis 18
4.1 Learning the Maximal Frequent Patterns 18
4.2 Performance Evaluation 18
4.3 Discussion 22
Chapter 5 Conclusions and Future Work 24
References 26
dc.language.isoen
dc.subject人臉偵測zh_TW
dc.subjectHausdorff距離zh_TW
dc.subject最大頻繁項目zh_TW
dc.subject特徵樣式zh_TW
dc.subjectHausdorff distanceen
dc.subjectface detectionen
dc.subjectmaximal frequent itemseten
dc.subjectfeature patternen
dc.title利用資料探勘方法偵測人臉zh_TW
dc.titleA Data Mining Approach to Face Detectionen
dc.typeThesis
dc.date.schoolyear95-1
dc.description.degree碩士
dc.contributor.oralexamcommittee陳良華,沈錳坤
dc.subject.keyword人臉偵測,特徵樣式,最大頻繁項目,Hausdorff距離,zh_TW
dc.subject.keywordface detection,feature pattern,maximal frequent itemset,Hausdorff distance,en
dc.relation.page28
dc.rights.note有償授權
dc.date.accepted2007-01-30
dc.contributor.author-college管理學院zh_TW
dc.contributor.author-dept資訊管理學研究所zh_TW
Appears in Collections:資訊管理學系

Files in This Item:
File SizeFormat 
ntu-96-1.pdf
  Restricted Access
2.22 MBAdobe PDF
Show simple item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved