請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/30936
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 李瑞庭 | |
dc.contributor.author | Ting-Wei Chang | en |
dc.contributor.author | 張庭維 | zh_TW |
dc.date.accessioned | 2021-06-13T02:21:42Z | - |
dc.date.available | 2007-02-02 | |
dc.date.copyright | 2007-02-02 | |
dc.date.issued | 2007 | |
dc.date.submitted | 2007-01-30 | |
dc.identifier.citation | [1] C.C. Chiang, C.J. Huang, “A robust method for detecting arbitrarily tilted human faces in color images,” Pattern Recognition Letters 26 (16), 2005, pp. 2518-2536.
[2] C.C. Chiang, W.K. Tai, “A novel method for detecting lips, eyes and faces in real time,” Real-Time Imaging 9 (4), 2003, pp. 277–287. [3] R.L. Hsu, M. Abdel-Mottaleb, “Face detection in color images,” IEEE Transactions on Pattern Analysis and Machine Intelligence 24 (5), 2002, pp. 696–706. [4] H.A. Rowley, S. Baluja, “Neural network-based face detection,” IEEE Transactions on Pattern Analysis and Machine Intelligence 20 (1), 1998, pp. 23–38. [5] H.A. Rowley, S. Baluja, “Rotation invariant neural network-based face detection,” in Proceedings of IEEE International Conference on Computer Vision and Pattern Recognition, 1998, pp. 38–44. [6] K.K Sung, T. Poggio, “Example-based learning for view-based human face detection,” IEEE Transactions on Pattern Analysis and Machine Intelligence 20 (1), 1998, pp. 39–51. [7] M.H. Yang, D. Kriegman, N. Ahuja, “Detecting faces in images: a survey,” IEEE Transactions on Pattern Analysis and Machine Intelligence 24 (1) , 2002, pp. 34–58. [8] P. Viola, M. Jones, “Rapid object detection using a boosted cascade of simple features,” International Journal of Computer Vision 57, 2002, pp. 137–154. [9] L.L. Huang, A. Shimizu, Y. Hagihara, H. Kobatake, “Face detection from cluttered images using a polynomial neural network,” Neurocomputing 51, 2003, pp. 197–211. [10] L.L. Huang, A. Shimizu, Y. Hagihara, H. Kobatake, “Gradient feature extraction for classification-based face detection,” Pattern Recognition 36, 2003, pp. 2502–2511. [11] L.L. Huang, A. Shimizu, H. Kobatake, “A multi-expert approach for robust face detection,” in Proceedings of the 17th International Conference on Pattern Recognition, 2004, pp. 942-945. [12] J. Wu and Z.H. Zhou, “Efficient face candidate selector for face detection,” Pattern Recognition 36, 2004, pp. 1175-1186. [13] M.A. Bhuiyan, V. Ampornaramveth, S.Y. Muto, and H. Ueno, “Face detection and facial feature localization for human-machine interface,” NII Journal 5, 2003, pp. 25-39. [14] J. Pei, J. Han, B. Mortazavi-Asl, H. Pinto, Q. Chen, U. Dayal, M.C. Hsu, “PrefixSpan: mining sequential patterns efficiently by prefix-projected pattern growth,” in Proceedings of the 17th International Conference on Data Engineering, Heidelberg, Germany, 2001, pp. 215-224. [15] A. Samal and P.A. Iyengar, “Human face detection using silhouettes,” International Journal of Pattern Recognition and Artificial Intelligence 9(6), 1995, pp. 845-867. [16] B. Heisele, “Hierarchical classification and feature reduction for fast face detection with support vector machines,” Pattern Recognition 36, 2003, pp. 2007-2017. [17] D. Burdick, M. Calimlim, J. Gehrke, “MAFIA: a maximal frequent itemset algorithm for transactional databases,” in Proceedings of International Conference on Data Engineering, 2001, pp. 443-452. [18] H. Rowley, S. Baluja, and T. Kanade, “Human face detection in visual scenes,” Advances in Neural Information Processing Systems 8, 1996, pp. 875-881. [19] Y. Freund and R.E. Schapire, “A decision-theoretic generalization of on-line learning and an application to boosting,” in Proceedings of the 2nd European Conference on Computational Learning Theory, 1995, pp. 119-139. [20] B. Heisele, T. Poggio, M. Pontil, “Face detection in still gray images,” A.I. Memo 1687, Center for Biological and Computational Learning, MIT, Cambridge, MA, 2000. [21] H. Schneiderman, T. Kanade, “A statistical method for 3D object detection applied to faces and cars,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2000, pp. 746-751. [22] P. Shih, C. Liu, “Face detection using discriminating feature analysis and support vector machine,” Pattern Recognition 39, 2006, pp. 260-276. [23] M.P. Dubuisson, A.K. Jain, “A modified Hausdorff distance for object matching,” Pattern Recognition 1, 1994, pp. 566-568. [24] http://himalaya-tools.sourceforge.net/, Himalaya data mining tools, Cornell Database Group, Cornell University | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/30936 | - |
dc.description.abstract | 在本篇論文中,我們提出了一個新的偵測人臉方法。我們所提出的方法包括兩個階段:訓練階段與測試階段。在訓練階段,我們使用Sobel的測邊運算、型態學的運算、以及閥值擷取將一張影像形成邊的影像(edge image)。然後,利用MAFIA演算法去探勘這些邊的影像或非邊的影像以得到這些訓練影像的最大頻繁樣式(maximal frequent pattern),並產生正向特徵樣式(positive feature pattern)與負向特徵樣式(negative feature pattern)。在測試階段,我們利用滑動視窗法在測試影像的任何位置偵測不同大小的人臉。對於每個視窗,我們計算此視窗之邊的影像與特徵樣式的Hausdorff距離。如果此距離小於預先設定的閥值,我們接著檢查此一視窗是否包含正向特徵樣式中絕大多數的部份。如果一個視窗通過以上所有檢查就被認為是人臉。實驗結果顯示出,我們的方法在MIT-CMU的測試資料庫與我們自己的測試資料庫中分別達到98.35%與95.45%的偵測率,勝過由Schneiderman與Kanade所提出的方法。 | zh_TW |
dc.description.abstract | In this thesis, we propose a novel face detection method based on the MAFIA algorithm. Our proposed method consists of two phases. In the training phase, we first apply Sobel’s edge detection operator, morphological operator, and thresholding to each training image, and transform it into an edge image. Then, we use the MAFIA algorithm to mine the maximal frequent patterns from those edge images and obtain the positive feature pattern. Similarly, we can obtain the negative feature pattern from the non-edge images, each of which is a complement of an edge-image. In the detection phase, we apply a sliding window to the test image in different scales. For each sliding window, we first compute the modified Hausdorff distances between the edge image of the sliding window and the feature patterns obtained. If the distances are less than the predefined thresholds, we check if the edge image of the sliding window contains most components of the positive feature pattern. If yes, the sliding window is considered as a human face. The experimental results show that our method achieves 98.35% detection rate in the MIT-CMU database and 95.45% in our own database, and outperforms the method proposed by Schneiderman and Kanade. | en |
dc.description.provenance | Made available in DSpace on 2021-06-13T02:21:42Z (GMT). No. of bitstreams: 1 ntu-96-R94725006-1.pdf: 2271903 bytes, checksum: e881567e8b2861ae7fb2c7368e03ddde (MD5) Previous issue date: 2007 | en |
dc.description.tableofcontents | Table of Contents i
List of Figures ii List of Tables iii Chapter 1 Introduction 1 1.1 Knowledge-based and Feature Invariant Methods 1 1.2 Template Matching Methods 2 1.3 Appearance-based Methods 3 Chapter 2 Preliminary Concept and Problem Definition 7 Chapter 3 Our Proposed Approach 9 3.1 Edge Image 9 3.2 Maximal Frequent Patterns 10 3.2.1 The MAFIA Algorithm 11 3.3 The Detector 14 3.4 Pruning Techniques 16 3.5 Discussion 17 Chapter 4 Performance Analysis 18 4.1 Learning the Maximal Frequent Patterns 18 4.2 Performance Evaluation 18 4.3 Discussion 22 Chapter 5 Conclusions and Future Work 24 References 26 | |
dc.language.iso | en | |
dc.title | 利用資料探勘方法偵測人臉 | zh_TW |
dc.title | A Data Mining Approach to Face Detection | en |
dc.type | Thesis | |
dc.date.schoolyear | 95-1 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 陳良華,沈錳坤 | |
dc.subject.keyword | 人臉偵測,特徵樣式,最大頻繁項目,Hausdorff距離, | zh_TW |
dc.subject.keyword | face detection,feature pattern,maximal frequent itemset,Hausdorff distance, | en |
dc.relation.page | 28 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2007-01-30 | |
dc.contributor.author-college | 管理學院 | zh_TW |
dc.contributor.author-dept | 資訊管理學研究所 | zh_TW |
顯示於系所單位: | 資訊管理學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-96-1.pdf 目前未授權公開取用 | 2.22 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。