請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/30907
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 陳鈞 | |
dc.contributor.author | Chien-Lin Lai | en |
dc.contributor.author | 賴建霖 | zh_TW |
dc.date.accessioned | 2021-06-13T02:20:28Z | - |
dc.date.available | 2012-08-26 | |
dc.date.copyright | 2011-08-26 | |
dc.date.issued | 2011 | |
dc.date.submitted | 2011-08-01 | |
dc.identifier.citation | 1. J. R. Davis, ASM Specialty Handbook – Stainless steels, ASM International, 1994.
2. 潘永村, 鋼鐵材料設計與應用, 中國鋼鐵股份有限公司, 民85. 3. D. Peckner and I. M. Bernstein, Handbook of stainless steel, McGraw-Hill Inc., 1977. 4. E.Folkhard et. al., Welding Metallurgy of stainless steel, Springer-Verlagwien, 1988. 5. F. B. Pickering, Physical metallurgy and the design of steels, Applied Science Publishers, 1978. 6. B. Walden and J.M. Nicholls, Sandvik Steel Report, S51-54-ENG, (1994), 1. 7. K. Y. Kim, P. Q. Zhang, T. H. Ha, and Y. H. Lee, Corros., 54, 11(1998) 910. 8. K. Ichii and K Ota, ” Microstructure and Properties of High Silicon Duplex Stainless Steels” , Trans. J. Iron Steel Inst., 23(1983) 1019. 9. K. J. Irvin, D. T. Llewellyn and F. B. Pickering, JISI, 199 (1961) 153. 10. K. J. Irvin, T. Gladman and F. B. Pickering, JISI, (1969) 1017. 11. T. Angel, J. Iron Steel Inst., 177 (1954) 165. 12. P. C. Maxwell, A. Goldberg and J. C. Shyne, “Influence of martensite formed during deformation on the mechanical behavior of Fe-Ni-C Alloys”, Metall. Trans., 5B (1974) 1319. 13. P. C. Maxwell, A. Goldberg and J. C. Shyne, “Stress-Assisted and strain-induced martensites in FE-NI-C alloys”, Metall. Trans., 5B (1974) 1305. 14. D. Hennessy, G. Steckel and C. Altstetter, “Phase transformation of stainless steel during fatigue”, Metall. Trans. 7A (1976) 415. 15. F. Lecroisey and A.Pineau, “Martensitic transformations induced by plastic deformation in the Fe-Ni-Cr-C system”, Metall. Trans., 2B (1972) 391. 16. H. Fujita and S. Ueda, “Stacking faults and f.c.c. (γ) → h.c.p. (ε) transformation in 18-8 type stainless steel”, Acta Metall., 20 (1972) 759. 17. T. Kruml, J. Polak, S. Degallaix, “Microstructure in 316LN stainless steel fatigued at low temperature”, Mater. Sci. and Eng., 293A (2000) 275. 18. C.X. Huang, G. Yang, Y.L. Gao, S.D. Wu, S.X. Li, J. Mater. Res., 22 (2007) 724. 19. K. Spencer, M. Veron, K. Yu-Zhang, J.D. Embury, “The strain induced martensite transformation in austenitic stainless steels Part 1 - Influence of temperature and strain history”, Mater. Sci. Tech., 25 (2009) 7. 20. W.-S. Lee, C.-F. Lin, “The morphologies and characteristics of impact-induced martensite in 304L stainless steel”, Scripta Mater., 43 (2000) 777. 21. A. Das, S. Sivaprasad, M. Ghosh, P.C. Chakraborti, S. Tarafder,” Morphologies and characteristics of deformation induced martensite during tensile deformation of 304 LN stainless steel”, Mater. Sci. and Eng., 486A (2008) 283. 22. K. Spencer, J.D. Embury, K.T. Conlon, M. Veron, Y. Brechet, “Strengthening via the formation of strain-induced martensite in stainless steels”, Mater. Sci. and Eng., 387–389A (2004) 873. 23. T. Fukuda, T. Kakeshita, K. Kindo, Mater. Sci. and Eng., “Effect of high magnetic field and uniaxial stress at cryogenic temperatures on phase stability of some austenitic stainless steels”, 438–440A (2006) 212. 24. M. Humbert, B. Petit, B. Bolle and N. Gey, “Analysis of the γ → ε → α' variant selection induced by 10% plastic deformation in 304 stainless steel at -60℃”, Mater. Sci. and Eng., 454-455A (2007) 508. 25. M. Hadji and R. Badji, J. of Mater. Eng. and Performance, “Microstructure and mechanical properties of austenitic stainless steels after cold rolling”, 11(2) (2002), 145. 26. S. S. Hecker, M. G. Stout, K. P. Staudhammer and J. L. Smith, “Effects of Strain State and Strain Rate on Deformation-Induced Transformation in 304 Stainless Steel: Part I. Magnetic Measurements and Mechanical Behavior”, Metall. Trans., 13A (1982) 619. 27. S. S. Hecker, M. G. Stout, K. P. Staudhammer and J. L. Smith, “Effects of Strain State and Strain Rate on Deformation-Induced Transformation in 304 Stainless Steel: Part II. Microstructural Study”, Metall. Trans., 13A (1982) 627. 28. G. B. Olson, G. Krauss, Ed., 'Transformation Plasticity and the Stability of Plastic Flow,' in Deformation, Processing and Structure, Chapter 9, 1982 ASM Materials Science Seminar, ed. G. Krauss, ASM” (1984) 391. 29. C. A. Zapffe and C.E. Sims, “Hydrogen embrittlement, internal stress and defects in steel”. Transactions of the American Institute of Mining and Metallurgical Engineers, 145 (1941) 225. 30. G. E. Kerns, R. W. Staehle, “Slow crack growth in hydrogen and hydrogen sulfide gas environments”, Scri Metall., 6 (1972) 631. 31. M. Smialowski, Proc. Conf. on Stress Corrosion Cracking and Hydrogen Embrittlement of Iron Base Alloys, NACE (1977) 405. 32. N. J. Petch and P. Stables, “Delayed Fracture of Metals under Static Load”, Nature, 169 (1952) 842. 33. H. H. Johnson, J. G. Morlet and A. R. Troiano, Transactions of the American Institute of Mining and Metallurgical Engineers, 212 (1958) 528. 34. C. D. Beachem, “A new model for hydrogen assisted cracking - Hydrogen embrittlement”, Metall. Trans., 3A (1972) 437. 35. E. Sirois and H. K. Birnbaum, ” Effects of hydrogen and carbon on thermally activated deformation in nickel”, Acta Metall. Mater., 40 (1992) 1377. 36. G. M. Pressouyre, “A Classification of Hydrogen Traps in Steel”, Metall. Trans. 10A (1979) 1571. 37. G. M. Pressouyre and I. M. Bernstein, “A kinetic trapping model for hydrogen-induced cracking”, Acta Metall., 27(1) (1979) 89. 38. G. M. Pressouyre, J. P. Fidelle and R. A. Laurent, Hydrogen Effect in Metal, edit by I. M. Bernstein and A. W. Thompson, (1980) 27. 39. J. D. Fast, Interaction of Metals and Gases, Philips Tech. Library, Vol. 1 (1965) 379. 40. N. R. Quick and H. H. Johnson, “Hydrogen and deuterium in iron, 49–506°C”, Acta. Metall., 26 (1978) 903. 41. A. W. Thompson, Environment Sensitive Fracture of Engineering Materials, TMS-AIME, (1979) 379. 42. T. Toh and W. M. Bladwin, Stress Corrosion Cracking and Embrittlement, edit by W. D. Robertson, John Wiley and Sons, New York, (1956) 326. 43. R. P. Gangloff, PHD Dissertation, Lehigh University, 1974. 44. V. R. Sawicki, PHD Dissertation, Cornell University, 1971. 45. D. P. Williams and H. G. Nelson, “Embrittlement of 4130 Steel by Low-Pressure Gaseous”, Hydrogen,Metall. Trans. 1B (1970) 63. 46. A. W. Thompson, I. M. Bernstein, Adv. Corros. Sci. Tech., 7 (1980) 53. 47. J. C. M. Li, R. A. Orlani and L. S. Darken, Z. Phys. Chem., New Folge, 49 (1966) 271. 48. H. K. Birnbaum and P. Sofronis, “Hydrogen-enhanced localized plasticity – a mechanism for hydrogen – related frature”, Mater. Sci. Eng. A, 176 (1994) 191. 49. P. Sofronis, Y. Liang and N. Aravas, “Hydrogen induced shear localization of the plastic flow in metals and alloys”, Eur. J. Mech. A/Solids, 20 (2001) 857. 50. I. M. Robertson, ”The effect of hydrogen on dislocation dynamics”, Eng. Fract. Mech., 68 (2001) 671. 51. Z. Lin, W. Mao, I. Masaaki, F. seiji, Y. Kiyoshi, “Effect of nickel equivalent on hydrogen gas embrittlement of austenitic stainless steels based on type 316 at low temperatures”, Acta Mater., 56 (2008) 3414. 52. I. Masaaki, Z. Lin, I. Tadashi, F. seiji, Y. Kiyoshi, “Effect of temperature on internal reversible hydrogen embrittlement of SUH660 iron-based superalloy and austenitic stainless steels at low temperature”, J. Jpn. Inst. Met., 73 (2009) 245. 53. C. M. Ransom and P. J. Ficalora, “An adsorption study of hydrogen on iron and its relation to hydrogen embrittlement”, Metall Trans. A, 11 (1980) 1980. 54. G. B. Olson and M. Cohen, J. Less-Common Metals, 28 (1972) 107. 55. G. Han, Acta Mater., “Effect of strain-induced martensite on hydrogen environment embrittlement of sensitized austenitic stainless steels at low temperatures”, 46 (1998) 4559. 56. T. Kruml, J. Polak, S. Degallaix, “Microstructure in 316LN stainless steel fatigued at low temperature”, Mater. Sci. Eng. A, 293 (2000) 275. 57. G. B. Olson and M. Cohen, “Stress-assisted isothermal martensitic transformation: Application to TRIP steels”, Metall Trans. A, 13 (1982) 1907. 58. K. P. Stauhammer, L. E. Murr and S. S. Hecker, “Nucleation and evolution of strain-induced martensitic (BCC) embryos and substructure in stainless steel: A transmission electron microscope study”, Acta Metall., 31 (1983) 267. 59. R. O. Ritchie, J. F. Knott and J. R. Rice, Journal of the mechanics and physics of solids, 21 (1973) 395. 60. M. A. Meyers, K. K. Chawla, “Mechanical metallurgy- principles and applications”, Prentice-Hall, Inc., (1984) 165. 61. S. Jani, M. Marek, R. F. Hochman and E. I. Meletis, “A mechanistic study of transgranular stress corrosion cracking of type 304 stainless steel”, Metall Trans. A, 22 (1991) 1453. 62. M. R. Louthan, G. R. Casky, J. A. Donovav and D. E. Rawl, “Hydrogen Embrittlement of Metals”, Mater. Sci. Eng, 10 (1972) 357. 63. J. A. Brooks and A. J. West, “Hydrogen Induced Ductility Losses in Austenitic Stainless Steel Welds”, Metall Trans. A, 12 (1981) 213. 64. J. K. Tien, A. W. Thompson, I. M. Bernstein and R. J. Richards, “Hydrogen transport by dislocations”, Metall. Trans. A, 11 (1976) 821. 65. J. K. Tien, R. J. Richards, “Model of dislocation sweep-in of hydrogen during fatigue crack growth”, scripta Metall., 9 (1975) 1097. 66. J. K. Tien, S. V. Nair and R. R. Jensen. In: I.M. Bernstein and A.W. Thompson, Editors, Effects of Hydrogen on Behavior of Materials, Metallurgical Society of AIME, Warrendale, Pa (1980), 37. 67. Choo, W. Y.; Lee, J. Y., “Effect of cold working on the hydrogen trapping phenomena in pure iron”, Metall Trans. A, 14 (1983) 1299. 68. J. E. Angelo, N. R. Moody, M. I. Baskes, “Trapping of hydrogen to lattice defects in nickel”, Modelling Simul. Mater. Sci. Eng., 3 (1995) 289. 69. M. Hashimoto and R. M. Latanison, “The role of dislocations during transport of hydrogen in hydrogen embrittlement of iron”, Metall Trans. A, 19 (1988) 2799. 70. M. Hashimoto and R. M. Latanison, “Experimental study of hydrogen transport during plastic deformation in iron”, Metall Trans. A, 19 (1988) 2789. 71. V. G. Gavriljuk, V. N. Shivanyuk and J. Foct, “Diagnostic experimental results on the hydrogen embrittlement of austenitic steels”, Acta Mater., 51 (2003) 1293. 72. V. N. Shivanyuk, J. Foct and V. G. Gavriljuk, “On a role of hydrogen-induced -martensite in embrittlement of stable austenitic steel”, Scripta Metall., 49 (2003) 601. 73. S. M. Teus, V. N. Shyvanyuk, V. G. Gavriljuk, “Hydrogen-induced γ → transformation and the role of -martensite in hydrogen embrittlement of austenitic steels”, Mater. Sci. Eng. A, 497 (2008) 290. 74. J. H. Huang, C. J. Altstetter, “Internal hydrogen-induced subcritical crack growth in austenitic stainless steels”, Metall Trans. A, 22 (1991) 2605. 75. P. Rozenak, I. M. Robertson and H. K. Birnbaum, ” HVEM studies of the effects of hydrogen on the deformation and fracture of AISI type 316 austenitic stainless steel”, Acta Metall. Mater., 38 (1990) 2031. 76. T. P. Perng, C. J. Altstetter, “Effects of deformation on hydrogen permeation in austenitic stainless steels”, Acta Mater., 34 (1986) 1771. 77. S. Singh, C. J. Altstetter, “Effect of hydrogen concentration on slow crack growth in stainless steels”, Metall Trans. A, 13 (1982) 1799. 78. T. P. Perng and C.J. Altstetter, “Cracking kinetics of two-phase stainless steel alloy in hydrogen gas”, Metall Trans. A, 19 (1988) 145. 79. Ref [3], 10-3. 80. W. S. Lee, C. F. Lin and B. T. Chen, ”Tensile properties and microstructual aspects of 304L stainless steel weldments as a funcdtion of strain rate and temperature”, J. Mech. Eng. Sci., 219 (2005) 439. 81. J. R. Buckley and D. Hardie, “The effect of pre-straining and δ-ferrite on the embrittlement of 304L stainless steel by hydrogen”, Corr. Sci. 40 (1993) 93. 82. M. I. Luppo, A. Hazarabedian and J. Ovejero, “Effects of delta ferrite on hydrogen embrittlement of austenitic stainless steel welds”, Corros. Sci., 41 (1999) 87. 83. S. Brauser, Th. Kannengiesser, Int. J. Hydrogen Energy, 35 (2010) 4368. 84. J. H. Huang, C. J. Altstetter, “Internal hydrogen-induced subcritical crack growth in austenitic stainless steels”, Metall Trans. A, 22 (1991) 2605. 85. R. E. Schramn and R. P. Reed, Metall Trans. A, 6 (1975) 1345. 86. B. C. Odegard et al., Effect of hydrogen on behavior of materials, AIME, (1976) 116. 87. A. W. Thompson and I. M. Berstein, Advances in corrosion science and technology, 7 (1980) 53. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/30907 | - |
dc.description.abstract | 本研究針對介穩定之304L沃斯田鐵型不銹鋼母材、銲道及經冷加工 (20與40%厚度縮減) 後之試片,在不同溫度 (25、80與135℃) 與環境 (大氣與氫氣) 下進行慢速率缺口拉伸實驗,以評估其氫脆敏感性。在25℃空氣中測試時,所有試片於塑性變形開始即有 α' 麻田散鐵相變態; 但於80℃測試時,則須超過缺口拉伸強度後,α' 才開始增加且變態量較25℃測試者少。測試溫度上升至135℃時,則幾乎無應變誘發 α' 生成。試片若於氫氣中測試,氫原子可隨差排傳輸及藉由擴散移動至應力集中區,為導致氫脆之主要原因。在25℃測試時,母材 (B試片) 於低應力下即塑性變形,氫隨大量可移動差排傳輸,使局部塑性變形更為容易,導致應變誘發 α' 變態並沿此破裂,使其缺口拉伸強度損失率 (NTS loss) 最高。經20%冷加工 (B20R試片) 後,因可移動差排減少,捕集氫原子之缺陷密度增加,使氫脆敏感性降低。經40%冷加工者 (B40R試片),由於氫原子在其中係以擴散方式移動,試片中70% 之 γ 與 ε 大幅降低了氫原子擴散速率,若以NTS loss為評估基準,B40R較B20R試片有較低之氫脆敏感性。此外,氫原子經由擴散移動之速率較隨差排傳輸者低了很多,亦為B40R試片NTS loss降低之另一因素。
銲接試片方面,由於 γ / δ 界面亦具捕集氫原子的作用,且δ-ferrite降低應變誘發 α' 變態量,導致銲道試片 (W試片) 及經20%冷加工者 (W20R試片) 之氫脆敏感性均較相對應之板材試片為低。銲道經40%冷加工者 (W40R試片),由於氫原子易沿著 α' 與 δ 所構成之連續路徑擴散,並弱化材料鍵結,導致氫脆敏感性較W20R試片略增,此為與板材試片相異之處。不論板材或銲接試片,在大氣環境測試者,破斷面皆為延性之韌窩狀破斷形貌;氫環境測試者,受氫影響區域主要皆呈現具二次裂縫之準劈裂破斷形貌。隨測試溫度上升,所有試片之氫脆現象皆逐漸減緩,此係因氫原子於材料表面之吸附速率與缺口前端應變誘發 α' 含量隨測試溫度上升而下降所致。介穩定型沃斯田鐵不銹鋼在缺口拉伸試驗中,氫原子隨差排移動至應力集中區,並促進局部塑性變形,使 α' 變態集中於斷口處,為導致本實驗材料氫脆之成因,此現象與HELP理論相符合。在沒有 α' 變態之310S沃斯田鐵不銹鋼,25至135℃之氫脆現象並不明顯,充分印證 α' 變態為介穩定型不銹鋼之氫脆敏感性大幅提升之重要原因。 | zh_TW |
dc.description.abstract | The susceptibility to hydrogen embrittlement (HE) of AISI 304L austenitic stainless steel and its welds was evaluated by slow displacement rate notched tensile tests in gaseous hydrogen. The notched tensile tests were carried out in different combinations of temperature (25 to 135℃) and environment (air or hydrogen) to assess the HE of various specimens. The base metal and weld metal specimens were conducted in both the unrolled and cold rolled (20% and 40% reduction in thickness) conditions. During testing in air at 25℃, all specimens underwent strain-induced α'-martensite transformation at the beginning of plastic deformation. For the specimens tested at 80℃, such a transformation started to increase only after reaching the notch tensile stress (NTS) and was considerably less than at 25℃. When the test temperature was further increased to 135℃, the α'-martensite transformation was generally not observed. In hydrogen-containing environments, hydrogen atoms can be transported through dislocation or by diffusion to the stress concentration region, resulting in HE of the specimens. In the case of the base metal specimen (the B specimen), plastic deformation occured at low stress levels. Hydrogen atoms were transported through mobile dislocations and facilitated localized plastic deformation. This caused the formation of strain-induced α' in front of the notch tip and resulted in cracks along a narrow α' region, leading to a significant NTS loss in the B specimen at 25℃. For the B specimen after 20% thickness reduction, i.e. the B20R specimen, the density of hydrogen traps increased and the number of mobile dislocations decreased, hence the HE susceptibility was lowered. In the 40% cold-rolled base metal specimen (the B40R specimen), hydrogen was transported mainly by diffusion, and the presence of 70% γ and ε in the specimen greatly decreased the diffusion of hydrogen. Therefore, the B40R specimen had lower HE susceptibility than the B20R specimen if the NTS loss was adapted to index the relative HE susceptibility. The much slower movement of hydrogen by diffusion compared with dislocation transport also explains why the B40R specimen has better resistance to HE.
For the welded specimens, the γ / δ interfaces are trapping sites for hydrogen atoms and δ-ferrite inhibits strain-induced α' transformation in the deformation process. Consequently, the weld metal specimen (the W specimen) and its 20% cold-rolled specimen (the W20R specimen) exhibited lower HE susceptibility than the corresponding base metal specimens (the B and B20R specimens). As for the 40% cold-rolled specimen (the W40R specimen), the hydrogen atoms could diffuse along a tunnel or continuous path which consisted of α' and δ, resulting in a slightly higher susceptibility to HE than the W20R specimen. This tendency is different from the cold-rolled base metal specimens, where the B40R specimen had slightly lower susceptibility to HE than the B20R specimen. Regardless of the experimental group, the fracture appearance displayed ductile dimples for the specimens tested in air, but changed to quasi-cleavage with secondary cracks in gaseous hydrogen. Additionally, the effect of HE decreases as the test temperature increases for all specimens. This is due to the fact that both the hydrogen adsorption on metal surface and the α' content in front of the notch tip are reduced. During the notched tensile test of metastable austenitic stainless steels, hydrogen atoms enhanced localized plasticity and caused further strain-induced α' transformation. This is the main cause of HE of the experimental material and generally agrees with the hydrogen enhanced localized plasticity (HELP) theory. In 310S austenitic stainless steel with no strain-induced α' transformation, HE was not observed between 25 and 135℃, which clearly indicates that the formation of α' is an important factor to cause HE in metastable austenitic stainless steels. | en |
dc.description.provenance | Made available in DSpace on 2021-06-13T02:20:28Z (GMT). No. of bitstreams: 1 ntu-100-D95527013-1.pdf: 115711348 bytes, checksum: 81f16ab546f2df3c8a23c8a17f4bbaf4 (MD5) Previous issue date: 2011 | en |
dc.description.tableofcontents | 致謝 i
中文摘要 ii 英文摘要 iii 第一章 前言 1 第二章 文獻回顧 2 2-1 不銹鋼之發展 2 2-1-1 合金元素對不銹鋼性質之影響 5 2-1-2 沃斯田鐵型不銹鋼之機械特性 7 2-2 氫脆現象 11 2-2-1 氫脆機構 11 2-2-2 氫脆對金屬材料機械性質之影響 15 第三章 實驗方法 20 3-1實驗流程 20 3-2試片編號說明 20 3-3顯微組織觀察 26 3-3-1 金相觀察與變態量量測 26 3-3-2 TEM顯微結構觀察 26 3-4 機械性質測試 26 3-4-1 硬度量測 26 3-4-2 缺口拉伸試驗 26 3-4-3 SEM破斷面觀察 29 第四章 實驗結果與討論 30 4-1 測試溫度對304L不銹鋼母材氫脆之影響 30 4-1-1 金相觀察與硬度及磁性量測 30 4-1-2 缺口拉伸測試 30 4-1-3 破斷面觀察 37 4-2冷加工對304L不銹鋼母材氫脆之影響 52 4-2-1 金相觀察與硬度及磁性量測 52 4-2-2 TEM分析 52 4-2-3 缺口拉伸測試 59 4-2-4 破斷面觀察 59 4-3 測試溫度對母材經冷加工試片氫脆之影響 72 4-3-1 缺口拉伸測試 72 4-3-2 破斷面觀察 72 4-4 304L板材試片之氫脆機構 87 4-5 測試溫度對304L不銹鋼銲道氫脆之影響 99 4-5-1 金相觀察與硬度及磁性量測 99 4-5-2 缺口拉伸測試 99 4-5-3 破斷面觀察 105 4-6冷加工對304L不銹鋼銲道氫脆之影響 113 4-6-1 金相觀察與硬度及磁性量測 113 4-6-2 TEM分析 113 4-6-3 缺口拉伸測試 113 4-6-4 破斷面觀察 122 4-7 測試溫度對銲道經冷加工試片氫脆之影響 131 4-7-1 缺口拉伸測試 131 4-7-2 破斷面觀察 131 4-8 304L銲道試片之氫脆機構 142 4-9 δ-ferrite對氫脆敏感性之影響 150 4-10無相變態不銹鋼與304L母材試片之氫脆敏感性比較 157 4-10-1 310S與410不銹鋼之組織觀察 157 4-10-2 缺口拉伸測試與破斷面觀察 157 第五章 結論 167 第六章 參考文獻 169 圖目錄 圖2-1 不銹鋼之成份與特性之關連圖 4 圖2-2 Schaeffler diagram 6 圖2-3 鉻-鐵二元相圖 8 圖2-4 矽對δ-ferrite含量影響之關係圖 8 圖2-5 合金元素對沃斯田鐵系不銹鋼固溶強化效果之影響圖 10 圖2-6 第二相對沃斯田鐵系不銹鋼強化機構之影響圖 10 圖2-7 溫度對α' 麻田散鐵變態量之影響圖 12 圖2-8 捕集位置與氫之作用示意圖 16 圖2-9 裂縫尖端之氫脆過程 17 圖2-10 材料氫脆過程中,氫的來源、傳輸方式及可能被捕集之處與所造成 之破壞模式之示意圖 19 圖3-1 實驗流程圖 22 圖3-2 試片編號分類圖 23 圖3-3 滾軋機外觀 24 圖3-4 高壓槽與控制面板外觀 27 圖3-5 缺口拉伸規格示意圖: (a) 板材試片; (b) 銲道試片 28 圖4-1 B試片之金相組織: (a) 三視圖; (b) 上表面金相 31 圖4-2 B試片於大氣中測試之應力與 α' 含量相對於延伸量關係圖 32 圖4-3 B試片在不同測試條件下之缺口拉伸應力與延伸量曲線 34 圖4-4 B試片在不同測試溫度與環境下測試之NTS與NTS loss值 (括號 內之百分比) 35 圖4-5 B-25-A試片之缺口拉伸破斷面SEM觀察: (a) 巨觀; (b) & (c) FF區 附註: 本試片之斷面面積縮減率為61%。 38 圖4-6 B-80-A試片之缺口拉伸破斷面SEM觀察: (a) 巨觀; (b) & (c) FF區 附註:本試片之斷面面積縮減率為71% 39 圖4-7 B-135-A試片之缺口拉伸破斷面SEM觀察: (a) 巨觀; (b) & (c) SF區 (近缺口處)。附註: 本試片之斷面面積縮減率為73% 40 圖4-8 B-25-H試片之缺口拉伸破斷面SEM觀察: (a) 巨觀; (b) & (c) FF區 附註: 本試片之斷面面積縮減率為24% 41 圖4-9 B-80-H試片之缺口拉伸破斷面SEM觀察: (a) 巨觀; (b) & (c) FF區 附註: 本試片之斷面面積縮減率為54% 42 圖4-10 B-135-H試片之缺口拉伸破斷面SEM觀察: (a) 巨觀; (b) & (c) FF區 附註: 本試片之斷面面積縮減率為64% 43 圖4-11 母材試片於各種測試條件下之SF區破斷形貌 45 圖4-12 B-25-A試片之缺口拉伸破斷面側邊染色金相觀察: (a) 側邊巨觀 ; (b) & (c) 斷口附近區域 46 圖4-13 B-80-A試片之缺口拉伸破斷面側邊染色金相觀察: (a) 側邊巨觀 ; (b) & (c) 斷口附近區域 47 圖4-14 B-135-A試片之缺口拉伸破斷面側邊染色金相觀察: (a) 側邊巨觀 ; (b) & (c) 斷口附近區域 48 圖4-15 B-25-H試片之缺口拉伸破斷面側邊染色金相觀察: (a) 側邊巨觀 ; (b) & (c) 斷口附近區域 49 圖4-16 B-80-H試片之缺口拉伸破斷面側邊染色金相觀察: (a) 側邊巨觀 ; (b) & (c) 斷口附近區域 50 圖4-17 B-135-H試片之缺口拉伸破斷面側邊染色金相觀察: (a) 側邊巨觀 ; (b) & (c) 斷口附近區域 51 圖4-18 B20R試片之金相組織: (a) 三視圖; (b) 上表面金相 53 圖4-19 B40R試片之金相組織: (a) 三視圖; (b) 上表面金相 54 圖4-20 B20R試片中晶粒塑性變形程度不同造成之硬度值變化 56 圖4-21 B20R試片中之γ與ε麻田散鐵: (a) 明視野; (b)暗視野 [(0111)ε] ; (c) 暗視野 [(200)γ]; (d) 繞射圖; (e) 繞射解析圖 57 圖4-22 B20R試片中之α' 與ε麻田散鐵: (a) 明視野; (b) 暗視野 [(1102)ε] ; (c) 暗視野 [(200)α′]; (d) 繞射圖; (e) 繞射解析圖 58 圖4-23 B40R試片中之 α' 麻田散鐵: (a) 明視野; (b)暗視野 [(110)α'] ; (c) 繞射圖 60 圖4-24 B、B20R與B40R試片於大氣中測試之應力與 α' 含量相對於 延伸量關係圖 61 圖4-25 B、B20R與B40R試片在室溫不同環境下測試之NTS與NTS loss值 (括號內之百分比) 62 圖4-26 B20R-25-A試片之缺口拉伸破斷面SEM觀察: (a) 巨觀; (b) & (c) FF區。附註: 本試片之斷面面積縮減率為26% 64 圖4-27 B40R-25-A試片之缺口拉伸破斷面SEM觀察: (a) 巨觀 ; (b) & (c) FF區。附註: 本試片之斷面面積縮減率為18% 65 圖4-28 B20R-25-H試片之缺口拉伸破斷面SEM觀察: (a) 巨觀 ; (b) & (c) FF區。附註: 本試片之斷面面積縮減率為19% 67 圖4-29 B40R-25-H試片之缺口拉伸破斷面SEM觀察: (a) 巨觀 ; (b) & (c) FF區。附註: 本試片之斷面面積縮減率為15% 68 圖4-30 缺口前端之受力狀態示意圖: (a) 試片表面與中心之受力狀態 ; (b) 缺口前端不同受力狀態之應力值與塑性區大小示意圖 69 圖4-31 缺口拉伸試片破斷面斷口附近之染色金相觀察: (a) B20R-25-A ; (b) B40R-25-A; (c) B20R-25-H; and (d) B40R-25-H試片 70 圖4-32 在不同溫度大氣中測試之應力與α' 含量相對於延伸量關係圖: (a) B20R; (b) B40R試片 73 圖4-33 不同測試條件下之缺口拉伸應力與延伸量曲線: (a) B20R; (b) B40R 試片 74 圖4-34 不同測試溫度與環境下測試之缺口拉伸數據圖: (a) B20R; (b) B40R 試片。上圖中括號內之百分比為相關試片之NTS loss值 75 圖4-35 母材及其冷加工試片在不同溫度之NTS loss值 77 圖4-36 B20R-80-A試片之缺口拉伸破斷面SEM觀察: (a) 巨觀 ; (b) & (c) FF區。附註: 本試片之斷面面積縮減率為41% 78 圖4-37 B20R-135-A試片之缺口拉伸破斷面SEM觀察: (a) 巨觀 ; (b) & (c) FF區。附註: 本試片之斷面面積縮減率為47% 79 圖4-38 B20R-80-H試片之缺口拉伸破斷面SEM觀察: (a) 巨觀 ; (b) & (c) FF區。附註: 本試片之斷面面積縮減率為36% 80 圖4-39 B20R-135-H試片之缺口拉伸破斷面SEM觀察: (a) 巨觀 ; (b) & (c) FF區。附註: 本試片之斷面面積縮減率為45% 81 圖4-40 B40R-80-A試片之缺口拉伸破斷面SEM觀察: (a) 巨觀 ; (b) & (c) FF區。附註: 本試片之斷面面積縮減率為13% 83 圖4-41 B40R-135-A試片之缺口拉伸破斷面SEM觀察: (a) 巨觀 ; (b) & (c) FF區。附註: 本試片之斷面面積縮減率為16% 84 圖4-42 B40R-80-H試片之缺口拉伸破斷面SEM觀察: (a) 巨觀 ; (b) & (c) FF區。附註: 本試片之斷面面積縮減率為12% 85 圖4-43 B40R-135-H試片之缺口拉伸破斷面SEM觀察: (a) 巨觀 ; (b) & (c) FF區。附註: 本試片之斷面面積縮減率為16% 86 圖4-44 B、B20R與B40R試片在室溫下之缺口拉伸應力與延伸量曲線 88 圖4-45 B試片之氫脆過程示意圖 89 圖4-46 B-25-H 試片主裂縫附近之EBSD分析 90 圖4-47 B-25-H試片破斷面二次裂縫周圍組織之EBSD分析 91 圖4-48 B20R試片之氫脆過程示意圖 93 圖4-49 B20R-25-H試片破斷面二次裂縫周圍組織之EBSD分析 95 圖4-50 B40R試片之氫脆過程示意圖 96 圖4-51 301不銹鋼經不同加工處理後之裂縫成長速率與應力強度係數圖 97 圖4-52 B40R-25-H試片裂紋SEM照片: (a) 缺口前端放大圖; (b) 圖(a) 方框處局部放大 98 圖4-53 Fe-Cr-Ni擬二元相圖 (Pseudo-binary phase diagram) 之鉻鎳當量 比與銲接凝固模式關係圖 100 圖4-54 W試片之金相照片: (a) 巨觀; (b) 銲道 (熔融區); (c) 熱影響區 101 圖4-55 W試片在不同測試條件下之缺口拉伸應力與延伸量曲線 102 圖4-56 W試片在不同測試溫度與環境下測試之NTS與NTS Loss值 (括號內之百分比) 103 圖4-57 W-25-A試片之缺口拉伸破斷面SEM觀察: (a) 巨觀; (b) & (c) FF區 附註: 本試片之斷面面積縮減率為44% 106 圖4-58 W-80-A試片之缺口拉伸破斷面SEM觀察: (a) 巨觀; (b) & (c) FF區 附註: 本試片之斷面面積縮減率為63% 107 圖4-59 W-135-A試片之缺口拉伸破斷面SEM觀察: (a) 巨觀; (b) & (c) FF區 附註: 本試片之斷面面積縮減率為74% 108 圖4-60 W-25-H試片之缺口拉伸破斷面SEM觀察: (a) 巨觀; (b) & (c) FF區 附註: 本試片之斷面面積縮減率為24% 109 圖4-61 W-80-H試片之缺口拉伸破斷面SEM觀察: (a) 巨觀; (b) & (c) FF區 附註: 本試片之斷面面積縮減率為46% 110 圖4-62 W-135-H試片之缺口拉伸破斷面SEM觀察: (a) 巨觀; (b) & (c) FF區 附註: 本試片之斷面面積縮減率為74% 111 圖4-63 W試片在不同溫度與環境下測試後,破斷面FF區下方之染色金 相圖: (a) W-25-A; (b) W-25-H; (c) W-80-A; (d) W-80-H; (e) W-135-A ; (f) W-135-H試片 112 圖4-64 W20R試片之金相照片: (a) 巨觀; (b) 銲道 (熔融區); (c) 熱影響區 114 圖4-65 W40R試片之金相照片: (a) 巨觀; (b) 熔融區; (c) 熱影響區 115 圖4-66 W20R試片之塑性變形程度與硬度變化關係 116 圖4-67 W試片中δ-ferrite之TEM分析: (a)(b) 明視野; (c) 暗視野 [(121)δ] ; (d) 繞射圖 117 圖4-68 W20R試片之TEM照片: (a) 明視野; (b) α'-martensite 之暗視野 [(121)α'] 118 圖4-69 W20R 試片之TEM分析: (a) 明視野; (b) 由繞射之暗視野 [(111)γ]; (c) 暗視野 [(011)α']; (d) 暗視野 [(110)δ]; (e) 繞射圖; (f) 繞射解析 圖 119 圖4-70 W40R試片之TEM分析: (a) 明視野相; (b) 暗視野 [(011)α']; (c) 繞射圖 120 圖4-71 W、W20R與W40R試片在25℃不同環境下測試之NTS 與NTS Loss值 (括號內之百分比) 121 圖4-72 板材與銲接試片之NTS loss值與冷加工量關係圖 123 圖4-73 W20R-25-A試片之缺口拉伸破斷面SEM觀察: (a) 巨觀 ; (b) & (c) FF區。附註: 本試片之斷面面積縮減率為23% 125 圖4-74 W40R-25-A試片之缺口拉伸破斷面SEM觀察: (a) 巨觀 ; (b) & (c) FF區。附註: 本試片之斷面面積縮減率為14% 126 圖4-75 W20R-25-H試片之缺口拉伸破斷面SEM觀察: (a) 巨觀 ; (b) & (c) FF區。附註: 本試片之斷面面積縮減率為17% 127 圖4-76 W40R-25-H試片之缺口拉伸破斷面SEM觀察: (a) 巨觀 ; (b) & (c) FF區。附註: 本試片之斷面面積縮減率為10% 128 圖4-77 W20R與W40R試片在25℃不同環境測試下之斷面側邊染色金相 : (a) W20R-25-A; (b) W20R-25-H; (c) W40R-25-A; (d) W40R-25-H 試片 129 圖4-78 W40R-25-H試片之破斷面橫截面染色金相 130 圖4-79 W20R與W40R試片在不同測試溫度與環境下測試之NTS與NTS loss值: (a) W20R; (b) W40R試片。上圖中括號內之百分比為相關 試片之NTS loss值 132 圖4-80 銲道及其冷加工試片在不同溫度之NTS loss值 133 圖4-81 W20R-80-A試片之缺口拉伸破斷面SEM觀察: (a) 巨觀 ; (b) & (c) FF區。附註: 本試片之斷面面積縮減率為24% 134 圖4-82 W20R-135-A試片之缺口拉伸破斷面SEM觀察: (a) 巨觀 ; (b) & (c) FF區。附註: 本試片之斷面面積縮減率為31% 135 圖4-83 W40R-80-A試片之缺口拉伸破斷面SEM觀察: (a) 巨觀 ; (b) & (c) FF區。附註: 本試片之斷面面積縮減率為12% 136 圖4-84 W40R-135-A試片之缺口拉伸破斷面SEM觀察: (a) 巨觀 ; (b) & (c) FF區。附註: 本試片之斷面面積縮減率為13% 137 圖4-85 W20R-80-H試片之缺口拉伸破斷面SEM觀察: (a) 巨觀 ; (b) & (c) FF區。附註: 本試片之斷面面積縮減率為19% 138 圖4-86 W20R-135-H試片之缺口拉伸破斷面SEM觀察: (a) 巨觀 ; (b) & (c) FF區。附註: 本試片之斷面面積縮減率為20% 139 圖4-87 W40R-80-H試片之缺口拉伸破斷面SEM觀察: (a) 巨觀 ; (b) & (c) FF區。附註: 本試片之斷面面積縮減率為11% 140 圖4-88 W40R-135-H試片之缺口拉伸破斷面SEM觀察: (a) 巨觀 ; (b) & (c) FF區。附註: 本試片之斷面面積縮減率為11% 141 圖4-89 W、W20R與W40R試片之缺口拉伸應力與延伸量曲線圖 143 圖4-90 W試片之氫脆過程示意圖 144 圖4-91 B-25-H 試片主裂縫附近之EBSD分析 145 圖4-92 W20R試片之氫脆過程示意圖 146 圖4-93 W40R試片之氫脆過程示意圖 147 圖4-94 W40R-25-H試片之裂紋擴展路徑觀察與裂紋周圍成分分析 149 圖4-95 母材與銲道之顯微組織比較圖: (a) B; and (b) W試片 151 圖4-96 板材與銲接試片之硬度比較圖 152 圖4-97 板材與銲接試片之缺口拉伸曲線比較圖 153 圖4-98 板材與銲道試片經冷加工後之SEM照片: (a) B20R; 154 (b) & (c) W20R試片 154 圖4-99 310S不銹鋼之金相組織 158 圖4-100 410不銹鋼之金相組織 158 圖4-101 310S不銹鋼於不同測試條件下之缺口拉伸應力與延伸量曲線 159 圖4-102 310S不銹鋼之NTS與NTS loss值 (括號內之百分比) 160 圖4-103 410不銹鋼於不同測試條件下之缺口拉伸應力與延伸量曲線 162 圖4-104 410不銹鋼之NTS與NTS loss值 (括號內之百分比) 163 圖4-105 304L、310S與410不銹鋼在不同溫度之NTS loss值 164 圖4-106 310S不銹鋼板材於不同測試條件之缺口拉伸破斷面觀察: (a) 25℃ in air; (b) 80℃ in air; (c) 135℃ in air; (d) 25℃ in H2; (e) 80℃ in H2 ; and (f) 135℃ in H2 165 圖4-107 410不銹鋼板材於不同測試條件之缺口拉伸破斷面觀察: (a) 25℃ in air; (b) 70℃ in air; (c) 150℃ in air; (d) 25℃ in H2; (e) 70℃in H2 ; and (f) 150℃ in H2 166 表目錄 表2-1 材料內部之氫捕集位置與其特性 14 表2-2 材料內部缺陷對氫原子之束縛能大小 14 表3-1 304L沃斯田鐵不銹鋼成份表 20 表3-2 304L不銹鋼之電漿銲接參數 25 表4-1 B試片在不同測試條件下之缺口附近 α' 含量 36 表4-2 B、B20R與B40R試片之 α' 含量與表面及厚度中心平均硬度值 55 表4-3 B、B20R與B40R試片在25℃不同測試條件下之缺口附近 α' 含量 63 表4-4 B20R與B40R試片在不同測試條件下之缺口附近 α' 含量 76 表4-5 氫隨差排移動與經由擴散傳輸之距離比 92 表4-6 W試片在不同測試條件下之缺口附近α' 含量 104 表4-7 W、W20R與W40R試片在不同測試條件下之缺口附近 α' 含量 124 表4-8 板材與銲接試片在室溫與不同環境測試後之應變誘發 α' 含量 155 | |
dc.language.iso | zh-TW | |
dc.title | 冷加工304L不銹鋼及其銲件之氫脆特性研究 | zh_TW |
dc.title | Hydrogen Embrittlement of Cold-worked 304L Stainless Steel and its Welds | en |
dc.type | Thesis | |
dc.date.schoolyear | 99-2 | |
dc.description.degree | 博士 | |
dc.contributor.oralexamcommittee | 蔡履文,郭榮卿,吳憲政,薛人愷 | |
dc.subject.keyword | 304L不銹鋼,銲接,冷加工,氫脆,缺口拉伸強度,麻田散鐵相變態, | zh_TW |
dc.subject.keyword | 304L stainless steel,welding,cold rolling,hydrogen embrittlement,notched tensile strength,martensitic transformation, | en |
dc.relation.page | 174 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2011-08-01 | |
dc.contributor.author-college | 工學院 | zh_TW |
dc.contributor.author-dept | 材料科學與工程學研究所 | zh_TW |
顯示於系所單位: | 材料科學與工程學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-100-1.pdf 目前未授權公開取用 | 113 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。