請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/30829
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 丁照棣(Chau-Ti Ting) | |
dc.contributor.author | Ching-Ho Chang | en |
dc.contributor.author | 張景賀 | zh_TW |
dc.date.accessioned | 2021-06-13T02:17:18Z | - |
dc.date.available | 2016-08-04 | |
dc.date.copyright | 2011-08-04 | |
dc.date.issued | 2011 | |
dc.date.submitted | 2011-08-01 | |
dc.identifier.citation | Akashi H. (1994) Synonymous codon usage in Drosophila melanogaster: natural selection and translational accuracy. Genetics 136: 927-935.
Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ. (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 25: 3389–3402. Amador A, Juan E. (1999) Nonfixed duplication containing the Adh gene and a truncated form of the Adhr gene in the Drosophila funebris species group: different modes of evolution of Adh relative to Adhr in Drosophila. Mol. Biol. & Evol. 16: 1439-1456. Arguello JR, Zhang Y, Kado T, Fan C, Zhao R, et al. (2010) Recombination yet inefficient selection along the Drosophila melanogaster subgroup’s fourth chromosome. Mol. Biol. & Evol. 27: 848-861. Bachtrog D. (2003) Adaptation shapes patterns of genome evolution on sexual and asexual chromosomes in Drosophila. Nature genet. 34: 215-219. Bachtrog D. (2004) Evidence that positive selection drives Y-chromosome degeneration in Drosophila miranda. Nature genet. 36: 518-522. Bachtrog D. (2006a) Expression profile of a degenerating neo-Y chromosome in Drosophila. Curr. Biol. 16 1694–1699. Bachtrog D. (2006b) The speciation history of the Drosophila nasuta complex. Genet. Res. 88: 13-26. Bartolomé C, Charlesworth B. (2006) Evolution of amino-acid sequences and codon usage on the Drosophila miranda neo-sex chromosomes. Genetics 174: 2033-2044. Begun DJ, Holloway AK, Stevens K, Hillier LW, Poh Y-P, et al. (2007) Population Genomics: Whole-Genome Analysis of Polymorphism and Divergence in Drosophila simulans. PLoS Biol. 5: e310. Baker, B. S., Gorman M. and Marin I. (1994) Dosage compensation in Drosophila. Annu. Rev. Genet. 28: 491–521. Bentley DR. (2006) Whole-genome resequencing. Curr. Opin. Genet. Dev. 16: 545–52 Betancourt AJ, Welch JJ, Charlesworth B. (2009) Reduced effectiveness of selection caused by lack of recombination. Curr. Biol. 19: 655-660. Beverley SM, Wilson AC. (1984) Molecular evolution in Drosophila and the higher Diptera. II. A time scale for fly evolution. J. Mol. Evo. 21: 1-13. Bhutkar A, Schaeffer SW, Russo SM, Xu M, Smith TF, et al. (2008) Chromosomal Rearrangement Inferred From Comparisons of 12 Drosophila Genomes. Genetics 179: 1657-1680. Bone JR, Kuroda MI. (1996) Dosage compensation regulatory proteins and the evolution of sex chromosomes in Drosophila. Genetics 144: 705-713 Bull JJ. (1983) Evolution of sex determining mechanisms. Benjamin Cummings, Menlo Park, CA. Carlini DB, Stephan W. (2003) In vivo introduction of unpreferred synonymous codons into the Drosophila Adh gene results in reduced levels of ADH protein. Genetics 163: 239-243. Carroll SB. (2005) Evolution at two levels: On genes and form. PLoS Biol. 3: e245. Carvalho AB, Clark AG. (2005) Y chromosome of D. pseudoobscura is not homologous to the ancestral Drosophila Y. Science 307: 108-10. Chang H, Tai YD. (2007) Asymmetrical reproductive isolation between Drosophila albomicans and D. nasuta. Zool. Stud. 46: 638-646. Chang H, Wang DG, Ayala FJ. (1989) Mitochondrial DNA evolution in the Drosophila nasuta subgroup of species. J. Mol. Evol. 28: 337-348. Chang HH. (2008a) On the evolutionary importance of genetic recombination from molecular aspects. Master thesis. Institute of Biotechnology, National Tsing Hua University, Hsinchu, Taiwan. Chang TP. (2008b) Evolution of neo-sex chromosomes in Drosophila albomicans. PhD dissertation, Graduate Institute of Entomology, National Taiwan University, Taipei, Taiwan (in Chinese). Chang TP, Tsai DH, Chang H. (2008) Fusions of Muller’s elements during the chromosome evolution of Drosophila albomicans. Zool. Stud. 47: 574-584. Charlesworth B. (1978) Model for evolution of Y chromosomes and dosage compensation. Proc. Natl. Acad. Sci. U. S. A. 75: 5618-5622 Charlesworth B, Charlesworth D. (2000) The degeneration of Y chromosomes. Phil. Trans. R. Soc. London 355: 1563-1572 Charlesworth D, Charlesworth B, Marais G. (2005) Steps in the evolution of heteromorphic sex chromosomes. Heredity 95:118–122. Charlesworth B, Coyne JA, Barton NH. (1987) The relative rates of evolution of sex chromosomes and autosomes. Am. Nat. 130: 113–146. Cheng CH, Chang CH, Chang H. (2011) Early-stage evolution of neo-Y chromosome in Drosophila albomicans. Zool. Stud. 50: 338-349. Daines B, Wang H, Wang L, Li Y, Han Y, et al. (2011) The Drosophila melanogaster transcriptome by paired-end RNA sequencing. Genome Res. 21: 315-324. Das S, Roymondal U, Sahoo S. (2009) Analyzing gene expression from relative codon usage bias in Yeast genome: A statistical significance and biological relevance. Gene 443: 121-131. Degner JF, Marioni JC, Pai AA, Pickrell JK, Nkadori E, et al. (2009) Effect of read-mapping biases on detecting allele-specific expression from RNA-sequencing data. Bioinformatics 25: 3207-3212. Deng X, Disteche CM. (2010) Genomic responses to abnormal gene dosage: the X chromosome improved on a common strategy. PLoS Biol. 8: e1000318. Gnad F., Parsch J. (2006) Sebida: a database for the functional and evolutionary analysis of genes with sex-biased expression. Bioinformatics 22: 2577-2579. Graveley, BR, Brook AN, Carlson JW, Duff MO Landolin JM, et al. (2011) The developmental transcriptome of Drosophila melanogaster. Nature 471: 473-479. Heard E, Disteche CM. (2006) Dosage compensation in mammals: fine-tuning the expression of the X chromosome. Genes Dev. 20:1848-67. Hense W, Baines JF, Parsch J. (2007) X chromosome inactivation during Drosophila spermatogenesis. PLoS Biol. 5: e273. Hill WG, Robertson A. (1966) The effect of linkage on limits to artificial selection. Genet. Res. 8: 269–294. Hiraoka Y, Kawamata K, Haraguchi T, Chikashige Y. (2009) Codon usage bias is correlated with gene expression levels in the fission yeast Schizosaccharomyces pombe. Genes to Cells 14: 499-509. Hoekstra HE, Coyne JA. (2007) The locus of evolution: Evo devo and the genetics of adaptation. Evolution 61: 995–1016. Holt KE, Teo YY, Li H, Nair S. (2009) Dougan G, Wain J, Parkhill J: Detecting SNPs and estimating allele frequencies in clonal bacterial populations by sequencing pooled DNA. Bioinformatics 25: 2074-2075. Howell, EC, Armstrong S, Filatov D. (2009) Evolution of neo-sex chromosomes in Silene diclinis. Genetics 182: 1109–1115 Hughes RD. (1937) An analysis of the chromosomes of the two sub-species Drosophila virilis virilis and Drosophila virilis americana. Genetics 24: 811-834. Ikemura T. (1981) Correlation between the abundance of E. coli transfer RNAs and the occurrence of the respective codons in its protein genes. J. Mol. Biol.146: 1–21. Kelley RL, Kuroda MI. (1995) Equality for X chromosomes. Science 270: 1607–1610. Kemkemer C, Hense W, Parsch J. (2011) Fine-scale analysis of X Chromosome inactivation in the male germ line of Drosophila melanogaster. Mol. Biol. & Evol. 28: 1561-1563. Leder EH, Cano JM, Leinonen T, O'Hara RB, Nikinmaa M, et al. (2010) Female-biased expression on the X Chromosome as a key step in sex Chromosome evolution in threespine sticklebacks. Mol. Biol. & Evol. 27: 1495-1503. Lemos B, Araripe LO, Fontanillas P, Hartl DL. 2008. Dominance and the evolutionary accumulation of cis- and trans-effects on gene expression. Proc. Natl. Acad. Sci. U. S. A. 105: 14471–14476. Li, H, Ruan, J, Durbin R. (2008) Mapping short DNA sequencing reads and calling variants using mapping quality scores. Genome Res. 18: 1851–1858. Lifschytz E, Lindsley DL. (1972) The role of X-chromosome inactivation during spermatogenesis. Proc. Natl. Acad. Sci. U. S. A. 69:182-186 Lin SH, Huang YY, Chang H. (2008) Cooption of neo-X and neo-Y chromosomes in Drosophila albomicans. Zool. Stud. 47: 293-301. Kitano J, Ross JA, Mori S, Kume M, Jones FC, et al. (2009) A role for a neo-sex chromosome in stickleback speciation. Nature 461: 1079–1083. Lucchesi JC, Manning JF. (1987) Gene dosage compensation in Drosophila. Adv. Genet. 24:371-429. Lucchesi, JC. (1998) Dosage compensation in flies and worms: the ups and downs of X-chromosome regulation. Curr. Opin. Genet. Dev. 2:179-84. Marais GA, Nicolas M, Bergero R, Chambrier P, Kejnovsky E, et al. (2008) Evidence for degeneration of the Y chromosome in the dioecious plant Silene latifolia. Curr. Biol. 18: 545-549. Margulies, M. Egholm M, Altman WE, Attiya S, Bader JS, et al. (2005) Genome sequencing in microfabricated high-density picolitre reactors. Nature 437: 376–380 Marín, I., Franke A, Bashaw GJ, Baker BS. (1996) The dosage compensation system of Drosophila is co-opted by newly evolved X chromosomes. Nature 383: 160-163. Morgan TH. (1912) Complete linkage in the second chromosome of the male Drosophila. Science 36: 719-720. Mortazavi A, Williams BA, McCue K, Schaeffer L, Wold B. (2008) Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat. Methods 5: 621–628. Morton BR. (1993) Chloroplast DNA codon use: evidence for selection at the psb A locus based on tRNA availability. J. Mol. Evol. 37: 273-280. Muller HJ. (1932) Some genetic aspects of sex. Am. Nat. 66: 118-138. Ohno, S. 1967. Sex chromosomes and sex linked genes. Springer Verlag, Berlin. Peichel CL, Ross JA, Matson CK, Dickson M, Grimwood J, et al. (2004) The master sex-determination locus in threespine sticklebacks is on a nascent Y chromosome. Curr. Biol. 14: 1416-1424. Ranz JM, Castillo-Davis CI, Meiklejohn CD, Hartl DL. (2003) Sex-dependent gene expression and evolution of the Drosophila transcriptome. Science 300: 1742-1745. Rice WR. (1996) Evolution of the Y sex chromosome in animals. BioScience 46: 331-343. Ross, MT, Grafham DV, Coffey AJ, Scherer S, McLay K, et al. (2005) The DNA sequence of the human X chromosome. Nature 434: 325–337. Rozas J, Rozas R. (1999) DnaSP version 3: an integrated program for molecular population genetics and molecular evolution analysis. Bioinformatics 15: 174-175. Rozas J, Sanchez-DelBarrio JC, Messeguer X, Rozas R. (2003) DnaSP, DNA polymorphism analyses by the coalescent and other methods. Bioinformatics 19: 2496-2497. Sackton TB, Kulathinal RJ, Bergman CM, Quinlan AR, Dopman EB, et al. (2009) Population genomic inferences from sparse high-throughput sequencing of two populations of Drosophila melanogaster. Genome Biol. & Evol 1: 439–455 Sharp PM, Li WH. (1986) An evolutionary perspective on synonymous codon usage in unicellular organisms. J. Mol. Evol 24: 28-38. Sharp PM, Tuohy TM, Mosurski KR. (1986) Codon usage in yeast: cluster analysis clearly differentiates highly and lowly expressed genes. Nucleic Acids Res. 14: 5125-5143. Singh ND, Larracuente AM, Clark AG. (2008) Contrasting the efficacy of selection on the X and autosomes in Drosophila. Mol. Biol. & Evol. 25: 454-467. Skaletsky H, Kuroda-Kawaguchi T, Minx PJ, Cordum HS, Hillier L et al. (2003) The male-specific region of the human Y chromosome is a mosaic of discrete sequence classes. Nature 423: 825-837. Sturgill D, Zhang Y, Parisi M, Oliver B. (2007) Demasculinization of X chromosomes in the Drosophila genus. Nature 450:238–241. Suzuki YM, Kitagawa O, Wakahama KI. (1990) Chromosomal analysis and phylogenetic relationships in the Drosophila nasuta subgroup. I. Phylogenetic relationships within the Drosophila sulfurigaster species complex. Genetica 80: 53–66 Tamura M, Subramanian S, Kumar S. (2004) Tempral patterns of fruit fly (Drosophila) evolution revealed by mutation clocks. Mol. Biol. & Evol. 21: 36–44. Wang W, Yu HJ, Long MY (2004) Duplication-degeneration as a mechanism of gene fission and the origin of new genes in Drosophila species. Nat. Genet. 36: 523-527. Wittkopp PJ, Haerum BK, Clark AG. (2008) Regulatory changes underlying expression differences within and between Drosophila species. Nat. Genet. 40: 346–350. Wright F. (1990) The 'effective number of codons' used in a gene. Gene 87: 23-29. Wustmann G, Szidonya J, Taubert H, Reuter G. (1989) The genetics of position-effect variegation modifying loci in Drosophila melanogaster. Mol. Gen. Genet. 217: 520–527. Vibranovski MD, Lopes HF, Karr TL, Long M. (2009) Stage-specific expression profiling of Drosophila spermatogenesis suggests that meiotic sex chromosome inactivation drives genomic relocation of testis-expressed genes. PLoS Genet. 5: e1000731. Vicario S, Moriyama EN, Powell JR. (2007) Codon usage in twelve species of Drosophila. Bmc Evol. Biol. 7: 226-226. Xiong YY, Chen XS, Chen ZD, Wang XZ, Shi SH, et al. (2010) RNA sequencing shows no dosage compensation of the active X-chromosome. Nature Genet. 42: 1043-U1029. Yang YY, Lin FJ, Chang H. (2004) Sex ratio distortion in hybrids of Drosophila albomicans and D. nasuta. Zool. Stud. 43: 622–628. Yang YY, Lee CY, Yang YH, Huang SP, Chang TP, et al. (2008) The fate of neo-sex chromosomes in Drosophila albomicans-nasuta hybrid populations. Zool. Stud. 47: 84-95. Yang Z, Rannala B. (1997) Bayesian phylogenetic inference using DNA sequences: a Markov Chain Monte Carlo Method. Mol. Biol. & Evol. 14: 717-724. Yang Z, Nielsen R. (2000) Estimating synonymous and nonsynonymous substitution rates under realistic evolutionary models. Mol. Biol. & Evol. 17: 32-43. Yi SJ, Charlesworth B. (2000) Contrasting patterns of molecular evolution of the genes on the new and old sex chromosomes of Drosophila miranda. Mol. Biol. & Evol. 17: 703-717. Yu YC. (1996) Stepwise chromosome evolution in Drosophila albomicans. Master thesis. Graduate Institute of Plant Pathology and Entomology, National Taiwan University, Taiwan (in Chinese). Yu YC, Lin FJ, Chang H. (1997) Karyotype polymorphism in hybrid populations of Drosophila nasuta and Drosophila albomicans. Zool. Stud. 36: 251-259. Yu YC, Lin FJ, Chang H. (1999) Stepwise chromosome evolution in Drosophila albomicans. Heredity 83: 39-45. Zhang Y, Malone JH, Powell SK, Periwal V, Spana E, et al. (2010) Expression in aneuploid Drosophila S2 cells. PLoS Biol. 8: e1000320. Zhang YE, Vibranovski MD, Krinsky BH, Long M. (2010) Age-dependent chromosomal distribution of male-biased genes in Drosophila. Genome Res. 2010.20: 1526-1533 Zhang YE, Vibranovski MD, Landback P, Marais G, Long M. (2010) Chromosomal redistribution of male-biased genes in mammalian evolution with two bursts of gene gain on X chromosome. PLoS Biol. 8: e1000494. Zhou Q, Wang J, Huang L, Nie W, Wang JH, et al. (2008) Neo-sex chromosomes in the black muntjac recapitulate incipient evolution of mammalian sex chromosomes. Genome Biol. 9: R98. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/30829 | - |
dc.description.abstract | 在許多物種中,其性染色體都是由同源體染色體演化而來。一般來說, Y 染色體喪失了性別決定因子外大部份的基因, X 染色體卻保留原本染色體上的基因 。由於在 XY 染色體之間停止互換,導致有害突變累積,因此造成 Y 染色體的退化。 在晚近形成的新性染色體中,屬於原體染色體的部份可供我們研究同源染色體演化為性染色體的過程。為了探究早期新性染色體的演化,我們比較具有新性染色體的紅果蠅中序列的差異和全轉錄體的模式。我們發現,雖然大部份的轉錄序列仍然有很強的負向選汰,但在 2344 個轉錄序列中,分別有 11.5% 和 2.7% 的轉錄序列顯示位於新 Y 基因座和新 X 基因座的基因表現量明顯下降。新性染色體表現量的分歧,是由於新 X 基因座過量表現以及新 Y 基因座表現量降低所造成的。此外,我發現這些具有表現量分歧的基因在新 X 和新 Y 基因座的序列間具有較高的差異。進而我們觀察到向來在雌性表現都較高的基因,其新 Y 基因座表現量往往降低;相反的,新 Y 基因座表現量升高會使基因在雄性中表現較高。我的結果顯示基因表現量在新性染色體的分歧在早期新性染色體演化扮演重要的角色。 | zh_TW |
dc.description.abstract | Sex chromosomes evolved independently from autosomes in various lineages. In general, Y chromosome lost most of its genes except for sex determination factors while X chromosome remains gene-rich. The degeneracy of Y-linked genes is caused by accumulation of deleterious mutations as a consequence of recombination inhibition between the sex-chromosome pairs. To decipher the transition from homologous autosomes to differentiated sex chromosomes, the recently fused autosomal regions of the neo-sex chromosomes in Drosophila albomicans provide a good model. Both of its sequence divergence and whole transcriptome profiles were compared to understand the early neo-sex chromosome evolution. I find that most neo-X and neo-Y linked alleles remain under purify selection (dN/dS=0.001/0.021). However, among 1,798 transcripts, 19.0% and 4.0% show significantly reduced gene expression in neo-Y and neo-X linked alleles, respectively. The expression divergence between neo-sex alleles was attributed to both upregulation of neo-X alleles and downregulation of neo-Y. In addition, the genes with expression divergence would have larger sequence divergence between neo-sex alleles. Further analyses reveal that old female-biased genes were prone to reduce the expression of neo-Y alleles, whereas upregulation of neo-Y alleles might shape new male-biased genes. My results indicate that the expression divergence between neo-sex chromosomes is an important step of ealy neo-sex chromosome evolution in D. albomicans. | en |
dc.description.provenance | Made available in DSpace on 2021-06-13T02:17:18Z (GMT). No. of bitstreams: 1 ntu-100-R98b44010-1.pdf: 15745415 bytes, checksum: 3da94c4a0fbcb27d883f46176571edba (MD5) Previous issue date: 2011 | en |
dc.description.tableofcontents | 口試委員會審定書 .….……………………………………………… i 誌謝 ………………………………………………...………………… ii 中文摘要 …..……………..………………………………………… v English Abstract ………..…….………………………………………. vi Contents ……………………………………………………………… vii List of Figures ...…………………………..……………….……….. ix List of Tables ...…………………………..………………..…………. xi Introduction ...…………………………………………………………. 1 Materials and Methods ………………..…………………………..…. 10
Drosophila strains ………………………………………………………….. 10 Genotyping ………………………………………………………………… 13 Two sets of library constructions and sequencing, 454 and Illumina ……… 13 Construction of reference sequences ………………………………………. 14 BLAST, assigning chromosomal locations of contigs, and GO search …..…. 15 Expression data analyses …………………………………………………… 17 Sequence-divergence data analyses ………………………………………… 18 In-situ hybridization of polytene chromosomes ……………….…………… 20 Results ……………………………………………………………..…. 21 Data processing …………………………………………………...………….. 21 Validation of SNP sites between neo-sex alleles and chromosomal locations . 26 Substition rates of neo-sex linked loci and autosomal loci ……….………….. 28 Expression analyses on neo-sex chromosome of D. albomicans ………….... 33 Discussion ……………………………..……………………………... 42 The contigs acquired from whole transcriptome analysis ……….…....…..... 42 Mapping results of Illumina reads ………………………………………….. 43 The evolutionary histories of the neo-sex system in D. albomicans ……...… 44 The sequence divergence between neo-sex chromosomes of D. albomicans and two species ……………………………………..…….……..…………..... 46 Neither demasculinization no feminization occurring on the 3rd arm of neo-X chromosome of D. albomicans …………………………….……………….. 50 Expression divergence between neo-sex chromosomes of D. albomicans ..... 51 Roles of differential expression between neo-sex alleles in neo-sex chromosome evolution …………………………………………………………………….. 53 Inferring early sex chromosome evolution according to neo-sex chromosomes of D. albomicans …………………………………………………………….. 55 References …………….………………………………………….….. 57 Appendices .…………………………………………………………... 67 | |
dc.language.iso | en | |
dc.title | 紅果蠅新 Y 染色體的早期演化 | zh_TW |
dc.title | Early-Stage Evolution of the Neo-Y Chromosome in Drosophila albomicans | en |
dc.type | Thesis | |
dc.date.schoolyear | 99-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 張慧羽,李壽先,莊樹諄,林劭品 | |
dc.subject.keyword | 性染色體演化,新性染色體,新Y染色體退化,性別拮抗選汰,紅果蠅,轉錄體分析, | zh_TW |
dc.subject.keyword | sex chromosome evolution,neo-sex chromosomes,Y chromosome degeneration,sexually antagonistic selection,Drosophila albomicans,transcriptome analysis, | en |
dc.relation.page | 94 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2011-08-01 | |
dc.contributor.author-college | 生命科學院 | zh_TW |
dc.contributor.author-dept | 生態學與演化生物學研究所 | zh_TW |
顯示於系所單位: | 生態學與演化生物學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-100-1.pdf 目前未授權公開取用 | 15.38 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。