請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/30818完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 闕志達(Tzi-Dar Chiueh) | |
| dc.contributor.author | Chi-Yun Chen | en |
| dc.contributor.author | 陳季昀 | zh_TW |
| dc.date.accessioned | 2021-06-13T02:16:53Z | - |
| dc.date.available | 2013-08-08 | |
| dc.date.copyright | 2011-08-08 | |
| dc.date.issued | 2011 | |
| dc.date.submitted | 2011-08-01 | |
| dc.identifier.citation | [1] W. C. Wong, T. F. Cox, I.-K. Fu, D. Chen, M. Hart, and P. Wang, “Comparison of multipath channel models for IEEE 802.16j relay task group,' San Diego, U.S.A, Tech. Rep. IEEE S802.16j-06/044, July 2006.
[2] “Digital video broadcasting (DVB); measurement guidelines for DVB systems,' ETSI, France, Tech. Rep. ETSI TR 101 290 v1.2.1, May 2001. [3] K. Curtis, L. Dhar, A. Hill, W. Wilson, and M. Ayres, Eds., Holographic Data Storage: From Theory to Practical Systems. John Wiley & Sons, Ltd, 2010. [4] L. Dhar, K. Curtis, and T. Facke, “Holographic data storage: Coming of age,' Nature Photonics, vol. 2, no. 7, pp. 403 - 405, 2008. [5] [Online]. Available: http://www.inphase-technologies.com [6] M. Keskinoz and B. V. K. V. Kumar, “Discrete magnitude-squared channel modeling, equalization, and detection for volume holographic storage channels,' Appl. Opt., vol. 43, no. 6, pp. 1368-1378, 2004. [7] A. Sayeed and B. Aazhang, “Joint multipath-doppler diversity in mobile wireless communications,' IEEE Trans. Commun., vol. 47, no. 1, pp. 123 -132, Jan. 1999. [8] K. A. D. Teo, S. Ohno, and T. Ishii, “Turbo equalization and channel re-estimation in OFDM over doubly-selective channel,' in IEEE International Conference on Wireless Communications, Networking and Information Security (WCNIS'10), June 2010, pp. 137 -141. [9] M. Ku, W. Chen, and C. Huang, “Em-based iterative receivers for OFDM and BICM/OFDM systems in doubly selective channels,' IEEE Trans. Wireless Commun., vol. PP, no. 99, pp. 1-11, 2011. [10] L. He, S. Ma, Y.-C. Wu, and T.-S. Ng, “Semiblind iterative data detection for OFDM systems with CFO and doubly selective channels,' IEEE Trans. Commun., vol. 58, no. 12, pp. 3491-3499, 2010. [11] S. Feng, H. Minn, L. Yan, and L. Jinhui, “PIC-based iterative SDR detector for OFDM systems in doubly-selective fading channels,' IEEE Trans. Wireless Commun., vol. 9, no. 1, pp. 86 -91, 2010. [12] Y. Liang, Q. Zhang, Z. Liu, F. Shu, and S. Berber, “Low-complexity sphere decoding for detection of OFDM systems in doubly-selective fading channels,' Electronics Lett., vol. 45, no. 15, pp. 797 -798, 2009. [13] R.-L. Chung, C.-W. Chang, and J.-K. Hwang, “Bidirectional decision feedback equalization for mobile MIMO-OFDM systems,' in International Symposium on Information Theory and its Applications (ISITA'10), Oct. 2010, pp. 673 -677. [14] R. Li, W. Hardjawana, Y. Li, B. Vucetic, and X. Yang, “A low complexity iterative receiver with joint channel estimation and ICI cancellation for multi-antenna OFDM systems,' in IEEE 20th International Symposium on Personal, Indoor and Mobile Radio Communications, Sept. 2009, pp. 1997 -2001. [15] R. Li, Y. Li, and B. Vucetic, “Iterative receiver for MIMO-OFDM systems with joint ICI cancellation and channel estimation,' in IEEE Wireless Communications and Networking Conference, (WCNC'08), Mar. 2008, pp. 7-12. [16] D. N. Liu and M. P. Fitz, “Turbo MIMO equalization and decoding in fast fading mobile coded OFDM,' in IEEE Annual Allerton Conference on Communication, Control, and Computing, Sept. 2008, pp. 977-982. [17] J. Gao and H. Liu, “Low-complexity MAP channel estimation for mobile MIMO-OFDM systems,' IEEE Trans. Wireless Commun., vol. 7, no. 3, pp. 774-780, Mar. 2008. [18] Y. Zhang and H. Liu, “MIMO-OFDM systems in the presence of phase noise and doubly selective fading,' IEEE Trans. Veh. Technol., vol. 56, no. 4, pp. 2277 -2285, 2007. [19] K. Kim and H. Park, “Modified successive interference cancellation for MIMO OFDM on doubly selective channels,' in IEEE 69th Vehicular Technology Conference, (VTC Spring 2009), Apr. 2009, pp. 1-5. [20] C.-C. Chou, Y.-J. Yen, J.-M. Wu, and P. Ting, “Doppler ICI cancellation for space-time trellis coded MIMO-OFDM systems,' in Fourth International Conference on Communications and Networking in China, (ChinaCOM'09), Aug. 2009, pp. 1-4. [21] W. G. Song and J. T. Lim, “Channel estimation and signal detection for MIMO-OFDM with time-varying channels,' IEEE Commun. Lett., vol. 10, no. 7, pp. 540-542, May 2006. [22] P. Tan and N. C. Beaulieu, “ICI mitigation in MIMO OFDM systems,' in IEEE Wireless Communications and Networking Conference (WCNC'07), Mar. 2007, pp. 7-12. [23] C. Dumard and T. Zemen, “Subspace-based sphere decoder for MC-CDMA in time-varying MIMO channels,' in IEEE International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC'07), Sept. 2007, pp. 1-5. [24] ----, “Sphere decoder for a MIMO multi-user MC-CDMA uplink in time-varying channels,' in IEEE International Conference on Communications (ICC'07), June 2007, pp. 2580-2585. [25] Y. J. Kou, W. S. Lu, and A. Antoniou, “Application of sphere decoding in intercarrier-interference reduction for OFDM systems,' in IEEE Pacific Rim Conference on Communications, Computers and signal Processing (PACRIM'05), Aug. 2005, pp. 360-363. [26] D. Gesbert, M. Kountouris, R. W. Heath, Jr., C. B. Chae, and T. Salzer, “From single user to multiuser communications: Shifting the MIMO paradigm,' IEEE Signal Processing Mag., vol. 24, no. 5, pp. 36-46, 2007. [27] J. Duplicy, B. Badic, R. Balraj, R. Ghaffar, P. Horvath, F. Kaltenberger, R. Knopp, I. Z. Kovacs, H. T. Nguyen, D. Tandur, and G. Vivier, “MU-MIMO in LTE systems,' EURASIP Journal on Wireless Communications and Networking, vol. 2011, pp. 1-13, 2011. [28] J. Andrews, W. Choi, and R. Heath, “Overcoming interference in spatial multiplexing MIMO cellular networks,' IEEE Trans. Wireless Commun., vol. 14, no. 6, pp. 95 - 104, 2007. [29] M. Mikami and T. Fujii, “Iterative MIMO signal detection with inter-cell interference cancellation for downlink transmission in coded OFDM cellular systems,' in IEEE 69th Vehicular Technology Conference, (VTC Spring 2009), Apr. 2009, pp. 1-5. [30] J. Chen and J. Lu, “Multi-cell and multi-user detection in uplink for MIMO systems,' in IEEE International Conference on Wireless Communications, Networking and Information Security (WCNIS'10), June 2010, pp. 23 - 27. [31] X. Yi, P. Yeh, C. Gu, and S. Campbell, “Crosstalk in volume holographic memory,' Proc. IEEE, vol. 87, no. 11, pp. 1912 - 1930, 1999. [32] C. Gu, F. Dai, and J. Hong, “Statistics of both optical and electrical noise in digital volume holographic data storage,' Electron. Lett., vol. 32, no. 15, pp. 1400-1402, July 1996. [33] L. Menetrier and G. W. Burr, “Density implications of shift compensation post-processing in holographic storage systems,' Appl. Opt., vol. 42, no. 5, pp. 845-860, 2003. [34] J. F. Heanue, K. Gukan, and L. Hesselink, “Signal detection for page-access optical memories with intersymbol interference,' Appl. Opt., vol. 35, no. 14, pp. 2431-2438, 1996. [35] J. Nelson, A. Singer, and U. Madhow, “Multi-directional decision feedback for 2D equalization,' in IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP'04), May 2004, p. iv. [36] M. Ayres, A. Hoskins, and K. Curtis, “Image oversampling for page-oriented optical data storage,' Appl. Opt., vol. 45, no. 11, pp. 2459-2464, 2006. [37] M. Keskinoz and B. V. K. V. Kumar, “Application of linear minimum mean-squared-error equalization for volume holographic data storage,' Appl. Opt., vol. 38, no. 20, pp. 4387-4393, 1999. [38] K. Chugg, X. Chen, and M. Neifeld, “Two-dimensional linear MMSE equalization for page-oriented optical memories,' in Conference Record of the Thirty-First Asilomar Conference on Signals, Systems and Computers, Nov. 1997, pp. 343 - 347. [39] C. Y. Chen, C. C. Fu, and T. D. Chiueh, “Low-complexity pixel detection for images with misalignment and inter-pixel interference in holographic data storage,' Appl. Opt., vol. 47, no. 36, pp. 6784-6795, 2008. [40] M. A. Neifeld and Y. Wu, “Parallel image restoration with a two-dimensional likelihood-based algorithm,' Appl. Opt., vol. 41, no. 23, pp. 4812-4824, 2002. [41] B. M. Hochwald and S. t. Brink, “Achieving near-capacity on a multiple-antenna channel,' IEEE Trans. Commun., vol. 51, no. 3, pp. 389-399, 2003. [42] E. Zehavi, “8-PSK trellis codes for a Rayleigh channel,' IEEE Trans. Commun., vol. 40, no. 5, pp. 873 -884, 1992. [43] G. Caire, G. Taricco, and E. Biglieri, “Bit-interleaved coded modulation,' IEEE Trans. Inform. Theory, vol. 44, no. 3, pp. 927 -946, 1998. [44] X. Li and J. A. Ritcey, “Bit-interleaved coded modulation with iterative decoding using soft feedback,' Electron. Lett., vol. 34, no. 10, pp. 942 -943, 1998. [45] X. Li, A. Chindapol, and J. A. Ritcey, “Bit-interleaved coded modulation with iterative decoding and 8PSK signaling,' IEEE Trans. Commun., vol. 50, no. 8, pp. 1250-1257, 2002. [46] S. ten Brink, J. Speidel, and R.-H. Yan, “Iterative demapping and decoding for multilevel modulation,' in IEEE Global Telecommunications Conference, (GLOBECOM'98), Nov. 1998, pp. 579 -584. [47] A. Chindapol and J. A. Ritcey, “Design, analysis, and performance evaluation for BICM-ID with square QAM constellations in Rayleigh fading channels,' IEEE J. Select. Areas Commun., vol. 19, no. 5, pp. 944-957, 2001. [48] J. G. Proakis, Digital Communications. Singapore: McGraw Hill, 1995. [49] M. Tuchler, R. Koetter, and A. Singer, “Turbo equalization: principles and new results,' IEEE Trans. Commun., vol. 50, no. 5, pp. 754-767, May 2002. [50] L. Hanzo, T. H. Liew, and B. L. Yeap, Turbo Coding, turbo equalisation and space-time coding for transmission over fading channels. Wiley-IEEE Press, 2002. [51] E. Viterbo and J. Boutros, “A universal lattice code decoder for fading channels,' IEEE Trans. Inform. Theory, vol. 45, no. 5, pp. 1639-1642, July 1999. [52] M. O. Damen, A. Chkeif, and J. C. Belfiore, “Lattice code decoder for space-time codes,' IEEE Commun. Lett., vol. 4, no. 5, pp. 161-163, May 2000. [53] T. Hwang, C. Yang, G. Wu, S. Li, and G. Ye Li, “OFDM and its wireless applications: a survey,' IEEE Trans. Veh. Technol., vol. 58, no. 4, pp. 1673 -1694, 2009. [54] P.-Y. Tsai, “Design and implementation of an MC-CDMA baseband transceiver for next-generation mobile communication systems,' Ph.D. dissertation, National Taiwan University, Taipei, Taiwan, June 2005. [55] “Deployment aspects,' 3GPP Technical Specification Group (TSG) RAN WG4, Tech. Rep. TR25.943, June 2001. [56] W. C. Jakes, Microwave mobile communication. Wiley, 1974. [57] P. Dent, G. E. Bottomley, and T. Croft, “Jakes fading model revisited,' IEEE Trans. Veh. Technol., vol. 29, no. 13, pp. 1162-1163, 1993. [58] X. Zhu and R. D. Murch, “Performance analysis of maximum likelihood detection in a MIMO antenna system,' IEEE Trans. Commun., vol. 50, no. 2, pp. 187-191, Feb. 2002. [59] J. H. Winters, J. Salz, and R. D. Gitlin, “The impact of antenna diversity on the capacity of wireless communication systems,' IEEE Trans. Commun., vol. 42, no. 234, pp. 1740-1751, 1994. [60] D. Divsalar, S. Dolinar, and F. Pollara, “Iterative turbo decoder analysis based on density evolution,' IEEE J. Select. Areas Commun., vol. 19, no. 5, pp. 891-907, 2001. [61] T. Wang, J. G. Proakis, and J. R. Zeidler, “Performance degradation of OFDM system due to Doppler spreading,' IEEE Trans. Wireless Commun., vol. 5, no. 6, pp. 1422-1432, June 2006. [62] S. ten Brink, “Convergence of iterative decoding,' Electron. Lett., vol. 35, no. 10, pp. 806-808, May 1999. [63] J. Hagenauer, “The EXIT chart - introduction to extrinsic information transfer in iterative processing,' in Proc. 12th Europ. Signal Processing Conf. (EUSIPCO'04), 2004, pp. 1541-1548. [64] S. ten Brink, “Convergence behavior of iteratively decoded parallel concatenated codes,' IEEE Trans. Commun., vol. 49, no. 10, pp. 1727 -1737, Oct. 2001. [65] V. Ramon, C. Herzet, and L. Vandendorpe, “A semi-analytical method for predicting the performance and convergence behavior of a multiuser turbo-equalizer/demapper,' IEEE Trans. Signal Processing, vol. 55, no. 3, pp. 1104-1117, Mar. 2007. [66] T. J. Richardson, M. A. Shokrollahi, and R. L. Urbanke, “Design of capacity-approaching irregular low-density parity check codes,' IEEE Trans. Inform. Theory, vol. 47, no. 2, pp. 619-637, 2001. [67] N. Letzepis and A. Grant, “Bit error rate estimation for turbo decoding,' IEEE Trans. Commun., vol. 57, no. 3, pp. 585-590, Mar. 2009. [68] I.-W. Lai, C.-H. Liao, M. Witte, D. Kammler, F. Borlenghi, K. Nikitopoulos, V. Ramakrishnan, D. Zhang, T.-D. Chiueh, G. Ascheid, and H. Meyr, “Searching in the delta lattice: An efficient MIMO detection for iterative receivers,' in Proc. IEEE Global Telecommunications Conference, (GLOBECOM'09), Nov. 2009, pp. 1-6. [69] C.-C. Fu, “A low-complexity two-dimensional iterative detection scheme for page-oriented memories,' Master's thesis, National Taiwan University, Taipei, Taiwan, July 2008. [70] C. Studer and H. Bolcskei, “Soft-input soft-output single tree-search sphere decoding,' IEEE Trans. Inform. Theory, vol. 56, no. 10, pp. 4827 - 4842, 2010. [71] C.-H. Liao, T.-P. Wang, and T.-D. Chiueh, “A 74.8 mW soft-output detector IC for 8x8 spatial-multiplexing MIMO communications,' IEEE J. Solid-State Circuits, vol. 45, no. 2, pp. 411-421, Feb. 2010. [72] C.-H. Liao, “VLSI implementation of a reconfigurable soft-output MIMO detector using a novel sphere decoding algorithm,' Master's thesis, National Taiwan University, Taipei, Taiwan, July 2009. [73] M. Myllyla, J. Antikainen, M. Juntti, and J. Cavallaro, “The effect of LLR clipping to the complexity of list sphere detector algorithms,' in Conference Record of the Forty-First Asilomar Conference on Signals, Systems and Computers, (ACSSC'07), Nov. 2007, pp. 1559 -1563. [74] D. Milliner, E. Zimmermann, J. Barry, and G. Fettweis, “Channel state information based LLR clipping in list MIMO detection,' in IEEE 19th International Symposium on Personal, Indoor and Mobile Radio Communications, (PIMRC'08), Sept. 2008, pp. 1-5. [75] J. Hagenauer and P. Hoeher, “A Viterbi algorithm with soft-decision outputs and its applications,' in IEEE Global Telecommunications Conference (GLOBECOM'89), Nov. 1989, pp. 1680-1686. [76] V. Vadde and B. V. K. V. Kumar, “Channel modeling and estimation for intrapage equalization in pixel-matched volume holographic data storage,' Appl. Opt., vol. 38, no. 20, pp. 4374-4386, 1999. [77] H. Coufal, D. Psaltis, and G. T. Sincerbox, Eds., Holographic Data Storage. Springer, 2000. [78] T. D. Chiueh and C. Y. Chen, Holographic Data Storage. In-Teh, 2010, ch. 1, pp. 1-17. [79] C.-Y. Chen and T.-D. Chiueh, “A low-complexity high-performance modulation code for holographic data storage,' in Proc. IEEE International Conference on Electronics, Circuits and Systems (ICECS'07), Dec. 2007, pp. 788-791. [80] M. R. Ayres, A. Hoskins, and K. R. Curtis, “Processing data pixels in a holographic data storage system,' Patent 20 050 286 388, Dec., 2005. [81] M. Keskinoz, “Iterative soft-input soft-output MMSE equalization for two-dimensional coherent optical memory,' in IEEE International Conference on Communications, (ICC'07.), June 2007, pp. 6243 -6248. [82] B. M. King and M. A. Neifeld, “Parallel detection algorithm for page-oriented optical memories,' Appl. Opt., vol. 37, no. 26, pp. 6275-6298, 1998. [83] D. Psaltis and G. W. Burr, “Holographic data storage,' Computer, vol. 31, pp. 52-60, Feb. 1998. [84] J. F. Heanue, M. C. Bashaw, and L. Hesselink, “Channel codes for digital holographic data storage,' J. Opt. Soc. Am. A, vol. 12, no. 11, pp. 2432-2439, 1995. [85] B. Das, J. Joseph, and K. Singh, “Phase modulated gray-scale data pages for digital holographic data storage,' Optics Communications, vol. 282, no. 11, pp. 2147 - 2154, 2009. [86] G. W. Burr, G. Barking, H. Coufal, J. A. Hoffnagle, C. M. Jefferson, and M. A. Neifeld, “Gray-scale data pages for digital holographic data storage,' Opt. Lett., vol. 23, no. 15, pp. 1218-1220, 1998. [87] T.-H. Chao, “High density, high bandwidth multilevel holographic memory,' Patent US 7,787,165 B2, Aug., 2010. [88] B. M. King and M. A. Neifeld, “Low-complexity maximum-likelihood decoding of shortened enumerative permutation codes for holographic storage,' IEEE J. Select. Areas Commun., vol. 19, no. 4, pp. 783-790, Apr. 2001. [89] R. Shao, S. Lin, and M. Fossorier, “Two simple stopping criteria for turbo decoding,' IEEE Trans. Commun., vol. 47, no. 8, pp. 1117 -1120, Aug. 1999. [90] N. Singla and J. O'Sullivan, “Minimum mean square error equalization using priors for two-dimensional intersymbol interference,' in Proc. International Symposium on Information Theory (ISIT'04), June 2004, p. 130. [91] K. M. Chugg, X. Chen, and M. A. Neifeld, “Two-dimensional equalization in coherent and incoherent page-oriented optical memory,' J. Opt. Soc. Am. A, vol. 16, no. 3, pp. 549-562, 1999. [92] A. S. Choi and W. S. Baek, “Minimum mean-square error and blind equalization for digital holographic data storage with intersymbol interference,' Jpn. J. Appl. Phys., vol. 42, no. 10, Part 1, pp. 6424-6427, 2003. [93] S. Haykin, Adaptive filter theory, 4th ed. Prentice Hall, 2002. [94] M.-P. Bernal, G. W. Burr, H. Coufal, and M. Quintanilla, “Balancing interpixel cross talk and detector noise to optimize areal density in holographic storage systems,' Appl. Opt., vol. 37, no. 23, pp. 5377-5385, 1998. [95] G. W. Burr, J. Ashley, H. Coufal, R. K. Grygier, J. A. Hoffnagle, C. M. Jefferson, and B. Marcus, “Modulation coding for pixel-matched holographic data storage,' Optics Lett., vol. 22, pp. 639-641, 1997. [96] E. Horowitz, S. Sahni, and D. Mehta, Fundamentals of Data Structures in C++. Silicon Press, 2003. [97] Y. Ito, K. Nakano, and Y. Yamagishi, “Efficient hardware algorithms for n choose k counters,' in 20th International Parallel and Distributed Processing Symposium, (IPDPS'06), Apr. 2006. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/30818 | - |
| dc.description.abstract | 近年來二維干擾成為通道中不可避免的現象,例如行動多天線輸入輸出正交分頻多工(MIMO-OFDM)系統通道中的載波間干擾(ICI)及天線間干擾(IAI),或者是全像術光學儲存系統通道中的二維像素間干擾(IPI)。傳統資料偵測方法將兩個維度分開解決,因此常會遭遇錯誤傳遞(error propagation)的問題,但若是同時考慮兩個維度則因複雜度過大而無法實現。
因此本論文提出了一種新的演算法,根據最大事後機率(MAP)準則,針對兩個維度中的解分別建立列表(list),隨著疊代更新內容,藉由共同考慮兩列表中的解,達到消除錯誤地板現象(error floor)的效果。 本論文選擇行動多天線輸入輸出正交分頻多工系統以及全像術光學儲存系統兩個應用,和傳統演算法比較在位元錯誤率上的表現,數值模擬結果顯示出新演算法確能解決傳統演算法遭遇的錯誤傳遞困境,甚至在多天線輸入輸出正交分頻多工系統下能逼近靜態通道的表現。此外本論文也以聯合邊界(union bound)的技巧推導符元錯誤率之理論上限,觀察列表長度對錯誤率表現的影響。 在實作方面,本論文提出數個降低複雜度的技巧,以避免重複運算、單獨計算差異量、以簡單的檢測方法提前結束等等為原則,在付出合理的成本下達到期待的錯誤率表現。並且本論文將新演算法的在兩個應用下的硬體設計以場域可程式化閘陣列(FPGA)做功能驗證。 經由數學分析、模擬驗證及硬體實現,本論文為二維干擾通道的資料偵測提供了一新的解決方案。 | zh_TW |
| dc.description.abstract | Recently, two-dimensional (2-D) interferences have become inevitable in channels of many scenarios, such as inter-carrier interference (ICI) and inter-antenna interference (IAI) in mobile multiple-input multiple-output (MIMO)-orthogonal frequency division multiplexing (OFDM) systems or 2-D inter-pixel interference (IPI) in holographic data storage (HDS) systems. Conventional solutions treat 2-D interferences separately and often suffer from the notorious error propagation problem. On the other hand, dealing with 2-D interferences simultaneously is infeasible due to extremely high complexity.
This thesis proposes a Turbo Receiver with Interference-aware Dual-List (TRIDL) detection that enjoys the advantages of bit-interleaved coded modulation (BICM)-with iterative decoding (ID). In this architecture, an Interference-aware Dual-List (IDL) detection algorithm is designed to combat 2-D interferences and achieve near maximum a posteriori (MAP) performance by exploiting dual lists. The list-based concept further eliminates redundant calculation, leading to benefits of low complexity. The strength in error rate performance of the IDL detector is shown in two applications: mobile MIMO-OFDM and HDS systems. This thesis not only derives an upper bound on the uncoded symbol error rate (SER) but also provides insightful discussion about the bit error rate (BER) performance through Monte Carlo simulations. Concerning feasibility, this thesis also presents several techniques to reduce complexity in arithmetic operations. By eliminating redundant calculation and sharing common sub-blocks with initial detection block, up to 99.63% of complex additions, 99.69% of complex multiplications and 67.25% of comparisons are saved in the mobile MIMO-OFDM system. As a result, TRIDL running for 10 iterations requires around 4.3-fold complex additions, 2.5-fold complex multiplications and 36-fold comparisons used by the conventional non-iterative algorithm. Similar strategies also eliminate about 57.40% of arithmetic operations in the binary HDS system while over 73.78% is saved in the 3-bit gray-scale HDS system, resulting in similar number of additions and 50% of the multiplications used by the conventional algorithm. The thesis also discusses hardware design of the TRIDL algorithm. The entire TRIDL detection for a 4x4 MIMO-OFDM system with 16QAM and 64QAM as well as for a 3-bit gray-scale HDS system are designed and verified in FPGA. We exploit techniques such as resource sharing, pointer-based delay buffer, and folding transform to achieve low-power and low-complexity design. In consequence, experimental results indicate about 34.8% reduction of resources in TRIDL for the MIMO-OFDM system. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-13T02:16:53Z (GMT). No. of bitstreams: 1 ntu-100-F93943006-1.pdf: 8404713 bytes, checksum: 7279184aa1161e9ebec8e502b4d9dd7a (MD5) Previous issue date: 2011 | en |
| dc.description.tableofcontents | 1 Introduction 1
1.1 Two-Dimensional Interferences Scenarios . . . . . . . . . . . . . . . . . . 2 1.1.1 Mobile MIMO-OFDM Systems . . . . . . . . . . . . . . . . . . . 2 1.1.2 Multi-User MIMO Systems . . . . . . . . . . . . . . . . . . . . . . 5 1.1.3 Multi-Antenna Cellular Network . . . . . . . . . . . . . . . . . . . 7 1.1.4 Holographic Data Storage . . . . . . . . . . . . . . . . . . . . . . 8 1.2 Signal Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 1.3 Motivation of Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 1.4 Organization and Contributions of Thesis . . . . . . . . . . . . . . . . . . 15 2 Turbo Receiver using Interference-Aware Dual-List Detection 17 2.1 Search-based Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 2.2 Dual Lists . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 2.3 Turbo Receiver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 2.4 MAP Criterion and Soft Information . . . . . . . . . . . . . . . . . . . . 25 2.5 Straightforward Implementation . . . . . . . . . . . . . . . . . . . . . . . 27 2.6 z List Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 2.7 List-Update Technique . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 2.8 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 3 Application to Mobile MIMO-OFDM Systems 37 3.1 Mobile MIMO-OFDM Channels . . . . . . . . . . . . . . . . . . . . . . . 38 3.1.1 Multipath Fading Channel . . . . . . . . . . . . . . . . . . . . . . 38 3.1.2 CFO and Doppler Spread . . . . . . . . . . . . . . . . . . . . . . 40 3.1.3 MIMO Channel . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 3.1.4 Additive White Gaussian Noise . . . . . . . . . . . . . . . . . . . 43 3.1.5 Channel Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 3.2 MAP Criterion and Soft Information . . . . . . . . . . . . . . . . . . . . 48 3.3 Theoretical Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 3.3.1 Union Bound Revision . . . . . . . . . . . . . . . . . . . . . . . . 50 3.3.2 Non-Uniform Distribution of ICI-inducing Vectors . . . . . . . . . 52 3.3.3 PEP with a priori Information . . . . . . . . . . . . . . . . . . . . 53 3.3.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 3.4 Implementation Issues . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 3.4.1 Delta ICI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 3.4.2 Hierarchical Enumeration . . . . . . . . . . . . . . . . . . . . . . 60 3.4.3 Early Skip . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 3.5 Conventional Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 3.5.1 PIC-SD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 3.6 Performance Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 3.6.1 Simulation Specication . . . . . . . . . . . . . . . . . . . . . . . 67 3.6.2 Coded BER Performance . . . . . . . . . . . . . . . . . . . . . . . 68 3.6.3 Complexity Reduction Performance . . . . . . . . . . . . . . . . . 74 3.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 4 Application to Holographic Data Storage 85 4.1 HDS Channels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 4.1.1 Recording and Retrieving Process . . . . . . . . . . . . . . . . . . 87 4.1.2 Channel Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92 4.1.3 Binary and Gray-Scale Data Pages . . . . . . . . . . . . . . . . . 99 4.2 MAP Criterion and Soft Information . . . . . . . . . . . . . . . . . . . . 102 4.3 Implementation Issues . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 4.3.1 Iteration Reduction . . . . . . . . . . . . . . . . . . . . . . . . . . 106 4.3.2 Neighborhood Reduction . . . . . . . . . . . . . . . . . . . . . . . 109 4.3.3 Hierarchical Enumeration . . . . . . . . . . . . . . . . . . . . . . 111 4.4 Conventional Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113 4.4.1 LMMSE Equalization . . . . . . . . . . . . . . . . . . . . . . . . . 113 4.4.2 PDFE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114 4.5 Performance Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . 116 4.5.1 Simulation Specication . . . . . . . . . . . . . . . . . . . . . . . 116 4.5.2 Coded BER Performance . . . . . . . . . . . . . . . . . . . . . . . 118 4.5.3 Complexity Reduction Performance . . . . . . . . . . . . . . . . . 119 4.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123 5 Hardware Implementation 127 5.1 Fixed-Point Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128 5.2 Overview of Circuit Design . . . . . . . . . . . . . . . . . . . . . . . . . . 131 5.3 Timing Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135 5.4 Hardware Design of the IDL Detection . . . . . . . . . . . . . . . . . . . 138 5.4.1 Finite State Machine . . . . . . . . . . . . . . . . . . . . . . . . . 138 5.4.2 Interference-Generation Unit . . . . . . . . . . . . . . . . . . . . . 140 5.4.3 Hierarchical Unit . . . . . . . . . . . . . . . . . . . . . . . . . . . 142 5.4.4 Early-Skip Unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146 5.4.5 Cost-Update Unit . . . . . . . . . . . . . . . . . . . . . . . . . . . 147 5.4.6 Soft-Information Unit . . . . . . . . . . . . . . . . . . . . . . . . . 148 5.5 Low Power/Complexity Design . . . . . . . . . . . . . . . . . . . . . . . 149 5.5.1 Gated Clock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149 5.5.2 Resource Sharing . . . . . . . . . . . . . . . . . . . . . . . . . . . 151 5.5.3 Saving in Complexity . . . . . . . . . . . . . . . . . . . . . . . . . 152 5.6 FPGA Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154 5.6.1 FPGA Synthesis Report . . . . . . . . . . . . . . . . . . . . . . . 154 5.6.2 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . 156 5.7 Physical Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157 5.8 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166 6 Conclusion 169 A Proof of Theorem 3.1 187 | |
| dc.language.iso | en | |
| dc.subject | 疊代接收機 | zh_TW |
| dc.subject | 多天線輸入輸出正交分頻多工系統 | zh_TW |
| dc.subject | 全像術光學儲存系統 | zh_TW |
| dc.subject | 最大事後機率偵測演算法 | zh_TW |
| dc.subject | 載波間干擾 | zh_TW |
| dc.subject | 硬體設計 | zh_TW |
| dc.subject | Maximum a-posteriori (MAP) detection | en |
| dc.subject | Hardware design | en |
| dc.subject | Inter-carrier interference (ICI) | en |
| dc.subject | Multiple-input multiple-output (MIMO)-orthogonal frequency division multiplexing (OFDM) | en |
| dc.subject | Holographic data storage (HDS) | en |
| dc.subject | Iterative receiver | en |
| dc.title | 於二維干擾下資料偵測之設計與應用 | zh_TW |
| dc.title | Design and Application of Data Detection in the Presence of Two-Dimensional Interferences | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 99-2 | |
| dc.description.degree | 博士 | |
| dc.contributor.oralexamcommittee | 吳安宇(An-Yeu Wu),汪重光(Chorng-Kuang Wang),黃元豪(Yuan-Hao Huang),蔡佩芸(Pei-Yun Tsai),謝明得(Ming-Der Shieh),蘇炫榮(Hsuan-Jung Su) | |
| dc.subject.keyword | 多天線輸入輸出正交分頻多工系統,全像術光學儲存系統,疊代接收機,最大事後機率偵測演算法,載波間干擾,硬體設計, | zh_TW |
| dc.subject.keyword | Multiple-input multiple-output (MIMO)-orthogonal frequency division multiplexing (OFDM),Holographic data storage (HDS),Maximum a-posteriori (MAP) detection,Iterative receiver,Inter-carrier interference (ICI),Hardware design, | en |
| dc.relation.page | 190 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2011-08-01 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 電子工程學研究所 | zh_TW |
| 顯示於系所單位: | 電子工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-100-1.pdf 未授權公開取用 | 8.21 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
