Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 資訊網路與多媒體研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/30815
標題: 結合Adaboost與SIFT特徵之手勢辨識系統
Hand Gesture Recognition Using Adaboost with SIFT
作者: Ko-Chih Wang
王科植
指導教授: 王傑智(Chieh-Chih Wang)
關鍵字: 圖形辨識,手勢辨識,多類別分類,
pattern recognition,hand gesture recognition,multi-class classification,
出版年 : 2007
學位: 碩士
摘要: 基於Viola-Jones 技術的現存手勢辨識方法,存在著二個基本的問題。在偵測器訓練過程中,訓練樣本中背景的干擾以及在偵測時物件在照片中平面旋轉對
於偵測結果的影響。像手是一種非固定形物體,訓練的樣本中難免的包含了許多其他的背景物件,如此條件下訓練的偵測器的效能便會降低。現存解決背景物件
影響的方法往往需要花費相當多的人力和計算時間。雖然Viola-Jones 技術下依舊可以使用多個各別不同角度的偵測器去去達到旋轉不變的特性
(rotation-invariance),但如此便會花費更多的訓練和偵測時間。我們提出了一個基於Adaboost 使用SIFT 特徵的旋轉及尺度不變偵測器。由於SIFT 特徵本身良好的旋
轉不變性、尺度不變性(scale-invariance)和抵抗背景雜訊的特性,我們的偵測器便可以達到旋轉不變性,並可以讓物體以不同大小出現時都能被偵測。分辨不同的手勢的難
度並不比分辨手和背景的難度還要低。因此,我們使用共享特徵(sharing feature)去分辨一張圖像內是否存在一個手勢在裡面。反之,非共享特徵(Non-sharing feature)
可以幫助我們在不同的手勢之間做分類。實驗顯示了一個比起其他方法更佳的訓練速度和分類的準確率。
EXISTING hand detection approaches based on the Viola-Jones’ methods have two fundamental issues, background noise of training images could generate poor performance and rotation-variant. As hands are non-rigid objects, positive training images often contain many other objects which degrade the training performance in Adaboost dramatically. Existing approaches often involve a great deal of manual labeling and a highly computational cost. Although the approaches based on the Viola-Jones’ methods could achieves rotation-invariant in a way of treating the problem as a multi-class classification problem, the process would need more training images and lose training and detection performance. We propose a rotation-invariant hand detector using discrete Adaboost with Lowe’s SIFT keypoint detector, which solves the addressed problems simultaneously. Minimal effort is needed for labeling training data and the performance is maintained. As SIFT keypoints are invariant to translation, scaling and rotation, and are minimally affected by small background noise, the proposed approach achieve rotation-invariant detection straightforwardly. How to create the multi-gesture classification
systemis the next step after the single gesture detector is trained. Sequentially executes the single gesture detectors is a general approach to classify multi-gesture. However this
approach increases the recognition time as the number of gestures. Classifying different gestures is harder than only classifying a gesture and background. We use sharing features
to classify the image is a hand gesture or not. Non-sharing feature can point out the diversity of between gestures and achieve better recognition result. The experiment show a
better training and recognition speed and accuracy compared to other existing approaches.
URI: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/30815
全文授權: 有償授權
顯示於系所單位:資訊網路與多媒體研究所

文件中的檔案:
檔案 大小格式 
ntu-96-1.pdf
  目前未授權公開取用
955.37 kBAdobe PDF
顯示文件完整紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved