請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/30803完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 徐久忠 | |
| dc.contributor.author | Tzu-Chun Chen | en |
| dc.contributor.author | 陳姿君 | zh_TW |
| dc.date.accessioned | 2021-06-13T02:16:18Z | - |
| dc.date.available | 2007-02-27 | |
| dc.date.copyright | 2007-02-27 | |
| dc.date.issued | 2007 | |
| dc.date.submitted | 2007-02-14 | |
| dc.identifier.citation | 包舜華。超音波動態影像分析技術與臨床醫學應用。國立台灣大學應
用力學研究所博士論文。2004。 李覃,李三剛,張世忠。泌尿系統超音波學:第二章 診斷性超音波之 基本原理與掃描儀。慈濟文化。台北市。15-34,1993。 黃敏雄。高血壓疾病對血管機械特性及動脈阻抗之影響。國立台灣大 學應用力學研究所碩士論文。1998。 郭欽賢。家畜組織學修訂版。國立編譯館主編。茂昌圖書有限公司。 台北市。1994。 Aboyans V, Guilloux J, Lacroix P, Yildiz C, Postil A, Laskar M. Common carotid intima-media thickness measurement in not a pertinent predictor for secondary cardiovascular events after coronary bypass surgery. Eur J Cardiothorac Surg 28:415-9, 2005. Armentano R, Megnien JL, Simon A, Bellenfant F, Barra J, Levenson J. Effects of hypertension on viscoelasticity of carotid and femoral arteries in humans. Hypertens 26:48- 54, 1995. Armentano RL, Barra JG, Levenson J, Simon A, Pichel RH. Arterial wall mechanics in conscious dogs—assessment of viscous, inertial, and elastic moduli to characterize aortic wall behavior. Circ Res 76:468-78, 1995. Armentano RL, Barra JG, Santana DB, Pessana FM, Graf S, Craiem D, Brandani LM, Baglivo HP, Sanchez RA. Smart damping modulation of carotid wall energetics in human hypertension: Effects of angiotensin-converting enzyme inhibition. Hypertens 47:384-90, 2006. Armentano RL Graf S, Barra JG, Velikovsky G, Baglivo H, Sanchez R, Simon A, Pichel RH, Levenson J. Carotid wall viscosity increase is related to intima-media thickening in hypertensive patients. Hypertens 31:534-9, 1998. Asai K, Kudej RK, Shen YT, Yang GP, Takagi G, Kudej AB, Geng YJ, Sato N, Nazareno JB, Vatner DE, Natividad F, Bishop SP, Vatner SF. Peripheral vascular endothelial dysfunction and apoptosis in old monkeys. Arterioscler Thromb Vasc Biol 20:1493-9, 2000. Banai S, Shou M, Correa R, Jaklitsch MT, Douek PC, Bonner RF, Epstein SE, Unger EF. Rabbit ear model of injury-induced arterial smooth muscle cell proliferation. Circ Res 69:748-56, 1991. Bank AJ, Kaiser DR, Rajala S, Cheng A. In vivo human brachial artery elastic mechanics: effects of smooth muscle relaxation. Circulation 100:41-7, 1999. Bergel DH. The dynamic elastic properties of the arterial wall. J Physiol 156:458-69, 1961. Bjarnegard N, Ahlgren AR, Sandgren T, Sonesson B, Lanne T. Age affects proximal brachial artery stiffness; differential behavior within the length of the brachial artery? Ultrasound Med Biol 29(8):1115-21, 2003. Bots ML, Hoes AW, Koudstaal PJ, Hofman A, Grobbee DE. Common carotid intima-media thickness and risk of stroke and myocardial infarction. Circulation 96:1432-7, 1997. Boutouyrie P, Boumaza S, Challande P, Lacolley P, Laurent S. Smooth muscle tone and arterial wall viscosity. Hypertens 32:360-4, 1998. Brasselet C, Durand E, Addad F, Al Haj Zen A, Smeets MB, Laurent-Maquin D, Bouthors S, Bellon G, Kleijn D, Godeau G, Garnotel R, Gogly B, Lafont A. Collagen and elastin cross-linking: a mechanism of constrictive remodeling after arterial injury. Am J Physiol Heart Circ Physiol 289:2228-33, 2005. Carter AJ, Laird JR, Farb A, Kufs W, Wortham DC, Virmani R. Morphologic characteristics of lesion formation and time course of smooth muscle cell proliferation in a porcine proliferative restenosis model. J Am Coll Cardiol 24:1398- 405, 1994. Chesebro JH, Lam JY. Restenosis after arterial angioplasty: A hemorrheologic response to injury. Am J Cardiol 60 (3):10B-16B, 1987. Dagre AG, Lekakis JP, Papaioannou TG, Papamichael CM, Koutras DA, Stamatelopoulos SF, Alevizaki M. Arterial stiffness is increased in subjects with hypothyroidism. Int J Cardiol 103:1-6, 2005. Dobrin PB, Rovick AA. Influence of vascular smooth muscle on contractile mechanics and elasticity of arteries. Am J Physiol 217:1644-51, 1969. Ekart R, Hojs R, Hojs-Fabjan T, Balon BP. Predictive value of carotid intima media thickness in hemodialysis patients. Artif Organs 29(8):615-19, 2005. Fathi R, Haluska B, Isbel N, Leanne S, Marwick TH. The relative importance of vascular structure and function in predicting cardiovascular events. J Am Coll Cardiol 43:616-23, 2004. Fischer EIC, Armentano RL, Pessana FM, Graf S, Romero L, Chreisten AI, Simon A, Levenson J. Endothelium-dependent arterial wall tone elasticity modulated by blood viscosity. Am J Physiol Heart Circ Physiol 282: 389-94, 2002. Frederick JS, Michael AG. Cardiovascular pathology, 1st ed., Williams & Winkins, USA, 1-46, 1995. Gamero L, Levenson J, Armentano R, Graf S, Brandani L, Simon A, Baglivo H, Sanchez R. Carotid wall inertial index increase is related to intima-media thichening in hypertensive patients. J Hypertens 17:1825-9, 1999. Graf S, Gariepy J, Massonneau M, Armentano RL, Mansour S, Barra JG, Simon A, Levenson J. Experimental and clinical validation of arterial diameter waveform and intimal media thickness obtained form B-mode ultrasound image processing. Ultrasound Med Biol 25(9):1353-63, 1999. Hodis HN, Mack WJ, LaBree L, Selzer RH, Liu CR, Liu CH, Azen SP. The role of carotid arterial intima-media thickness in predicting clinical coronary events. Ann Intern Med 128:262-9, 1998. Hokes APG, Ruissen CJ, Hick P, Reneman RS. Transcutaneus detection of relative changes in artery diameter. Ultrasound Med Biol 11:51–9, 1985. Huang CC, Chen TS, Chao TH, Juan YF. The investigation of the relationship between carotid intima-media thickness and vascular compliance in patients with coronary artery disease. Biomed Eng Appl Basis Comm 16:37-42, 2004. Iannuzzi A, Licenziati MR, Acampora C, Renis M, Agrusta M, Romano L, Valerio G, Panico S, Trevisan M. Carotid artery stiffness in obese children with metabolic syndrome. Am J Cardiol 97:528-31, 2006. Imanaka-Yoshida K, Matsuura R, Isaka N, Nakano T, Sakakura T, Yoshida T. Serial extracellular matrix changes in neointimal lesions of human coronary artery after percutaneous transluminal coronary angioplasty: Clinical significance of early tenascin-C expression. Virchows Arch 439:185-90, 2001. Ip JH, Fuster V, Badimon L, Badimon J, Taubman MB, Chesebro JH. Syndromes of accelerated atherosclerosis: Role of vascular injury and smooth muscle cell proliferation. J Am Coll Cardiol 15:1667-1687, 1990. Jacob MP, Badier-Commander C, Fontaine V, Benazzoug Y, Feldman L, Michel JB. Extracellular matrix remodeling in the vascular wall. Pathol Biol 49:326-32, 2001. Jashnani KD, Kulkarni RR, Deshpande JR. Role of carotid intima-media thickness in assessment of atherosclerosis: An autopsy study. Indian Heart J 57:319-23, 2005. Jourdan C, Wuhl E, Litwin M, Fahr K, Trelewicz J, Jobs K, Schenk JP, Grenda R, Mehls O, Troger J, Schaefer F. Normative values for intima-media thickness and distensibility of large arteries in healthy adolescents. J Hypertens 23:1707-15, 2005. Junqueira LCU, Bignolas G, Bretani RR. Picrosirius staining plus polarization microscopy, a specific method for collagen detection in tissue sections. Histochem J 11:447- 455, 1979. Kablak-Ziembicka A, Przewlocki T, Tracz W, Pieniazek P, Musialek P, Sokolowski A. Gender differences in carotid intima-media thickness in patients with suspected coronary artery disease. Am J Cardiol 96:1217-22, 2005. Kizu A, Koyama H, Tanaka S, Maeno T, Komatsu M, Fukumoto S, Emoto M, Shoji T, Inaba M, Shioi A, Miki T, Nishizawa Y. Arterial wall stiffness is associated with peripheral circulation in patients with type 2 diabetes. Atherosclerosis 170:87-91, 2003. Labropoulos N, Leon LR, Brewster Jr LP, Pryor L, Tiongson J, Kang SS, Mansour MA, Kalman P. Are your arteries older than your age? Eur J Vasc Endovasc Surg 30:588-596, 2005. Lafont A, Durand E, Samuel JL, Besse B, Addad F, Lévy BI, Desnos M, Guérot C, Boulanger CM. Endothelial dysfunction and collagen accumulation: Two independent factors for restenosis and constrictive remodeling after experimental angioplasty. Circulation 100:1109-15, 1999. Liu MW, Roubin GS, King III SB. Restenosis after coronary angioplasty. Circulation 79(6):1374-87, 1989. Najjar SS, Scuteri A, Lakatta EG. Arterial aging: Is it an immutable cardiovascular risk factor? Hypertens 46(3):454- 62, 2005. Nishiguchi F, Fukui R, Hoshiga M, Negoro N, Ii M, Nakakohji T, Kohbayashi E, Ishihara T, Hanafusa T. Different migratory and proliferative properties of smooth muscle cells of coronary and femoral artery. Atherosclerosis 171:39-47, 2003. Ohkubo M, Takahashi K, Kishiro M, Akimoto K, Yamashiro Y. Histological findings after angioplasty using conventional balloon, radiofrequency thermal balloon, and stent for experimental aortic coarctation. Pediatr Int 46:39-47, 2004. O’Leary DH, Polak JF, Kronmal RA, Kittner SJ, Gene Bond M, Wolfson SK, Bommer W, Price TR, Gardin JM, Savage PJ. Distribution and correlates of sonographically detected carotid artery disease in the cardiovascular healthy study. Stroke 23:1752-60, 1992. Pasterkamp G, Falk E, Woutman J, Borst C. Techniques characterizing the coronary atherosclerotic plaque: Influence on clinical decision making? J Am Coll Cardiol 36:13–21, 2000. Pignoli P, Tremoli E, Poli A, Oreste P, Paoletti R. Intimal plus medial thickness of the arterial wall: a direct measurement with ultrasound imaging. Circulation 74:1399- 406, 1986. Poli A, Tremoli E, Colombo A, Sirtori M, Pignoli P, Paoletti R. Ultrasonographic measurement of the common carotid artery wall thickness in hypercholesterolemic patients. Atherosclerosis 70:253-61, 1988. Puchtler H, Waldrop FS, Valentine LS. Polarization microscopic studies of connective tissue stained with picro-sirius red FBA. Beitr Path 150:174-187, 1973. Redfield MM, Jacobsen SJ, Borlaug BA, Rodeheffer RJ, Kass DA. Age- and gender- related ventricular-vascular stiffening. Circulation 112:2254-62, 2005. Rich L, Whittaker P. Collagen and picrosirius red staining: A polarized light assessment of fibrillar hue and spatial distribution. Braz J Morphol Sci 22(2):97-104, 2005. Shau YW, Wang CL, Shieh JY, Hsu, TC. Noninvasive assessment of the viscoelasticity of peripheral arteries. Ultrasound Med Biol 25(9):1377-88, 1999. Simon A, Gariepy J, Chironi G, Megnien JL, Levenson J. Intima-media thickness: a new tool for diagnosis and treatment of cardiovascular risk. J Hypertens 20:159-69, 2002. Stadius ML, Rowan R, Fleischhauer JF, Kernoff R, Billingham M, Gown AM. Time course and cellular characteristics of the iliac artery response to acute balloon injury. Arteriosclerosis and Thrombosis 12 (11):1267-73, 1992. Stadler RW, Taylor RS, Lees RS. Comparison of B-mode, M- mode and echo-tracking methods for measurements of the arterial distension waveform. Ultrasound Med Biol 23:879- 887, 1997. Stefanadis C, Dernellis J, Vlachopoulos C, Tsioufis C, Tsiamis E, Toutouzas K, Pitsavos C, Toutouzas P. Aortic function in arterial hypertension determined by pressure- diameter relation. Circulation 96:1853-8, 1997. Strauss BH, Chisholm RJ, Keeley FW, Gotlieb AI, Logan RA, Armstrong PW. Extracellular matrix remodeling after balloon angioplasty injury in a rabbit model of restenosis. Circ Res 74(4):650-8, 1994. Sun Y, Lin CH, Lu CJ, Yip PK, Chen RC. Carotid atherosclerosis , intima media thickness and risk factors—an analysis of 1781 asymptomatic subjects in Taiwan. Atherosclerosis 164:89-94, 2002. Tahmasebpour HR, Buckley AR, Cooperberg PL, Fix CH. Sonographic examination of the carotid arteries. Radio Graphics 25(6):1561-75, 2005. Van der Loo B, Krieger E, Spring S, Rousson V, Amann-Vesti B, Koppensteiner R. Carotid intima-media thickness, carotid shear stress and restenosis after femoro-popliteal percutaneous transluminal angioplasty (PTA). Eur J Vasc Endovasc Surg 30:469-74, 2005. Vlachopoulos C, Dima I, Aznaouridis K, Vasiliadou C, Ioakeimidis N, Aggeli C, Toutouza M, Stefanadis C. Acute systemic inflammation increases arterial stiffness and decreases wave reflections in healthy individuals. Circulation 112:2193-220, 2005. Zebekakis PE, Nawrot T, Thijs L, Balkestein EJ, van der Heijden-Spek J, Van Bortel LM, Struijker-Boudier HA, Safar ME, Staessen JA. Obesity is associated with increased arterial stiffness from adolescence until old age. J Hypertens 23:1839-46, 2005. Zieske AW, Takei H, Fallon KB, Strong JP. Smoking and atherosclerosis in youth. Atherosclerosis 144:403-8, 1999. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/30803 | - |
| dc.description.abstract | 心血管疾病為臨床上的重要疾病,以超音波儀檢測血管壁機械特性的變化,可協助心血管疾病的早期診斷。超音波量測的血管壁機械特性包括內膜中層厚度、血管壁硬度及能量消散比率等。本研究利用超音波檢驗血管壁的機械特性,以台大應力所生醫研究室發展的vascular index(VI)軟體進行分析,並進一步探討血管壁機械特性發生變化的原因。實驗犬於麻醉穩定狀況下,以超音波量測膊動脈、橈動脈、股動脈、脛動脈與總頸動脈等血管,其包括(1)檢測老犬、成犬和年輕犬不同年齡的血管壁機械特性變化,(2)藥物導致血壓上升時血管壁機械特性的變化,(3)以氣球導管造成前肢膊動脈內膜傷害,定期檢測血管壁機械特性的連續變化,並於實驗結束時取下血管壁進行組織病理學探討,以與超音波量測的結果進行比對。實驗結果發現: 血管內膜中層厚度和管壁硬度會隨年齡而增加,能量消散比率則會減少;血壓上升時,可見到血管內膜中層厚度、管壁硬度及能量消散比率都會增加;以血管造形術誘導血管壁傷害後,在超音波檢查可見內膜中層厚度持續增加,血管壁硬度及能量消散比率在第1~4週會明顯上升,第8~12週時會逐漸下降,到第20週左右會再次上升。受傷血管壁組織病理學檢查可見受損血管內膜和中膜的增厚病變,Trichrome染色下可見到膠原纖維的增生,Picro-sirius polarization檢查在管壁增厚的病變中可見到粗與細膠原纖維的雙折光性,α-smooth muscle actin免疫化學染色證明平滑肌細胞增生移行至內膜。以上研究驗證動脈管壁受傷後的內膜中層厚度增加、硬度增加及能量消散比率的改變,與血管壁膠原纖維增加和平滑肌細胞的增生移行有關。 | zh_TW |
| dc.description.abstract | Cardiovascular disease is very important in clinic, and the detection of the change of mechanical properties of vessel wall is helpful for early diagnosis of cardiovascular disease. The ultrasonic examination of mechanical properties of vessel wall include intima-media thickness (IMT), stiffness, and energy dissipation ratio (EDR). In this study, the mechanical properties of arterial wall were examined with ultrasonography, and images data were analyzed by vascular index (VI) software which was developed by Biomedical Ultrasound Laboratory in the Institute of Applied Mechanics. After the dogs were anesthetized, the brachial artery, radial artery, femoral artery, tibial artery, and common carotid artery were examined by ultrasonography. The experiments included: (1) comparison of the arterial mechanical property among the dogs with different ages; (2) detection of the change of arterial mechanical property when blood pressure increased; (3) examination of the change of mechanical property on a regular time schedule after the brachial arteries were damaged by angioplasty. All damaged vessels were collected for histo-pathological study and compared with the result from ultrasonographic study. The values of IMT and arterial stiffness increased when animal getting old. The values of EDR decreased following with the increase of age. The IMT, arterial stiffness, and EDR increased when blood pressure elevated. Following the damage of brachial artery, the value of IMT increased continuously. The value of arterial stiffness and EDR increased at 1st~4th weeks, and then decreased at 8th~12th weeks. However the value of arterial stiffness and EDR increased again at 20th week. From the histo-pathological study, the thickening of intima and media of the damaged vessels could be observed. The increase of the collagen fibers could be observed with Trichrome stain. The birefringence of thick and thin collagen fibers could be observed simultaneously in the intimal lesion with Picro-sirius polarization. The proliferation and migration of smooth muscle cell in the intima was identified with α-smooth muscle actin immunochemical stain. The results of the study indicate that the changes of IMT, stiffness and EDR of the vessel wall are related with the increase of collagen fiber and the proliferation and migration of smooth muscle cell. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-13T02:16:18Z (GMT). No. of bitstreams: 1 ntu-96-R92629013-1.pdf: 1889007 bytes, checksum: 84fbe408d34b9caccb7642af4e57b176 (MD5) Previous issue date: 2007 | en |
| dc.description.tableofcontents | 目 錄
誌 謝-----------------------------------------------------------------------II 中文摘要----------------------------------------------------------------------III 英文摘要----------------------------------------------------------------------IV 內文目錄----------------------------------------------------------------------VI 圖表目錄----------------------------------------------------------------------IX 第一章 序論 1-1 前言---------------------------------------------------------------------------------------------1 1-2 研究動機與目的------------------------------------------------------------------------------3 1-2-1 建立犬隻周邊動脈血管壁機械特性的超音波檢測方法------------------------3 1-2-2 血管壁發生病變的檢測與相關病因的探討---------------------------------------3 1-3 文獻回顧---------------------------------------------------------------------------------------3 1-3-1 血管壁構造的說明----------------------------------------------------------------------3 1-3-2 血管壁發生病變的原因之探討-------------------------------------------------------5 1-3-2-1動脈粥狀硬化的病因和病理機制-----------------------------------------------5 1-3-2-2老化對動脈血管壁的影響--------------------------------------------------------7 1-3-2-3 人工誘導血管壁發生再狹窄的病理機制-------------------------------------8 1-3-3 超音波的檢測原理--------------------------------------------------------------------13 1-3-4 超音波的血管壁診斷方法與應用性-----------------------------------------------14 1-3-4-1 動脈血管硬度(Stiffness) -------------------------------------------------------14 1-3-4-2 動脈內膜中層厚度(Intima-media thickness – IMT) -----------------------16 1-3-4-3 動脈血管能量消散比率(Energy dissipation ratio – EDR)-----------------19 第二章 研究方法 2-1 超音波量測犬隻血管壁機械特性之方法-----------------------------------------------22 2-1-1 實驗材料與器械-----------------------------------------------------------------------22 2-1-2 實驗步驟--------------------------------------------------------------------------------23 2-2 超音波影像資料之分析方法--------------------------------------------------------------24 2-2-1亮點模式(B-mode)資料分析方法(一)- for all vessel -----------------------------24 2-2-2亮點模式(B-mode)資料分析方法(二)-for larger vessel -------------------------27 2-2-3運動模式(M-mode)資料分析方法---------------------------------------------------30 2-3 實驗設計--------------------------------------------------------------------------------------33 2-3-1 年齡對血管壁機械特性之影響-----------------------------------------------------33 2-3-2 血壓改變對血管壁機械特性之影響-----------------------------------------------33 2-3-3血管壁誘導傷害試驗------------------------------------------------------------------34 2-3-3-1 氣球擴張術------------------------------------------------------------------------34 2-3-3-2 誘導傷害後定期追蹤------------------------------------------------------------35 2-3-3-3 組織病理學檢查------------------------------------------------------------------35 第三章 實驗結果 3-1 年齡對血管壁機械特性之影響-----------------------------------------------------------42 3-1-1 年齡對血管內膜中層厚度之影響--------------------------------------------------42 3-1-2 年齡對血管硬度之影響--------------------------------------------------------------43 3-1-3 年齡對血管能量消散比率之影響--------------------------------------------------44 3-2 血壓改變對血管壁機械特性之影響-----------------------------------------------------44 3-2-1 血壓改變對血管內膜中層厚度、硬度和能量消散比率之影響 ---------------------------------------------------------------------------------------------45 3-3 血管壁誘導傷害試驗-----------------------------------------------------------------------46 3-3-1 預備實驗初步結果---------------------------------------------------------------------46 3-3-2 受損血管壁的內膜中層厚度之變化-----------------------------------------------47 3-3-3 受損血管壁的血管硬度之變化-----------------------------------------------------52 3-3-4 受損血管壁的能量消散比率之變化-----------------------------------------------60 3-4 血管壁的組織病理學檢查-----------------------------------------------------------------66 3-4-1 正常血管壁的組織病理學特徵-----------------------------------------------------66 3-4-2 血管壁增厚的組織病理學特徵-----------------------------------------------------67 3-4-3 Picro-sirius red Polarization膠原纖維的探討-----------------------------------69 3-4-4 α-Smooth Muscle Actin (α-smc actin)免疫化學染色法---------------------71 第四章 討論 4-1 年齡對血管壁機械特性之影響-----------------------------------------------------------72 4-2 血壓對血管壁機械特性之影響-----------------------------------------------------------74 4-3 血管壁誘導傷害對血管壁機械特性之影響--------------------------------------------75 4-4 受損血管壁的組織病理學檢查-----------------------------------------------------------76 第五章 結論 5-1 結論--------------------------------------------------------------------------------------------79 5-2 未來展望--------------------------------------------------------------------------------------80 參考文獻-------------------------------------------------------------------------------------------------81 | |
| dc.language.iso | zh-TW | |
| dc.subject | 血管壁機械特性 | zh_TW |
| dc.subject | 超音波 | zh_TW |
| dc.subject | 內膜中層厚度 | zh_TW |
| dc.subject | 血管壁硬度 | zh_TW |
| dc.subject | 能量消散比率 | zh_TW |
| dc.subject | 血管造形術 | zh_TW |
| dc.subject | ultrasound | en |
| dc.subject | angioplasty | en |
| dc.subject | energy dissipation ratio | en |
| dc.subject | arterial stiffness | en |
| dc.subject | intima-media thickness | en |
| dc.subject | mechanical properties of vessel wall | en |
| dc.title | 犬隻血管壁機械特性之超音波探討 | zh_TW |
| dc.title | Ultrasonic Studies of Vascular Mechanical Properties of Canine | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 95-1 | |
| dc.description.degree | 碩士 | |
| dc.contributor.coadvisor | 邵耀華 | |
| dc.contributor.oralexamcommittee | 周迺寬,李建穀 | |
| dc.subject.keyword | 超音波,血管壁機械特性,內膜中層厚度,血管壁硬度,能量消散比率,血管造形術, | zh_TW |
| dc.subject.keyword | ultrasound,mechanical properties of vessel wall,intima-media thickness,arterial stiffness,energy dissipation ratio,angioplasty, | en |
| dc.relation.page | 87 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2007-02-14 | |
| dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
| dc.contributor.author-dept | 獸醫學研究所 | zh_TW |
| 顯示於系所單位: | 獸醫學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-96-1.pdf 未授權公開取用 | 1.84 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
