Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 電機工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/30784
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor闕志達(Tzi-Dar Chiueh)
dc.contributor.authorMu-Chung Chenen
dc.contributor.author陳牧忠zh_TW
dc.date.accessioned2021-06-13T02:15:36Z-
dc.date.available2007-03-20
dc.date.copyright2007-03-20
dc.date.issued2007
dc.date.submitted2007-02-27
dc.identifier.citation[1] R.G. Gallager, “Low-Density Parity Check Codes”. Cambridge, MA: MIT Press, 1963
[2] A. Jimenez Feltstrom and K. S. Zigangirov, “Time-varying periodic convolutional codes with low-density parity-constraint matrix,” IEEE Transactions on Information Theory, vol. IT-45, no. 6, pp. 2181-2191, Sept. 1999.
[3] J. S. Jhuang, “A Reconfigurable Decoder IC for Irregular LDPC Codes,” Master thesis, National Taiwan University, Taipei, Taiwan, Jul. 2005.
[4] S. Lin and D.J. Costello, Jr., Error Control Coding, Pearson Education, Inc., Upper Saddle River, NJ, 2004.
[5] A. Sridharan, “Design and analysis of LDPC convolutional codes,” a PhD dissertation, Notre Dame, Indiana, Feb. 2005.
[6] Z. Chen, “Low Density Parity Check Convoutional Codes,” http://www.ece.ualberta.ca/~sbates/LdpcWeb/index_ldpcc.html
[7] S. Bates and G. Block, “A memory-based architecture for FPGA implementations of low-density parity-constraint convolutional codes,” in Proceedings of IEEE Symposium on Circuits and Systems, vol. 1, pp 336-339, 23-26 May 2005.
[8] R. Swamy, S. Bates, T. Brandon, “Architectures for ASIC Implementations of Low-Density Parity-Check Convolutional Encoders and Decoders,” Circuits and Systems. IEEE International Symposium, pp4513-4516, 23-26 May 2005
[9] S. Bates, L. Gunthorpe, A. Pusane, Z. Chen, K. S. Zigangirov and D. J. Costello Jr., “Decoders for Low-Density Parity-Check Convolutional Codes with Large Memory,” Proceedings of NASA VLSI Symposium 2005.
[10] J.S. Wu, M.L. Liou, H.P. Ma and T.D. Chiueh, “A 2.6-V, 44-MHz All-Digital QPSK Direct-Sequence Spread-Spectrum Transceiver IC,” IEEE Journal of Solid-State Circuits, vol. 32, no. 10, pp. 1499-1509, Oct. 1997.
[11] Andrew J. Blanksby and Chris J. Howland, “A 690-mW 1-Gb/s 1024-b, Rate-1/2 Low-Density Parity-Check Code Decoder,” IEEE Journal of Solid-State Circuit, Vol. 37. Issue 3, pp.404-412, March 2002.
[12] S. Bäro, J. Hagenauer, and M. Witzke, “Iterative detection of MIMO transmission using a list-sequential (LISS) detector,” in Proc. IEEE Int.Conf. Communications , Anchorage, AK, May 2003, pp. 2653–2657.Veh. Technol., no. 3, pp. 338–347, May 1995.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/30784-
dc.description.abstract本論文提出迴轉式低密度奇偶檢查碼(LDPC-CC)解碼器之設計。因為現在的通訊技術的成長,在傳輸的過程中一定會有些不理想的效應存在,因此資料的保護是很重要的。因為區塊式低密度奇偶檢查碼(LDPC-BC)在很多不同的通道裡有很卓越的解碼功能,所以已經研究了很多年了。LDPC-CC在1999年被提出來也證明了有跟LDPC-BC相似的位元錯誤率(Bit Error Rate)。一個LDPC-CC有很好的優勢是跟LDPC-BC比較時LDPC-CC有比較少的延遲(Latency),對於LDPC-BC來說每次的解碼一定要等到一定的資料長度才可以進行解碼的工作。所以可以將LDPC-CC可以跟多輸入多輸出(Multiple Input Multiple Output)結合以達成反覆解碼(iterative decoding)。因為在硬體的架構上LDPC-CC也有一些比LDPC-BC好的特性,所以LDPC-CC的編碼器跟解碼器都比LDPC-BC好設計。在本論文裡,為了要減少解碼所需的時間,奇偶矩陣被做了一些小改變。還把存取資料的儲存庫改成Dual-port SRAM。一些基本硬體上的簡化技巧被使用在本解碼器的架構上以達成高速率跟低功率的解碼器。在最後,跟之前的解碼器比較起來我們成功的節省了50%的時間與功率。zh_TW
dc.description.abstractThis thesis describes the proposed design of Convolutional Low-Density Parity Check Code (LDPC-CC) decoder. Due to increasing high data transmissible rate, data protection techniques are applied to all data transmission and storage devices. Hence, LDPC block codes (LDPC-BC) have been studied over the past years due to their exceptional decoding performance on a wide variety of communication channels. Their block-counterparts, LDPC-CC codes were first proposed in 1999 and proved that those codes have similar bit-error rate (BER) performance. However, LDPC-CC codes have several advantages over LDPC-BC codes. First of all, LDPC-CC requires less latency than LDPC-BC codes for long block-length codes. Thus, it is very suitable to integrating LDPC-CC codes to iterative decoding, such as combining inner codes with outer codes in multiple-input multiple-output (MIMO) communication system, rather than integrating with LDPC-BC. In hardware architectural point of view, encoders and decoders of LDPC-CC are easier to be implemented. Based on the previous works on LDPC-CC codes, further optimization can be achieved. In order to save clock cycles, construction of a parity-check matrix is altered. For saving even more clock cycles, by changing the order of calculation sequences, dual-port SRAM is applied to our design. Some of circuit techniques, such as Wallace tree structure and linear approximation, are applied in our design in order to improve the throughput of the proposed decoder. The details of the optimizations are discussed in this thesis. In conclusion to our design, approximately 50% of clock cycles are saved comparing to [7] and 50% of the power consumption is saved compared to [8].en
dc.description.provenanceMade available in DSpace on 2021-06-13T02:15:36Z (GMT). No. of bitstreams: 1
ntu-96-J93921005-1.pdf: 1291078 bytes, checksum: e314f3588b29766f7bf527fc72773b6d (MD5)
Previous issue date: 2007
en
dc.description.tableofcontents摘要 i
ABSTRACT iii
LIST OF FIGURES vii
LIST OF TABLES ix
Chapter 1 Introduction 1
1.1 Motivation of the Thesis 2
1.2 Error Correction Coding (ECC) 5
1.2.1 Block Codes 6
1.2.2 Convolutional Codes 8
1.3 Outline of the Thesis 9
Chapter 2 Low-Density Parity-Check (LDPC) Codes 11
2.1 Priori Log-Likelihood Ratios 11
2.2 LDPC Block Codes 12
2.2.1 LDPC-BC Encoding 14
2.2.2 LDPC-BC Decoding 15
2.3 LDPC Convolutional Codes 18
2.3.1 LDPC-CC Encoding 21
2.3.2 LDPC-CC Decoding 24
2.4 Previous Works on LDPC-CC 28
Chapter 3 Architecture Design of LDPC Convolutional Code Decoder 35
3.1 Parity Check Matrix Construction 35
3.2 Decoder Architecture 39
3.2.1 Address RAM 42
3.2.2 LLR Storage 44
3.2.3 Digital Processor 49
3.3 Performance and Comparison 53
Chapter 4 Circuit Design of LDPC Convolutional Code Decoder 55
4.1 Design Flow 55
4.2 Fixed-Point Simulation 57
4.3 Circuit Techniques 60
4.3.1 Wallace Tree Adder 61
4.3.2 Look-Up Table (LUT) 62
4.4 RTL Code Simulation 65
Chapter 5 Future Works and Conclusions 71
REFERENCES 72
dc.language.isoen
dc.subject錯誤更正碼zh_TW
dc.subject迴旋式低密度奇偶檢查碼zh_TW
dc.subjectConvolutional LDPC Codesen
dc.subjectLDPC-CCen
dc.subjectError Correcting Codesen
dc.title高效能迴旋式低密度奇偶檢查碼解碼器之設計zh_TW
dc.titleHigh Performance Decoder Design for Convolutional LDPC Codesen
dc.typeThesis
dc.date.schoolyear95-1
dc.description.degree碩士
dc.contributor.oralexamcommittee曹恒偉(Hen-Wai Tsao),吳安宇(An-Yu Wu),黃元豪(Yuan-Hao Huang)
dc.subject.keyword迴旋式低密度奇偶檢查碼,錯誤更正碼,zh_TW
dc.subject.keywordConvolutional LDPC Codes,LDPC-CC,Error Correcting Codes,en
dc.relation.page74
dc.rights.note有償授權
dc.date.accepted2007-02-27
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept電機工程學研究所zh_TW
顯示於系所單位:電機工程學系

文件中的檔案:
檔案 大小格式 
ntu-96-1.pdf
  未授權公開取用
1.26 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved