請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/30765完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陳宜良(I-Liang Chern) | |
| dc.contributor.author | Yu-Chen Shu | en |
| dc.contributor.author | 舒宇宸 | zh_TW |
| dc.date.accessioned | 2021-06-13T02:14:58Z | - |
| dc.date.available | 2007-04-26 | |
| dc.date.copyright | 2007-04-26 | |
| dc.date.issued | 2007 | |
| dc.date.submitted | 2007-04-12 | |
| dc.identifier.citation | [1] L Adams and TP Chartier, New geometric immersed interface multigrid solvers, SIAM Journal on Scientific Computing 25 (2004), 1516–1533.
[2] L Adams and TP Chartier, A comparison of algebraic multigrid and geometric immersed interface multigrid methods for interface problems, SIAM Journal on Scientific Computing 26 (2005), 762–784. [3] L Adams and ZL Li, The immersed interface/multigrid methods for interface problems, SIAM Journal on Scientific Computing 24 (2002), 463–479. [4] JB Bell, CN Dawson, and GR Shubin, An unsplit, higher-order Godunov method for scalar conservation-laws in multiple dimensions, Journal of Computational Physics 74 (1988), 1–24. [5] PA Berthelsen, A decomposed immersed interface method for variable coefficient elliptic equations with non-smooth and discontinuous solutions, Journal of Computational Physics 197 (2004), 364–386. [6] ZM Chen and J Zou, Finite element methods and their convergence for elliptic and parabolic interface problems, Numerische Mathematik 79 (1998), 175–202. [7] Peskin CS, The immersed boundary method, Acta Numerica (2002), 1–39. [8] SZ Deng, K Ito, and ZL Li, Three-dimensional elliptic solvers for interface problems and applications, Journal of Computational Physics 184 (2003), 215–243. [9] MA Dumett and JP Keener, An immersed interface method for anisotropic elliptic problems on irregular domains in 2d, Numerical Methods for Partial Differential Equations 21 (2005), 397–420. [10] RP Fedkiw, T Aslam, B Merriman, and S Osher, A non-oscillatory Eulerian approach to interfaces in multimaterial flows (the ghost fluid method), Journal of Computational Physics 152 (1999), 457–492. [11] AL Fogelson and JP Keener, Immersed interface methods for Neumann and related problems in two and three dimensions, SIAM Journal on Scientific Computing 22 (2001), 1630–1654. [12] F Gibou and R Fedkiw, A fourth order accurate discretization for the Laplace and heat equations on arbitrary domains, with applications to the stefan problem, Journal of Computational Physics 202 (2005), 577–601. [13] F Gibou, RP Fedkiw, LT Cheng, and MJ Kang, A second-order-accurate symmetric discretization of the Poisson equation on irregular domains, Journal of Computational Physics 176 (2002), 205–227. [14] J Glimm and OA Mcbryan, A computational model for interfaces, Advances in Applied Mathematics 6 (1985), 422–435. [15] R Glowinski, TW Pan, and J Periaux, A fictitious domain method for dirichlet problem and applications, Computer Methods in Applied Mechanics and Engineering 111 (1994), 283–303. [16] M Holst, RE Kozack, F Saied, and S Subramaniam, Multigrid-based Newton iterative method for solving the full nonlinear Poisson-Boltzmann equation, Biophysical Journal 66 (1994), A130–A130. [17] M Holst and F Saied, Multigrid solution of the Poisson-Boltzmann equation, Journal of Computational Chemistry 14 (1993), 105–113. [18] JG Huang and J Zou, A mortar element method for elliptic problems with discontinuous coefficients, IMA Journal of Numerical Analysis 22 (2002), 549–576. [19] K Ito and ZL Li, Solving a nonlinear problem in magneto-rheological fluids using the immersed interface method, Journal of Scientific Computing 19 (2003), 253– 266. [20] K Ito, ZL Li, and Y Kyei, Higher-order, cartesian grid based finite difference schemes for elliptic equations on irregular domains, SIAM Journal on Scientific Computing 27 (2005), 346–367. [21] H. Johansen and P. Colella, A cartesian grid embedded boundary method for Poisson equations on irregular domains, Journal of Computational Physics 147 (1998), 60–85. [22] JD Kandilarov, A rothe-immersed interface method for a class of parabolic interface problems, Numerical Analysis and Its Applications 3401 (2005), 328–336. [23] JD Kandilarov and LG Vulkov, The immersed interface method for a nonlinear chemical diffusion equation with local sites of reactions, Numerical Algorithms 36 (2004), 285–307. [24] MC Lai, ZL Li, and XB Lin, Fast solvers for 3d Poisson equations involving interfaces in a finite or the infinite domain, Journal of Computational and Applied Mathematics 191 (2006), 106–125. [25] L Lee and RJ Leveque, An immersed interface method for incompressible navierstokes equations, SIAM Journal on Scientific Computing 25 (2003), 832–856. [26] RJ Leveque and ZL LI, The immersed interface method for elliptic-equations with discontinuous coefficients and singular sources, SIAM Journal on Numerical Analysis 31 (1994), 1019–1044. [27] ZL Li, Immersed interface methods for moving interface problems, Numerical Algorithms 14 (1997), 269–293. [28] ZL Li, A fast iterative algorithm for elliptic interface problems, SIAM Journal on Numerical Analysis 35 (1998), 230–254. [29] ZL Li, The immersed interface method using a finite element formulation, Applied Numerical Mathematics 27 (1998), 253–267. [30] ZL Li, An overview of the immersed interface method and its applications, Taiwanese Journal of Mathematics 7 (2003), 1–49. [31] ZL Li and K Ito, Maximum principle preserving schemes for interface problems with discontinuous coefficients, SIAM Journal on Scientific Computing 23 (2001), 339–361. [32] ZL Li and MC Lai, The immersed interface method for the navier-stokes equations with singular forces, Journal of Computational Physics 171 (2001), 822–842. [33] ZL Li, T Lin, and XH Wu, New cartesian grid methods for interface problems using the finite element formulation, Numerische Mathematik 96 (2003), 61–98. [34] ZL Li, DSWang, and J Zou, Theoretical and numerical analysis on a thermo-elastic system with discontinuities, Journal of Computational and Applied Mathematics 92 (1998), 37–58. [35] ZL Li, WC Wang, IL Chern, and MC Lai, New formulations for interface problems in polar coordinates, SIAM Journal on Scientific Computing 25 (2003), 224–245. [36] MN Linnick and HF Fasel, A high-order immersed interface method for simulating unsteady incompressible flows on irregular domains, Journal of Computational Physics 204 (2005), 157–192. [37] XD Liu, RP Fedkiw, and MJ Kang, A boundary condition capturing method for Poisson’s equation on irregular domains, Journal of Computational Physics 160 (2000), 151–178. [38] Xu-Dong Liu and Thomas C. Sideris, Convergence of the ghost fluid method for elliptic equations with interfaces, Mathematics of Computation 72 (2003), no. 244, 1731–1746. [39] A Mayo, The fast solution of Poissons and the biharmonic-equations on irregular regions, SIAM Journal on Numerical Analysis 21 (1984), 285–299. [40] A Mayo, Fast high-order accurate solution of Laplace equation on irregular regions, SIAM Journal on Scientific and Statistical Computing 6 (1985), 144–157. [41] A Mckenney, L Greengard, and A Mayo, A fast Poisson solver for complex geometries, Journal of Computational Physics 118 (1995), 348–355. [42] CS Peskin, Numerical-analysis of blood-flow in heart, Journal of Computational Physics 25 (1977), 220–252. [43] J. Ruge and K. Stuben, Algebraic multigrid, in multigrid methods, (s.f. mccormick, ed.) 4, SIAM, Philadephia 4 (1987), 73–130. [44] Yu-Chen Shu, Interface problem and algebraic multigrid method, Master’s thesis, Math Department of National Taiwan University, Jan 2003. [45] GR Shubin and JB Bell, An analysis of the grid orientation effect in numericalsimulation of miscible displacement, Computer MethodsiIn Applied Mechanics and Engineering 47 (1984), 47–71. [46] AN Tikhonov and AA Samarskii, Homogeneous difference schemes, USSR Comput. Math. and Math. Phys. 1 (1962), 5–67. [47] AK Tornberg and B Engquist, Regularization techniques for numerical approximation of pdes with singularities, Journal of Scientific Computing 19 (2003), 527–552. [48] AK Tornberg and B Engquist, Numerical approximations of singular source terms in differential equations, Journal of Computational Physics 200 (2004), 462–488. [49] JHWalther and G Morgenthal, An immersed interface method for the vortex-in-cell algorithm, Journal of Turbulence 3 (2002), 1–9. [50] WCWang, A jump condition capturing finite difference scheme for elliptic interface problems, SIAM Journal on Scientific Computing 25 (2004), 1479–1496. [51] A Wiegmann and KP Bube, The explicit-jump immersed interface method: Finite difference methods for pdes with piecewise smooth solutions, SIAM Journal on Numerical Analysis 37 (2000), 827–862. [52] JJ Xu, ZL Li, J Lowengrub, and HK Zhao, A level-set method for interfacial flows with surfactant, Journal of Computational Physics 212 (2005), 590–616. [53] S Xu and ZJ Wang, Systematic derivation of jump conditions for the immersed interface method in three-dimensional flow simulation, SIAM Journal on Scientific Computing 27 (2006), 1948–1980. [54] XZ Yang, B Li, and ZL Li, The immersed interface method for elasticity problems with interfaces, Dynamics of Continuous Discrete and Impulsive Systems-Series A-Mathematical Analysis 10 (2003), 783–808. [55] YC Zhou, S Zhao, M Feig, and GW Wei, High order matched interface and boundary method for elliptic equations with discontinuous coefficients and singular sources, Journal of Computational Physics 213 (2006), 1–30. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/30765 | - |
| dc.description.abstract | 在這篇論文中提出了一個可以在任意維度、複雜界面、卡式坐標的網格上解決橢圓界面問題的方法:藕合界面方法(Coupling Interface Method)。它允許左端項的係數上、右邊的來源項甚至是方程的解上面在跨過界面時都可以是不連續的。而在精準度上,它提供了一個一階方法(CIM1)、二階方法(CIM2)及兩者混合(CIM)的方法。
在一維的時候,一階方法(CIM1)是由界面兩邊各自的線性逼近所導出的。而延伸到高維度的時候是一個可以從各個維度處理的方法。 它需要透過在每一個維度上的界面條件建立聯立方程組去連結各個維度上的一階微分的資訊。最後所導出來的差分格式在二維的時候是一個五點差分,而三維的時候是一個七點差分。它是一個非常緊密的差分格式。類似地,在一維時的二階方法(CIM2)是由面兩邊各自的二階逼近所導出的。而延伸至高維度時,在各個維度上透過界面條件的聯立方程組去連結每一個維度上的二階微分的資訊。所有的二階主要偏導數($u_{x_k x_k}$)都可以從聯立方程組求出。而交叉微分項($u_{x_j x_k}$)則是由單邊差分所逼近。這是減少用來做插值的所需要的點數的關鍵。最後所導出來的差分格式在二維的時候必須用到8個點,而三維的時候則需要12-14個點。 在使用的限制上,一階方法(CIM1)需要限制界面與每一條網格線段的時候只能有一個交點,這個限制是非常寬鬆的,而且只要網格夠密的時候都可以辦得到。而二階方法(CIM2)則需要一個類似的條件,即界面與中央點在每一個維度的兩邊的網格線段上只能有一個交點,但是在大多數情形下,網格夠密的時候這個條件也會成立。因此,在實作上我們將每一個網格點分成三類:內部點、正常的界面點以及例外的點。在內部點上我們會用標準的中央差分法,而正常的界面點上我們會用二階方法,而在剩下的例外點上我們會用一階方法。這個混合的差分方法我們稱為藕合界面方法(Coupling Interface Method)。在大多數的情況下它會是一個二階方法。這是因為通常在 d 維度的時候,界面大多是一個 d-1 維的曲面。所以正常的界面點有大約有 d-1 維度的量。但例外的點數大多是常數。 數值上在此篇論文中會去討論一維情況二階方法(CIM2)所形成矩陣的特徵值,它都是正的實數。而且它Condition number的行為跟Laplacian是非常類似的。另外,只要所產生網格的夠密的時候,我們會證明一個充份條件,使得該方法所產生的聯立方程組一定是可解的。在求解此差分方法所形成的大型稀疏矩陣的時候我們是利用代數多重網格法來求解。而在收斂性測試上,我們發現藕合界面方法所產生的誤差比其他目前常用或是已發表的二階方法來得少。而且,藕合界面方法通過了許多複雜界面的測試。因此,我們有信心它是一個在處理複雜界面時相當具競爭力的方法。 | zh_TW |
| dc.description.abstract | We propose a coupling interface method (CIM) under Cartesian grid for solving elliptic complex interface problems in arbitrary dimensions, where the coefficients, the source terms, and the solutions may be discontinuous or singular across the interfaces. It consists of a first-order version (CIM1) and a second-order version (CIM2).
In one dimension, the CIM1 is derived from a linear approximation on both sides of the interface. The method is extended to high dimensions through a dimension-by-dimension approach. To connect information from each dimension, a coupled equation for the first-order derivatives is derived through the jump conditions in each coordinate direction. The resulting stencil uses the standard 5 grid points in two dimensions and 7 grid points in three dimensions. Similarly, the CIM2 is derived from a quadratic approximation in each dimension. In high dimensions, a coupled equation for the principal second-order derivatives $u_{x_k x_k}$ is derived through the jump conditions in each coordinate direction. The cross derivatives are approximated by one-side interpolation. This approach reduces the number of grid points needed for one-side interpolation. The resulting stencil involves 8 grid points in two dimensions and 12-14 grid points in three dimensions. A numerical study for the condition number of the resulting linear system of the CIM2 in one dimension has been performed. It is shown that the condition number has the same behavior as that of the discrete Laplacian, independent of the relative location of the interface in a grid cell. Further, we also give a proof of the solvability of the coupling equations, provided the curvature $kappa$ of the interface satisfies $kappa hle Const.$, where $h$ is the mesh size. The CIM1 requires that the interface intersects each grid segment (the segment connecting two adjacent grid points) at most once. This is a very mild restriction and is always achievable by refining meshes. The CIM2 requires basically that the interface does not intersect two adjacent grid segments simultaneously. In practice, we classify the underlying Cartesian grid points into interiors, normal on-fronts, and exceptionals, where a standard central finite difference method, the CIM2, and the CIM1 are adopted, respectively. This hybrid CIM maintains second order accuracy in most applications due to the fact that usually in $d$ dimensions, the number of normal on-front grid points is $O(h^{1-d})$ and the number of the exceptional points is $O(1)$. Numerical convergence tests for the CIM1 and CIM2 are performed. A comparison study with other interface methods is also reported. Algebraic multigrid method is employed to solve the resulting linear system. Numerical tests demonstrate that CIM1 and CIM2 are respectively first order and second order in the maximal norm with less error as compared with other methods. In addition, this hybrid CIM passes many tests of complex interface problems in two and three dimensions. Therefore, we believe that it is a competitive method for complex interface problems. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-13T02:14:58Z (GMT). No. of bitstreams: 1 ntu-96-D93221003-1.pdf: 4496818 bytes, checksum: ee600ee8d0cc45a782da0e9d57a1f0e5 (MD5) Previous issue date: 2007 | en |
| dc.description.tableofcontents | 誌謝. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . i
中文摘要. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii 英文摘要. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi 1 Introduction 1 2 Review of existing method 9 2.1 Harmonic averaging method . . . . . . . . . . . . . . . . . . . . . . . . 9 2.1.1 Cancellation in the ghost fluid method . . . . . . . . . . . . . . 11 2.2 Immersed Interface Method . . . . . . . . . . . . . . . . . . . . . . . . 12 2.3 Matched interface and boundary method . . . . . . . . . . . . . . . . . 17 3 One dimensional case 19 3.1 CIM1 in one dimension . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 3.2 CIM2 in one dimension . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 3.3 Stability issue for CIM2 in one dimension. . . . . . . . . . . . . . . . . 25 4 Two dimensional cases 29 4.1 CIM1 in two dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . 29 4.2 CIM2 in two dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . 33 vii 4.2.1 Case 1: The interface intersects the grid segment in the x-direction only. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 4.2.2 Case 2: The interface intersects grid segments in both x and ydirections. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 5 CIM for complex interface problems 39 5.1 Classification of grid points . . . . . . . . . . . . . . . . . . . . . . . . 39 5.2 CIM1 in d dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 5.2.1 Non-singularity of the matrix ‾M . . . . . . . . . . . . . . . . . 43 5.3 CIM2 in d dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 5.3.1 Non-singularity of the coupling matrix M . . . . . . . . . . . . 47 6 Numerical Experiments 51 6.1 Numerical implementation . . . . . . . . . . . . . . . . . . . . . . . . . 51 6.2 Convergence tests of the CIM1 . . . . . . . . . . . . . . . . . . . . . . . 53 6.3 Study of grid orientation effect of the CIM2 . . . . . . . . . . . . . . . 55 6.4 Convergence and comparison study for the CIM2 . . . . . . . . . . . . 56 6.5 Convergence and comparison for the hybrid CIM . . . . . . . . . . . . 67 6.5.1 Number of exceptional grid points . . . . . . . . . . . . . . . . . 67 6.5.2 Convergence tests for the hybrid CIM. . . . . . . . . . . . . . . 68 6.5.3 A comparison study with FIIM . . . . . . . . . . . . . . . . . . 70 7 Conclusion 73 8 Algorithm 75 8.1 Pseudo Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 Bibliography 83 | |
| dc.language.iso | en | |
| dc.subject | 橢圓界面問題 | zh_TW |
| dc.subject | 多重網格法 | zh_TW |
| dc.subject | 奇異項 | zh_TW |
| dc.subject | 不連續係數 | zh_TW |
| dc.subject | 複雜界面 | zh_TW |
| dc.subject | complex interface | en |
| dc.subject | singular sources | en |
| dc.subject | discontinuous coefficients | en |
| dc.subject | elliptic interface problems | en |
| dc.subject | multigrid method | en |
| dc.title | 橢圓界面問題的藕合界面方法 | zh_TW |
| dc.title | A Coupling Interface Method for Elliptic Interface Problems | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 95-2 | |
| dc.description.degree | 博士 | |
| dc.contributor.oralexamcommittee | 周謀鴻(Mo-Hong Chou),張建成(Chien-Cheng Chang),許文翰(Wen-Hann Sheu),林文偉(Wen-Wei Lin),王偉成(Wei-Cheng Wang),賴明治(Ming-Chih Lai) | |
| dc.subject.keyword | 橢圓界面問題,複雜界面,不連續係數,奇異項,多重網格法, | zh_TW |
| dc.subject.keyword | elliptic interface problems,complex interface,discontinuous coefficients,singular sources,multigrid method, | en |
| dc.relation.page | 88 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2007-04-18 | |
| dc.contributor.author-college | 理學院 | zh_TW |
| dc.contributor.author-dept | 數學研究所 | zh_TW |
| 顯示於系所單位: | 數學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-96-1.pdf 未授權公開取用 | 4.39 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
