請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/30745
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 沈偉強 | |
dc.contributor.author | Bei-Jia Su | en |
dc.contributor.author | 蘇貝佳 | zh_TW |
dc.date.accessioned | 2021-06-13T02:14:16Z | - |
dc.date.available | 2012-05-24 | |
dc.date.copyright | 2007-05-24 | |
dc.date.issued | 2007 | |
dc.date.submitted | 2007-05-15 | |
dc.identifier.citation | Aberg, J.A., and Powderly, W.G. (1997a) Cryptococcal disease: implications of recent clinical trials on treatment and management. AIDS Clin Rev: 229-248.
Aberg, J.A., and Powderly, W.G. (1997b) Cryptococcosis. Adv Pharmacol 37: 215-251. Ambra, R., Grimaldi, B., Zamboni, S., Filetici, P., Macino, G., and Ballario, P. (2004) Photomorphogenesis in the hypogeous fungus Tuber borchii: isolation and characterization of Tbwc-1, the homologue of the blue-light photoreceptor of Neurospora crassa. Fungal Genet Biol 41: 688-697. Arpaia, G., Cerri, F., Baima, S., and Macino, G. (1999) Involvement of protein kinase C in the response of Neurospora crassa to blue light. Mol Gen Genet 262: 314-322. Bar-Peled, M., Griffith, C.L., and Doering, T.L. (2001) Functional cloning and characterization of a UDP- glucuronic acid decarboxylase: the pathogenic fungus Cryptococcus neoformans elucidates UDP-xylose synthesis. Proc Natl Acad Sci USA 98: 12003-12008. Barksdale, T., and Asai, G.N. (1961) Diurnal Spore Release of Piricularia oryzae from Rice Leaves. Phytopathology 51: 313-320. Bertault, G., Raymond, M., Berthomieu, A., Callot, G., and Fernandez, D. (1998) Trifling variation in truffles. Nature 394: 734-734. Bose, I., Reese, A.J., Ory, J.J., Janbon, G., and Doering, T.L. (2003) A yeast under cover: the capsule of Cryptococcus neoformans. Eukaryot Cell 2: 655-663. Casadevall, A., Cassone, A., Bistoni, F., Cutler, J.E., Magliani, W., Murphy, J.W., Polonelli, L., and Romani, L. (1998) Antibody and/or cell-mediated immunity, protective mechanisms in fungal disease: an ongoing dilemma or an unnecessary dispute. Med Mycol 36: 95-105. Casadevall, A., and Perfect, J. (1998) Cryptococcus neoformans. ASM Press, Washington, D.C. Casadevall, A., Rosas, A.L., and Nosanchuk, J.D. (2000) Melanin and virulence in Cryptococcus neoformans. Curr Opin Microbiol 3: 354-358. Casas-Flores, S., Rios-Momberg, M., Bibbins, M., Ponce-Noyola, P., and Herrera-Estrella, A. (2004) BLR-1 and BLR-2, key regulatory elements of photoconidiation and mycelial growth in Trichoderma atroviride. Microbiology 150: 3561-3569. Chang, P.K., Ehrlich, K.C., Linz, J.E., Bhatnagar, D., Cleveland, T.E., and Bennett, J.W. (1996) Characterization of the Aspergillus parasiticus niaD and niiA gene cluster. Curr Genet 30: 68-75. Chang, S., and Staben, C. (1994) Directed replacement of mtA by mta-1 effects a mating type switch in Neurospora crassa. Genetics 138: 75-81. Chang, Y.C., and Kwon-Chung, K.J. (1999) Isolation, characterization, and localization of a capsule-associated gene, CAP10, of Cryptococcus neoformans. J Bacteriol 181: 5636-5643. Cheng, M.F., Chiou, C.C., Liu, Y.C., Wang, H.Z., and Hsieh, K.S. (2001) Cryptococcus laurentii fungemia in a premature neonate. J Clin Microbiol 39: 1608-1611. Cheng, P., Yang, Y., Gardner, K.H., and Liu, Y. (2002) PAS domain-mediated WC-1/WC-2 interaction is essential for maintaining the steady-state level of WC-1 and the function of both proteins in circadian clock and light responses of Neurospora. Mol Cell Biol 22: 517-524. Cheng, P., He, Q., Yang, Y., Wang, L., and Liu, Y. (2003a) Functional conservation of light, oxygen, or voltage domains in light sensing. Proc Natl Acad Sci USA 100: 5938-5943. Cheng, P., Yang, Y., Wang, L., He, Q., and Liu, Y. (2003b) WHITE COLLAR-1, a multifunctional Neurospora protein involved in the circadian feedback loops, light sensing, and transcription repression of wc-2. J Biol Chem 278: 3801-3808. Clarke, D.L., Woodlee, G.L., McClelland, C.M., Seymour, T.S., and Wickes, B.L. (2001) The Cryptococcus neoformans STE11alpha gene is similar to other fungal mitogen-activated protein kinase kinase kinase (MAPKKK) genes but is mating type specific. Mol Microbiol 40: 200-213. Collins, G.J., Jr., Creger, C.R., and Couch, J.R. (1965) Effect of Dimetridazole on Growth of Neurospora sitophila and Lactobacillus casei. Proc Soc Exp Biol Med 119: 164-166. Crosson, S., and Moffat, K. (2001) Structure of a flavin-binding plant photoreceptor domain: insights into light-mediated signal transduction. Proc Natl Acad Sci USA 98: 2995-3000. D'Souza, C.A., Alspaugh, J.A., Yue, C., Harashima, T., Cox, G.M., Perfect, J.R., and Heitman, J. (2001) Cyclic AMP-dependent protein kinase controls virulence of the fungal pathogen Cryptococcus neoformans. Mol Cell Biol 21: 3179-3191. D'Souza, C.A., and Heitman, J. (2001) Conserved cAMP signaling cascades regulate fungal development and virulence. FEMS Microbiol Rev 25: 349-364. Davis, R.H., Ristow, J.L., Howard, A.D., and Barnett, G.R. (1991) Calcium modulation of polyamine transport is lost in a putrescine-sensitive mutant of Neurospora crassa. Arch Biochem Biophys 285: 297-305. Degli-Innocenti, F., and Russo, V.E. (1984) Isolation of new white collar mutants of Neurospora crassa and studies on their behavior in the blue light-induced formation of protoperithecia. J Bacteriol 159: 757-761. Denault, D.L., Loros, J.J., and Dunlap, J.C. (2001) WC-2 mediates WC-1-FRQ interaction within the PAS protein-linked circadian feedback loop of Neurospora. Embo J 20: 109-117. Edman, J.C., and Kwon-Chung, K.J. (1990) Isolation of the URA5 gene from Cryptococcus neoformans var. neoformans and its use as a selective marker for transformation. Mol Cell Biol 10: 4538-4544. Franchi, L., Fulci, V., and Macino, G. (2005) Protein kinase C modulates light responses in Neurospora by regulating the blue light photoreceptor WC-1. Mol Microbiol 56: 334-345. Froehlich, A.C., Liu, Y., Loros, J.J., and Dunlap, J.C. (2002) White Collar-1, a circadian blue light photoreceptor, binding to the frequency promoter. Science 297: 815-819. Gallego, M., and Virshup, D.M. (2007) Post-translational modifications regulate the ticking of the circadian clock. Nat Rev Mol Cell Biol 8: 139-148. Guimil, S., Chang, H.S., Zhu, T., Sesma, A., Osbourn, A., Roux, C., Ioannidis, V., Oakeley, E.J., Docquier, M., Descombes, P., Briggs, S.P., and Paszkowski, U. (2005) Comparative transcriptomics of rice reveals an ancient pattern of response to microbial colonization. Proc Natl Acad Sci USA 102: 8066-8070. Harding, R.W., and Melles, S. (1983) Genetic Analysis of Phototropism of Neurospora crassa Perithecial Beaks Using White Collar and Albino Mutants. Plant Physiol 72: 996-1000. He, Q., Cheng, P., Yang, Y., Wang, L., Gardner, K.H., and Liu, Y. (2002) White collar-1, a DNA binding transcription factor and a light sensor. Science 297: 840-843. Hofmann, S., Heider, H.J., Hinrichs, U., Brugmann, M., and MeyerLindenberg, A. (1997) Systemic cryptococcosis in a dog: Case report. Tierarztliche umschau 52: 100-106. Howard, R.J., and Valent, B. (1996) Breaking and entering: host penetration by the fungal rice blast pathogen Magnaporthe grisea. Annu Rev Microbiol 50: 491-512. Hsiang, C.Y., Ho, T.Y., Hsiang, C.H., and Chang, T.J. (1998) Recombinant pseudorabies virus DNase exhibits a RecBCD-like catalytic function. Biochem J 330: 55-59. Huala, E., Oeller, P.W., Liscum, E., Han, I.S., Larsen, E., and Briggs, W.R. (1997) Arabidopsis NPH1: a protein kinase with a putative redox-sensing domain. Science 278: 2120-2123. Hull, C.M., and Heitman, J. (2002) Genetics of Cryptococcus neoformans. Annu Rev Genet 36: 557-615. Idnurm, A., and Heitman, J. (2005) Light controls growth and development via a conserved pathway in the fungal kingdom. PLoS Biol 3: e95. Idnurm, A., Rodriguez-Romero, J., Corrochano, L.M., Sanz, C., Iturriaga, E.A., Eslava, A.P., and Heitman, J. (2006) The Phycomyces madA gene encodes a blue-light photoreceptor for phototropism and other light responses. Proc Natl Acad Sci USA 103: 4546-4551. Jacobson, E.S., and Tinnell, S.B. (1993) Antioxidant function of fungal melanin. J Bacteriol 175: 7102-7104. Janbon, G., Himmelreich, U., Moyrand, F., Improvisi, L., and Dromer, F. (2001) Cas1p is a membrane protein necessary for the O-acetylation of the Cryptococcus neoformans capsular polysaccharide. Mol Microbiol 42: 453-467. Kamada, T., Kurita, R., and Takemaru, T. (1978) Effects of Light on Basidiocarp Maturation in Coprinus-Macrorhizus. Plant Cell Physiol. 19: 263-275. Kihara, J., Moriwaki, A., Tanaka, N., Ueno, M., and Arase, S. (2007) Characterization of the BLR1 gene encoding a putative blue-light regulator in the phytopathogenic fungus Bipolaris oryzae. FEMS Microbiol Lett 266: 110-118. Kraus, P.R., Nichols, C.B., and Heitman, J. (2005) Calcium- and calcineurin-independent roles for calmodulin in Cryptococcus neoformans morphogenesis and high-temperature growth. Eukaryot Cell 4: 1079-1087. Kumagai, T. (1978) Mycochrome System and Conidial Development in Certain Fungi Imperfecti. Photochem Photobiol 27: 371-379. Kumagai, T. (1988) Mycochrome System in the Reversible Photoinduction of Conidiation in Helminthosporium-Oryzae, with Special Reference to Intermittent Photo Stimuli. Exp Mycol 12: 28-34. Kwon-Chung, K.J. (1975) A new genus, filobasidiella, the perfect state of Cryptococcus neoformans. Mycologia 67: 1197-1200. Kwon-Chung, K.J. (1976) Morphogenesis of Filobasidiella neoformans, the sexual state of Cryptococcus neoformans. Mycologia 68: 821-833. Kwon-Chung, K.J., and Bennett, J.E. (1978) Distribution of alpha and alpha mating types of Cryptococcus neoformans among natural and clinical isolates. Am J Epidemiol 108: 337-340. Kwon-Chung, K.J., and Bennett, J.E. (1984) Epidemiologic differences between the two varieties of Cryptococcus neoformans. Am J Epidemiol 120: 123-130. Kwon-Chung, K.J., and Rhodes, J.C. (1986) Encapsulation and melanin formation as indicators of virulence in Cryptococcus neoformans. Infect Immun 51: 218-223. Lee, K., Singh, P., Chung, W.C., Ash, J., Kim, T.S., Hang, L., and Park, S. (2006) Light regulation of asexual development in the rice blast fungus, Magnaporthe oryzae. Fungal Genet Biol 43: 694-706. Lengeler, K.B., Davidson, R.C., D'Souza, C., Harashima, T., Shen, W.C., Wang, P., Pan, X., Waugh, M., and Heitman, J. (2000) Signal transduction cascades regulating fungal development and virulence. Microbiol Mol Biol Rev 64: 746-785. Lin, X., Hull, C.M., and Heitman, J. (2005) Sexual reproduction between partners of the same mating type in Cryptococcus neoformans. Nature 434: 1017-1021. Liu, Y. (2003) Molecular mechanisms of entrainment in the Neurospora circadian clock. J Biol Rhythms 18: 195-205. Liu, Y., He, Q., and Cheng, P. (2003) Photoreception in Neurospora: a tale of two White Collar proteins. Cell Mol Life Sci 60: 2131-2138. Lu, Y.K., Sun, K.H., and Shen, W.C. (2005) Blue light negatively regulates the sexual filamentation via the Cwc1 and Cwc2 proteins in Cryptococcus neoformans. Mol Microbiol 56: 480-491. Mandoli, D.F., Ford, G.A., Waldron, L.J., Nemson, J.A., and Briggs, W.R. (1990) Some Spectral Properties of Several Soil Types - Implications for Photomorphogenesis. Plant Cell Environ 13: 287-294. Mitchell, D.H., Sorrell, T.C., Allworth, A.M., Heath, C.H., McGregor, A.R., Papanaoum, K., Richards, M.J., and Gottlieb, T. (1995) Cryptococcal disease of the CNS in immunocompetent hosts: influence of cryptococcal variety on clinical manifestations and outcome. Clin Infect Dis 20: 611-616. Mitchell, T.G., and Perfect, J.R. (1995) Cryptococcosis in the era of AIDS--100 years after the discovery of Cryptococcus neoformans. Clin Microbiol Rev 8: 515-548. Moore, T.D., and Edman, J.C. (1993) The alpha-mating type locus of Cryptococcus neoformans contains a peptide pheromone gene. Mol Cell Biol 13: 1962-1970. Morrison, B.E., Park, S.J., Mooney, J.M., and Mehrad, B. (2003) Chemokine-mediated recruitment of NK cells is a critical host defense mechanism in invasive aspergillosis. J Clin Invest 112: 1862-1870. Moyrand, F., Klaproth, B., Himmelreich, U., Dromer, F., and Janbon, G. (2002) Isolation and characterization of capsule structure mutant strains of Cryptococcus neoformans. Mol Microbiol 45: 837-849. Mullen, J.L., Wolverton, C., Ishikawa, H., Hangarter, R.P., and Evans, M.L. (2002) Spatial separation of light perception and growth response in maize root phototropism. Plant Cell Environ 25: 1191-1196. Navarro, E., Sandmann, G., and Torresmartinez, S. (1995) Mutants of the Carotenoid Biosynthetic-Pathway of Mucor-Circinelloides. Exp Mycol 19: 186-190. Papavizas, G.C. (1985) Trichoderma and Gliocladium Biology, Ecology, and Potential for Biocontrol. Annu Rev Phytopathol 23: 23-54. Persson, B.L., Berhe, A., Fristedt, U., Martinez, P., Pattison, J., Petersson, J., and Weinander, R. (1998) Phosphate permeases of Saccharomyces cerevisiae. Biochim Biophys Acta 1365: 23-30. Petersen, G.R., Nelson, G.A., Cathey, C.A., and Fuller, G.G. (1989) Rheologically interesting polysaccharides from yeasts. Appl Biochem Biotechnol 20-21: 845-867. Rea, W.J., Didriksen, N., Simon, T.R., Pan, Y., Fenyves, E.J., and Griffiths, B. (2003) Effects of toxic exposure to molds and mycotoxins in building-related illnesses. Arch Environ Health 58: 399-405. Richardson, M., and Speed, D.J. (1969) Utilization of betaine aldehyde by choline (chol-) mutants of Neurospora crassa. Arch Mikrobiol 66: 195-198. Rodrigues, S.A., and Rossi, A. (1985) Effect of phosphate levels on the synthesis of acid phosphatases (EC 3.1.3.2) in Neurospora crassa. Genet Res 45: 239-249. Rose, M.D., Winston, F., and Hieter, P. (1990) Methods in Yeast Genetics: A Laboratory Course Manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York. Salomon, M., Christie, J.M., Knieb, E., Lempert, U., and Briggs, W.R. (2000) Photochemical and mutational analysis of the FMN-binding domains of the plant blue light receptor, phototropin. Biochemistry 39: 9401-9410. Sanford, J.C., Smith, F.D., and Russell, J.A. (1993) Optimizing the biolistic process for different biological applications. Methods Enzymol 217: 483-509. Sargent, M.L., and Briggs, W.R. (1967) The Effects of Light on a Circadian Rhythm of Conidiation in Neurospora. Plant Physiol 42: 1504-1510. Sbrana, C., Agnolucci, M., Bedini, S., Lepera, A., Toffanin, A., Giovannetti, M., and Nuti, M.P. (2002) Diversity of culturable bacterial populations associated to Tuber borchii ectomycorrhizas and their activity on T. borchii mycelial growth. FEMS Microbiol Lett 211: 195-201. Schmidhauser, T.J., Lauter, F.R., Russo, V.E., and Yanofsky, C. (1990) Cloning, sequence, and photoregulation of al-1, a carotenoid biosynthetic gene of Neurospora crassa. Mol Cell Biol 10: 5064-5070. Schweitzer, B.A., Loida, P.J., Thompson-Mize, R.L., CaJacob, C.A., and Hegde, S.G. (1999) Design and synthesis of beta-carboxamido phosphonates as potent inhibitors of imidazole glycerol phosphate dehydratase. Bioorg Med Chem Lett 9: 2053-2058. Schwerdtfeger, C., and Linden, H. (2000) Localization and light-dependent phosphorylation of white collar 1 and 2, the two central components of blue light signaling in Neurospora crassa. Eur J Biochem 267: 414-422. Shen, W.C., Davidson, R.C., Cox, G.M., and Heitman, J. (2002) Pheromones stimulate mating and differentiation via paracrine and autocrine signaling in Cryptococcus neoformans. Eukaryot Cell 1: 366-377. Silva, F., Torres-Martinez, S., and Garre, V. (2006) Distinct white collar-1 genes control specific light responses in Mucor circinelloides. Mol Microbiol 61: 1023-1037. Skrzynia, C., Binninger, D.M., Alspaugh, J.A., 2nd, and Pukkila, P.J. (1989) Molecular characterization of TRP1, a gene coding for tryptophan synthetase in the basidiomycete Coprinus cinereus. Gene 81: 73-82. Stavy, R., Galun, E., and Gressel, J. (1972) Morphogenesis in Trichoderma: RNA-DNA Hybridization studies. Biochim Biophys Acta 259: 321-329. Steenbergen, J.N., and Casadevall, A. (2003) The origin and maintenance of virulence for the human pathogenic fungus Cryptococcus neoformans. Microbes Infect 5: 667-675. Sun, K.H. (2005) Dissection of the molecular mechanisms regulation the blue light photoresponses in Cryptococcus neoformans. In.: National Taiwan University, pp. 86. Swartz, T.E., Corchnoy, S.B., Christie, J.M., Lewis, J.W., Szundi, I., Briggs, W.R., and Bogomolni, R.A. (2001) The photocycle of a flavin-binding domain of the blue light photoreceptor phototropin. J Biol Chem 276: 36493-36500. Talora, C., Franchi, L., Linden, H., Ballario, P., and Macino, G. (1999) Role of a white collar-1-white collar-2 complex in blue-light signal transduction. EMBO J 18: 4961-4968. Terashima, K., Yuki, K., Muraguchi, H., Akiyama, M., and Kamada, T. (2005) The dst1 gene involved in mushroom photomorphogenesis of Coprinus cinereus encodes a putative photoreceptor for blue light. Genetics 171: 101-108. Toffaletti, D.L., Rude, T.H., Johnston, S.A., Durack, D.T., and Perfect, J.R. (1993) Gene transfer in Cryptococcus neoformans by use of biolistic delivery of DNA. J Bacteriol 175: 1405-1411. Tscharke, R.L., Lazera, M., Chang, Y.C., Wickes, B.L., and Kwon-Chung, K.J. (2003) Haploid fruiting in Cryptococcus neoformans is not mating type alpha-specific. Fungal Genet Biol 39: 230-237. Tsusue, Y.M. (1969) Experimental Control of Fruit-Body Formation in Coprinus macrorhizus. Dev Growth Differ 11: 164-178. Vecchiarelli, A. (2000) Immunoregulation by capsular components of Cryptococcus neoformans. Med Mycol 38: 407-417. Velayos, A., Blasco, J.L., Alvarez, M.I., Iturriaga, E.A., and Eslava, A.P. (2000) Blue-light regulation of phytoene dehydrogenase (carB) gene expression in Mucor circinelloides. Planta 210: 938-946. Walton, F.J., Idnurm, A., and Heitman, J. (2005) Novel gene functions required for melanization of the human pathogen Cryptococcus neoformans. Mol Microbiol 57: 1381-1396. Wang, P., Perfect, J.R., and Heitman, J. (2000) The G-protein beta subunit GPB1 is required for mating and haploid fruiting in Cryptococcus neoformans. Mol Cell Biol 20: 352-362. Wang, Y., Aisen, P., and Casadevall, A. (1995) Cryptococcus neoformans melanin and virulence: mechanism of action. Infect Immun 63: 3131-3136. Williamson, P.R. (1997) Laccase and melanin in the pathogenesis of Cryptococcus neoformans. Front Biosci 2: e99-107. Zhang, Y., Lamm, R., Pillonel, C., Lam, S., and Xu, J.R. (2002) Osmoregulation and fungicide resistance: the Neurospora crassa os-2 gene encodes a HOG1 mitogen-activated protein kinase homologue. Appl Environ Microbiol 68: 532-538. Zhu, H., Nowrousian, M., Kupfer, D., Colot, H.V., Berrocal-Tito, G., Lai, H., Bell-Pedersen, D., Roe, B.A., Loros, J.J., and Dunlap, J.C. (2001) Analysis of expressed sequence tags from two starvation, time-of-day-specific libraries of Neurospora crassa reveals novel clock-controlled genes. Genetics 157: 1057-1065. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/30745 | - |
dc.description.abstract | 光線為一重要的環境因子,調控許多生物的生長、生理及發生過程。在光反應研究中得知,大多數的真菌多只能感受單一波段範圍的光線,而其中以藍光反應最為普遍。隱球菌 (Cryptococcus neoformans) 為一重要人體伺機性病原真菌,屬於異宗交配型 (heterothallic) 的擔子菌,在氮素源缺乏的環境下,不同交配型 (MATa 和 MATα) 的細胞會進行融合,產生雙核菌絲,最終形成擔子柄及擔孢子,完成其有性生殖。本實驗室過去的研究發現,隱球菌雙核菌絲的形成,會受到藍光的抑制,為了探討隱球菌藍光光反應的機制,已由隱球菌基因體中選殖出紅色麵包黴 (Neurospora crassa) wc-1與wc-2的同源基因 CWC1 (C. neoformans WC-1) 與 CWC2 (C. neoformans WC-2)。由胺基酸序列的分析得知,Cwc1具有與 chromophore 結合之保守性 LOV (Light, Oxygen, or Voltage) 功能區塊 (domain),兩個 PAS (Per-Arnt-Sim) 功能區塊,以及 NLS (nuclear localization sequence) 序列,推測其為隱球菌的藍光接收器;Cwc2 胺基酸序列具有 PAS 和 GATA-type zinc finger DNA-binding motif 兩個重要的保守性功能區塊,Cwc1 及 Cwc2 二者可形成複合體,共同調控隱球菌的藍光反應。為進一步探討及確認 Cwc1 及 Cwc2 蛋白質功能區塊的重要性,本研究利用持續表現基因 GPD1 的啟動子,進行 Cwc1 及 Cwc2 系列突變蛋白質之表達試驗,並進行相關表現型之分析。結果顯示,Cwc1 蛋白質已知推定的保守性功能區塊 LOV、PAS,以及包含 NLS 的功能區塊發生突變,均使隱球菌雙核菌絲的形成,不再受到藍光的抑制,因此證明,此三個保守性區塊為 Cwc1 蛋白質必需之重要功能區塊;而針對 Cwc2 蛋白質推定之保守性功能區塊 PAS 及 GATA-type zinc finger DNA-binding motif 進行突變後,雙核菌絲的形成,亦不受藍光抑制,所以亦證明此兩個保守性區塊,對 Cwc2 蛋白質功能之重要性。除了這些已知的功能區塊外,另外本研究也發現部分蛋白質區域亦為二 Cwc 蛋白質,調控雙核菌絲生成所必須的重要功能區域。 | zh_TW |
dc.description.abstract | Light regulates growth, physiolophy and differentiation in various organisms including fungi. Fungi usually perceive light within a particular region of radiant energy spertrum. One of the most widesperead and pronounced phenomena in fungi is the blue light photoresponses. Cryptococcus neoformans, a heterothallic basidiomycetous fungus, primarily infects the immunocompromised individuals. Under nitrogen limitation conditions, strains of opposite mating types, MATa and MATα, produce conjugation tubes and fuse to form dikaryotic filaments, and subsequently produce the basidia and meiotic progeny basidiospores to complete its sexual cycle. Our previous studies have demonstrated that the production of sexual dikaryotic filaments is inhibited by blue light via the Cwc1 (C. neoformans WC-1) and Cwc2 (C. neoformans WC-2) proteins, homologues of Neurospora crassa WC-1 and WC-2. The deduced Cwc1 amino acid sequence contains a specialized chromophore binding domain known as LOV (for Light-Oxygen-Voltage) domain, two putative PAS (Per-Arnt-Sim) domains, and a putative nuclear localization sequence (NLS). A putative PAS domain and GATA-type zinc finger DNA-binding motif were also identified in the Cwc2 protein. To confirm the roles of putative domains and also identify regions important for the Cwc1 and Cwc2 function, a series of partially deleted CWC1 and CWC2 genes under the constitutively expressed C. neoformans GPD1 promoter were generated in this study. These constructs were transformed into the MATα wild-type, cwc1 and cwc2 mutant strains and sexual filamentation and other phenotypes were examined and compared under light and dark conditions. Our results showed that LOV domain, PAS domains, and the region containing the NLS are crucial for the function of Cwc1 protein, and PAS domain and GATA-type zinc finger DNA-binding motif are also required for the proper execution Cwc2 protein. In addition, regions important for the CWC proteins were also identified. In this study, we used C. neoformans as a model to dissect the blue light photoregulation. To the end, we hope to reveal the functional domains important for the evolutionally conserved blue light regulators in the basidomycetous fungi. | en |
dc.description.provenance | Made available in DSpace on 2021-06-13T02:14:16Z (GMT). No. of bitstreams: 1 ntu-96-R93633018-1.pdf: 5349222 bytes, checksum: a21045ba5b0316799afd65f219e69701 (MD5) Previous issue date: 2007 | en |
dc.description.tableofcontents | 第一章 研究動機………………………………………………………………14
第二章 前人研究………………………………………………………………16 2.1. 紅色麵包黴 (Neurospora crassa) 的藍光光反應…………………………..16 2.1.1. 紅色麵包黴 wc-1 與 wc-2 基因的選殖及其胺基酸特性………….16 2.1.2. 紅色麵包黴WC-1及WC-2蛋白質之交互作用…………………….17 2.1.3. WC-1是紅色麵包黴的藍光接收器…………………………………...18 2.1.4. 紅色麵包黴WC-1蛋白質之功能區域分析…………………………..20 2.1.5. 紅色麵包黴WC-2蛋白質之功能區域分析…………………………..21 2.1.6. 紅色麵包黴之蛋白質激酶 (Neurospora protein kinase C, NPKC) 藉由WC-1調控光應……………………………………………………21 2.2. 松露 (Tuber borchii, whitish truffle) 光反應的研究………………………….22 2.3. 深綠木黴菌 (Trichoderma atroviride) 光反應的研究………………………..23 2.4. 水稻稻熱病菌 (Magnaporthe grisea, Magnaporthe oryzae) 光反應的研究....24 2.5. 水稻胡麻葉枯病菌 (Bipolaris oryzae) 光反應的研究………………………..25 2.6. 灰蓋鬼傘 (Coprinopsis cinerea, Coprinus cinereus) 光反應的研究………....26 2.7. 鬍鬚黴 (Phycomyces blakesleeanus) 光反應的研究………………………….27 2.8. 卷枝毛黴 (Mucor circinelloides) 光反應的研究……………………………...28 2.9. 隱球菌 (Cryptococcus neoformans) ……………………………………………29 2.9.1. 隱球菌的生命週期 (life cycle) ……………………………………….....29 2.9.2. 隱球菌之病原性……………………………………………………….....30 2.9.3. 致病因子 (virulence factors) …………………………………………….31 2.9.4. 隱球菌光反應之研究………………………………………………….....32 第三章 材料方法………………………………………………………………....35 3.1. 實驗材料及培養條件…………………………………………………………...35 3.2. CWC1基因各區塊突變質體之建構……………………………………………35 3.2.1. Cwc1蛋白質第1 ~ 102個胺基酸區塊之突變…………………………36 3.2.2. Cwc1蛋白質第103 ~ 250個胺基酸區塊之突變………………………36 3.2.3. Cwc1蛋白質第251 ~ 410個胺基酸區塊之突變………………………37 3.2.4. Cwc1蛋白質第411 ~ 567個胺基酸區塊之突變………………………37 3.2.5. Cwc1蛋白質第568 ~ 680個胺基酸區塊之突變………………………38 3.2.6. Cwc1蛋白質第681 ~ 766個胺基酸區塊之突變………………………39 3.2.7. Cwc1蛋白質第767 ~ 930個胺基酸區塊之突變………………………40 3.2.8. Cwc1蛋白質第931 ~ 1141個胺基酸區塊之突變……………………..40 3.3. CWC2基因各區塊突變質體之建構……………………………………………41 3.3.1. Cwc2蛋白質第1 ~ 71個胺基酸區塊之突變…………………………..41 3.3.2. Cwc2蛋白質第72 ~ 140個胺基酸區塊之突變………………………..42 3.3.3. Cwc2蛋白質第141 ~ 231個胺基酸區塊之突變………………………42 3.3.4. Cwc2蛋白質第231 ~ 348個胺基酸區塊之突變………………………43 3.3.5. Cwc2蛋白質第349 ~ 373個胺基酸區塊之突變………………………44 3.3.6. Cwc2蛋白質第374 ~ 392個胺基酸區塊之突變………………………44 3.4. 血清型A CWC1質體大量表現質體之建構…………………………………..45 3.5. 基因槍轉殖技術 (Biolistic transformation) …………………………………...46 3.5.1. 轉殖菌株之培養………………………………………………………....46 3.5.2. 轉殖金粉 (Gold particle;microcarrier)………………………………..46 3.5.3 DNA之製備………………………………………………………………47 3.5.4. 基因槍之操作流程……………………………………………………....47 3.6. 隱球菌少量基因體DNA之抽取………………………………………………48 3.7. 隱球菌總RNA之抽取…………………………………………………………48 3.8. 北方雜合分析 (Northern hybridization analysis) ……………………………..49 3.8.1. 將受試菌株培養後,採前述方法進行總RNA之萃取……………….49 3.8.2. RNA變性膠體電泳分析之步驟………………………………………...49 3.8.3. 膠體轉漬………………………………………………………………...50 3.8.4. 探針標定的流程………………………………………………………...50 3.8.5. 北方雜合反應…………………………………………………………...51 3.9. 隱球菌性狀表現型之分析……………………………………………………..51 3.9.1. 交配分析試驗 (Mating assay)………………………………………….51 3.9.2. 單核菌絲之分析試驗 (Monokaryotic fruiting assay)………………….52 3.9.3. 光線對黑色素產生之影響 (Melanin assay)…………………………....52 3.10. 親緣樹狀分析 (Phylogenetic analysis)……………………………………….52 第四章 結果……………………………………………………………………….53 4.1. 隱球菌Cwc1蛋白質之探討…………………………………………………….53 4.1.1. 隱球菌不同血清型Cwc1蛋白質胺基酸序列的比對分析……………..53 4.1.2. 隱球菌Cwc1蛋白質與其他真菌同源蛋白質保守性功能區域的比對 分析……………………………………………………………………….54 4.1.3. 隱球菌Cwc1蛋白質區域系列突變之建構及選殖…………………….57 4.1.4. 隱球菌Cwc1蛋白質區域系列突變過度表現菌株之交配反應與monokaryotic fruiting分析………………………………………………58 4.1.5. 隱球菌Cwc1蛋白質區域系列突變過度表現菌株之黑色素形成分析..60 4.2. 隱球菌Cwc2蛋白質之探討…………………………………………………….61 4.2.1. 隱球菌Cwc2蛋白質在不同血清型之胺基酸序列比對分析…………..61 4.2.2. 隱球菌Cwc2蛋白質與其他真菌同源基因蛋白質保守性功能區域 的比對分析………………………………………………………………..62 4.2.3. 隱球菌Cwc2蛋白質區域系列突變之建構及選殖…………………….64 4.2.4. 隱球菌Cwc2蛋白質區域系列突變之過度表現菌株之交配反應與 monokaryotic fruiting分析………………………………………………64 4.2.5. 隱球菌Cwc2蛋白質區域系列突變過度表現菌株之黑色素形成分 析…………………………………………………………………………..66 第五章 討論………………………………………………………………………..68 圖表…………………………………………………………………………………..75 參考文獻…………………………………………………………………………..119附錄………………………………………………………………………………….131 | |
dc.language.iso | zh-TW | |
dc.title | 隱球菌藍光調控因子Cwc1及Cwc2蛋白質功能區域之探討 | zh_TW |
dc.title | Domain characterization of the blue light regulators Cwc1 and Cwc2 in Cryptococcus neoformans | en |
dc.type | Thesis | |
dc.date.schoolyear | 95-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 劉瑞芬,陳昭瑩,鄭貽生,廖秀娟 | |
dc.subject.keyword | 隱球菌,藍光光反應,藍光接收器,紅色麵包黴,Cwc1,Cwc2,LOV功能區塊,PAS功能區塊,NLS序列, | zh_TW |
dc.subject.keyword | Cryptococcus neoforman,blue light photoresponses,blue light regulators,Neurospora crassa,Cwc1,Cwc2,LOV domain,PAS domains,NLS, | en |
dc.relation.page | 117 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2007-05-16 | |
dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
dc.contributor.author-dept | 植物病理與微生物學研究所 | zh_TW |
顯示於系所單位: | 植物病理與微生物學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-96-1.pdf 目前未授權公開取用 | 5.22 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。