Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 應用力學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/30739
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor沈弘俊(Horn-Jiunn Sheen)
dc.contributor.authorChing-Jiun Leeen
dc.contributor.author李青峻zh_TW
dc.date.accessioned2021-06-13T02:14:04Z-
dc.date.available2012-05-25
dc.date.copyright2007-05-25
dc.date.issued2007
dc.date.submitted2007-05-22
dc.identifier.citation1 Manz, A., Graber, N. and Widmer, H.M. Miniaturized total chemical analysis systems. A novel concept for chemical sensing. Sensors and Actuators, B: Chemical, 1990, B1(1-6), 244-248.
2 Yasuda, K., Haupt, S.S., Umemura, S.-i., Yagi, T., Nishida, M. and Shibata, Y. Using acoustic radiation force as a concentration method for erythrocytes. Journal of the Acoustical Society of America, 1997, 102(1), 642-645.
3 Li, P.C.H. and Harrison, D.J. Transoprt, manipulation, and reaction of biological cells on-chip using electrokinetic effects. Analytical Chemistry, 1997, 69(8), 1564-1568.
4 Huang, L.R., Cox, E.C., Austin, R.H. and Sturm, J.C. Continuous Particle Separation Through Deterministic Lateral Displacement. Science, 2004, 304(5673), 987-990.
5 Tegenfeldt, J.O., Prinz, C., Cao, H., Huang, R.L., Austin, R.H., Chou, S.Y., Cox, E.C. and Sturm, J.C. Micro- and nanofluidics for DNA analysis. Analytical and Bioanalytical Chemistry, 2004, 378(7), 1678-1692.
6 Woolley, A.T. and Mathies, R.A. Ultrahigh-speed DNA sequencing using capillary array electrophoresis chips. Proceedings of SPIE - The International Society for Optical Engineering, 1995, 2386, 36-44.
7 Pal, R., Yang, M., Lin, R., Johnson, B.N., Srivastava, N., Razzacki, S.Z., Chomistek, K.J., Heldsinger, D.C., Haque, R.M., Ugaz, V.M., Thwar, P.K., Chen, Z., Alfano, K., Yim, M.B., Krishnan, M., Fuller, A.O., Larson, R.G., Burke, D.T. and Burns, M.A. An integrated microfluidic device for influenza and other genetic analyses. Lab Chip, 2005, 5(10), 1024-1032.
8 Doh, I. and Cho, Y.-H. A continuous cell separation chip using hydrodynamic dielectrophoresis (DEP) process. Sensors and Actuators, A: Physical, 2005, 121(1), 59-65.
9 Markx, G.H., Dyda, P.A. and Pethig, R. Dielectrophoretic separation of bacteria using a conductivity gradient. Journal of Biotechnology, 1996, 51(2), 175-180.
10 Markx, G.H. and Pethig, R. Dielectrophoretic separation of cells: Continuous separation. Biotechnology and Bioengineering, 1995, 45(4), 337-343.
11 Kentsch, J., Durr, M., Schnelle, T., Gradl, G., Muller, T., Jager, M., Normann, A. and Stelzle, M. Microdevices for separation, accumulation, and analysis of biological micro- and nanoparticles. IEE Proceedings Nanobiotechnology, 2003, 150(2), 82-89.
12 Lee, C.J., Tsu, Z.K., Lei, U., Hsu, C.J. and Sheen, H.J. A Valveless Micropump with Asymmetric Obstacles. The Sixteenth International Symposium on Transport Phenomena (ISTP-16)Prague, Czech, 2005).
13 Sheen, H.J., Hsu, C.J., Wu, T.H., Chu, H.C., Chang, C.C. and Lei, U. Experimental Study of Flow Characteristics and Mixing Performance in a PZT Self-pumping Micromixer. Sensors and Actuators: A Physical, 2007, doi:10.1016/j.sna.2007.02.031.
14 Lee, C.J., Sheen, H.J., Chu, H.C., Hsu, C.J. and Wu, T.H. The development of a triple-channel separator for particle removal with self-pumping oscillating flow. Journal of Micromechanics and Microengineering, 2007, 17(3), 439-446.
15 Sefton, M.V., Lusher, H.M., Firth, S.R. and Waher, M.U. CONTROLLED RELEASE MICROPUMP FOR INSULIN ADMINISTRATION. Annals of Biomedical Engineering, 1979, 7(3-4), 329-343.
16 Van De Pol, F.C.M., Wonnink, D.G.J., Elwenspoek, M. and Fluitman, J.H.J. Thermo-pneumatic actuation principle for a microminiature pump and other micromechanical devices. Sensors and Actuators, 1989, 17(1-2 PT1), 139-143.
17 Stemme, E. and Stemme, G. Valveless diffuser/nozzle-based fluid pump. Sensors and Actuators, A: Physical, 1993, 39(2), 159-167.
18 Gerlach, T., Schuenemann, M. and Wurmus, H. New micropump principle of the reciprocating type using pyramidic micro flowchannels as passive valves. Journal of Micromechanics and Microengineering, 1995, 5(2), 199-201.
19 Forster, F.K., Bardell, R.L., Afromowitz, M.A., Sharma, N.R. and Blanchard, A. Design, fabrication and testing of fixed-valve micro-pumps. pp. 39-44 (ASME, New York, NY, USA, San Francisco, CA, USA, 1995).
20 Jang, W.I., Lee, Y.I., Choi, C.A., Jun, C.H. and Kim, Y.T. Surface micromachined electrostatic diaphragm micropump. Proceedings of SPIE - The International Society for Optical Engineering, 1999, 3891, 395-402.
21 Olsson, A., Enoksson, P., Stemme, G. and Stemme, E. Improved valve-less pump fabricated using deep reactive ion etching. pp. 479-484 (IEEE, Piscataway, NJ, USA, San Diego, CA, USA, 1996).
22 Olsson, A., Stemme, G. and Stemme, E. Diffuser-element design investigation for valve-less pumps. Sensors and Actuators, A: Physical, 1996, 57(2), 137-143.
23 Olsson, A., Stemme, G. and Stemme, E. Micromachined diffuser/nozzle elements for valve-less pumps. pp. 378-383 (IEEE, Piscataway, NJ, USA, San Diego, CA, USA, 1996).
24 Olsson, A., Enoksson, P., Stemme, G. and Stemme, E. Micromachined flat-walled valveless diffuser pumps. Journal of Microelectromechanical Systems, 1997, 6(2), 161-166.
25 Olsson, A., Stemme, G. and Stemme, E. Numerical and experimental studies of flat-walled diffuser elements for valve-less micropumps. Sensors and Actuators, A: Physical, 2000, 84(1), 165-175.
26 Singhal, V., Garimella, S.V. and Murthy, J.Y. Low Reynolds number flow through nozzle-diffuser elements in valveless micropumps. Sensors and Actuators, A: Physical, 2004, 113(2), 226-235.
27 楊政穎, 林俊達 and 李雨. A valve-less micro-pump based on asymmetric obstacles. 第七屆奈米工程暨微系統技術研討會論文集台北, 台灣, 2003).
28 凃智凱. 新式無閥門微幫浦之開發. 應用力學硏究所 (國立臺灣大學, 台北,台灣, 2004).
29 Liu, R.H., Stremler, M.A., Sharp, K.V., Olsen, M.G., Santiago, J.G., Adrian, R.J., Aref, H. and Beebe, D.J. Passive mixing in a three-dimensional serpentine microchannel. Journal of Microelectromechanical Systems, 2000, 9(2), 190-197.
30 Lee, Y.K., Deval, J., Tabeling, P. and Ho, C.M. Chaotic mixing in electrokinetically and pressure driven micro flows. pp. 483-486 (Institute of Electrical and Electronics Engineers Inc., Interlaken, 2001).
31 Gobby, D., Angeli, P. and Gavriilidis, A. Mixing chacteristics of T-type microfluidic mixers. Journal of Micromechanics and Microengineering, 2001, 11(2), 126-132.
32 Yang, Z., Matsumoto, S., Goto, H., Matsumoto, M. and Maeda, R. Ultrasonic micromixer for microfluidic systems. Sensors and Actuators, A: Physical, 2001, 93(3), 266-272.
33 Therriault, D., White, S.R. and Lewis, J.A. Chaotic mixing in three-dimensional microvascular networks fabricated by direct-write assembly. Nature Materials, 2003, 2(4), 265-271.
34 吳咨亨. 無閥門壓電微幫浦與微混合器之整合設計. 應用力學硏究所 (國立臺灣大學, 台北,台灣, 2005).
35 Hsu, C.J., Wu, T.H. and Sheen, H.J. SELF-PUMPING MICROMIXER WITH PZT DISCS AND ASYMMETRIC OBSTACLES. 4th International Conference on Heat Transfer, Fluid Mechanics and Thermodynamics (HEFAT2005)Cairo, Egypt, 2005).
36 Pohl, H.A. Dielectrophoresis : the behavior of neutral matter in nonuniform electric fields (Cambridge University Press, Cambridge, 1978).
37 Pethig, R., Huang, Y., Wang, X.-B. and Burt, J.P.H. Positive and negative dielectrophoretic collection of colloidal particles using interdigitated castellated microelectrodes. Journal of Physics D: Applied Physics, 1992, 25(5), 881-888.
38 Asami, K. and Yonezawa, T. Dielectric Behavior of Wild-Type Yeast and Vacuole-Deficient Mutant Over a Frequency Range of 10 kHz to 10 GHz. Biophysical Journal, 1996, 71(4), 2192.
39 Becker, F.F., Wang, X.B., Huang, Y., Pethig, R., Vykoukal, J. and Gascoyne, P.R.C. Removal of human leukaemia cells from blood using interdigitated microelectrodes. Journal of Physics D: Applied Physics, 1994, 27(12), 2659-2662.
40 Gascoyne, P.R.C., Wang, X.-B., Huang, Y. and Becker, F.F. Dielectrophoretic separation of cancer cells from blood. IEEE Transactions on Industry Applications, 1997, 33(3), 670-678.
41 Huang, Y., Joo, S., Duhon, M., Heller, M., Wallace, B. and Xu, X. Dielectrophoretic cell separation and gene expression profiling on microelectronic chip arrays. Analytical Chemistry, 2002, 74(14), 3362-3371.
42 Harris, N.R., Hill, M., Beeby, S., Shen, Y., White, N.M., Hawkes, J.J. and Coakley, W.T. A silicon microfluidic ultrasonic separator. pp. 425-434 (Elsevier, Prague, Czech Republic, 2003).
43 Harris, N., Hill, M., Shen, Y., Townsend, R.J., Beeby, S. and White, N. A dual frequency, ultrasonic, microengineered particle manipulator. pp. 139-144 (Elsevier, Granada, Spain, 2004).
44 Petersson, F., Nilsson, A., Holm, C., Henrik, J. and Laurell, T. Separation of lipids from blood utilizing ultrasonic standing waves in microfluidic channels Analyst, 2004, 129, 938-943.
45 Petersson, F., Nilsson, A., Holm, C., Jonsson, H. and Laurell, T. Continuous separation of lipid particles from erythrocytes by means of laminar flow and acoustic standing wave forces. Lab Chip, 2005, 5(1), 20-22.
46 Yamada, M., Kasim, V., Nakashima, M., Edahiro, J.i. and Seki, M. Continuous cell partitioning using an aqueous two-phase flow system in microfluidic devices. Biotechnology and Bioengineering, 2004, 88(4), 489-494.
47 Yamada, M., Nakashima, M. and Seki, M. Pinched flow fractionation: Continuous size separation of particles utilizing a laminar flow profile in a pinched microchannel. Analytical Chemistry, 2004, 76(18), 5465-5471.
48 Yamada, M. and Seki, M. Hydrodynamic filtration for on-chip particle concentration and classification utilizing microfluidics. Lab Chip, 2005, 5(11), 1233-1239.
49 朱信彰. 利用非穩態流場特性開發微粒子分離器之研究. 應用力學硏究所 (國立臺灣大學, 台北,台灣, 2006).
50 Santiago, J.G., Wereley, S.T., Meinhart, C.D., Beebe, D.J. and Adrian, R.J. Particle image velocimetry system for microfluidics. Experiments in Fluids, 1998, 25(4), 316-319.
51 Koutsiaris, A.G., Mathioulakis, D.S. and Tsangaris, S. Microscope PIV for velocity-field measurement of particle suspensions flowing inside glass capillaries. Measurement Science and Technology, 1999, 10(11), 1037-1046.
52 Meinhart, C.D., Wereley, S.T. and Gray, M.H.B. Volume illumination for two-dimensional particle image velocimetry. Measurement Science and Technology, 2000, 11(6), 809-814.
53 Meinhart, C.D., Wereley, S.T. and Santiago, J.G. PIV measurements of a microchannel flow. Experiments in Fluids, 1999, 27(5), 414-419.
54 Bitsch, L., Olesen, L.H., Westergaard, C.H., Bruus, H., Klank, H. and Kutter, J.P. Micro particle-image velocimetry of bead suspensions and blood flows. Experiments in Fluids, 2005, 39(3), 505-511.
55 Hsu, C.J., Sheen, H.J., Wu, T.H., Chu, H.C., Chang, C.C. and Lei, U. Characteristics of Flow Field in A PZT Self-Pumping Micromixer. Asia -Pacific Conference of Transducers and Micro-Nano Technology (APCOT 2006)Singapore, 2006).
56 P. W. Runstadler, J.e.a. Diffuser Data Book (Creare Inc. Tech. Note, Honover, N.H., 1975).
57 Fox, R.W. and Kline, S.J. Flow regime Data and Design Methods for Curved Subsonic Diffuser. J. Basic Eng., 1962, 84, 303-312.
58 田明偉. 微流道中以不對稱擋體作流場導向的硏究 應用力學研究所 (國立臺灣大學, 台北,台灣, 2005).
59 Sheen, H.J., Hsu, C.J., Wu, T.H., Chu, H.C., Chang, C.C. and Lei, U. Experimental Study of Flow Characteristics and Mixing Performance in a PZT Self-pumping Micromixer. Sensors and Actuators A: Physical, 2007, Available online 6 March 2007.
60 Darabi, J., Rada, M., Ohadi, M. and Lawler, J. Design, fabrication, and testing of an electrohydrodynamic ion-drag micropump. Journal of Microelectromechanical Systems, 2002, 11(6), 684-690.
61 Choi, Y.H., Son, S. and Lee, S.S. Novel micropump using oxygen as pumping source. pp. 116-119 (Institute of Electrical and Electronics Engineers Inc., Kyoto, Japan, 2003).
62 Sim, W., Oh, J. and Choi, B. Fabrication, experiment of a microactuator using magnetic fluid for micropump application. Microsystem Technologies, 2006, 12(12), 1085-1091.
63 Manzoni, G., Heisig, S., Takano, T., Kocer, C., Goto, H., Mihara, T. and Maeda, R. Conception and design of a thermal valvless micropump. p. 60360 (International Society for Optical Engineering, Bellingham WA, WA 98227-0010, United States, Brisbane, Australia, 2006).
64 周卓明. 壓電力學. (全華科技圖書, 台北,台灣, 2003).
65 Inoue, S. Video microscopy. (Plenum Press, New York, 1986).
66 Born, M. and Wolf, E. Principles of optics : electromagnetic theory of propagation, interference and diffraction of light (Cambridge University Press, New York, 1999).
67 Adrian, R.J. Particle-Imaging Techniques for Experimental Fluid Mechanics. Annual Review of Fluid Mechanics, 1991, 23(1), 261-304.
68 Gravesen, P., Branebjerg, J. and Jensen, O.S. Microfluidics - a review. Journal of Micromechanics and Microengineering, 1993, 3(4), 168-182.
69 Schlichting, H. Boundary-layer theory (McGraw-Hill,, New York, 1979).
70 Uchida, S. The pulsating viscous flow superposed on the steady laminar motion of incompressible fluid in a circular pipe. Z. angew. Math. Phys. (ZAMP), 1956, 7(153), 403-422.
71 White, F.M. Fluid Mechanics. (McGraw-Hill, New York, 1979).
72 Fung, Y.C. Stochastic flow in capillary blood vessels. Microvasc. Res., 1973, 5, 34-48.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/30739-
dc.description.abstract摘要
本研究之目的為以非穩態流之流場特性開發一多功能微流體裝置,以作為未來實驗室晶片或是微型全分析系統之流體前置處理之應用,本裝置可以完成實驗室晶片或微型全分析系統在分析前之流體混合與微粒子分離的需求,本研究主要是利用非對稱擋體結構配合PZT壓電片的震動,可在裝置內產生一非穩態流場,此流場是本裝置擁有高混合效率與粒子分離效能的基礎。透過壓電片驅動電壓與工作頻率的改變,可以控制流體的流動方向。在工作頻率為1.0kHz時,可以分別在注入區與三叉型區域得到95%以上混合效率與接近100%的微粒子分離效率。
本裝置的體積為 ,而且只需一道光罩與一次電感耦合電漿蝕刻製程,就可以完成整個微流體裝置的製作,相較於前人開發的繁複製程,不僅簡化以提高良率,更大幅縮小元件的體積。本裝置於微流道中央配置一非對稱擋體,並於流道二側分別設置三個交錯排列的凸塊,再配合壓電片所產生的非穩態流場,而得到一高效能的微混合機制,此外,在另一裝置中,設置了三個注入流道的輸入口,使得流道在流經非對稱擋體前就可以預先進行混合,此設計的優點是二種待混合流體可以同時流經流道中的最窄處,充分發揮非對稱擋體後方流場迴流區的功能,達到良好的混合效果,有效縮短混合所需的長度與時間。
在非穩態流場狀況下,流體流經三叉型區域會有三個現象促使微粒子往二側輸出流道移動,首先流體在主流道流動時,微粒子會往流道二側靠近。其次,當流體移動至三叉型區域時,會因截面積擴大而降低流速,並在二側產生迴流區,此迴流區會將微粒子往三叉型區域二側帶動,最後在中央流道入口端會產生一對稱之渦漩流場,此渦漩可作為一阻擋微粒子前進之擋體,造成中央輸出流道的截面積縮減與流阻提昇,且由於渦漩的旋轉方向是由中央流道往二側輸出流道旋轉,因此可帶動微粒子往側邊輸出流道前進,在上述三種現象的配合下,可以有效達到分離微粒子的效果。
此外,本研究應用微粒子顯像測速儀配合同步觸發裝置,以全域照亮法將欲觀測之微流道全域照亮,以完整了解注入區之非穩態流場的速度結構與流場特性,並對觀測結果加以分析歸納。本研究預期整合上述的研究成果進行一系統開發,配合理論分析並結合相關影像處理技術將實驗結果量化,以對此一多功能微流體裝置的研究開發獲得完整成果,並建立起一套微流體系統開發的流程。
zh_TW
dc.description.abstractAbstract
In this study, the results of two unsteady flow microfluidic devices with multifunctions of fluid pumping, mixing and particle removal are presented. This present device was developed by utilizing the microchannel unsteady flow phenomenon, which was due to the oscillation of a PZT membrane. The flow direction can be controlled by the amplitude and the frequency of the driving power on the vibrating membrane. At a driving frequency of 1.0 kHz, the optimum mixing (over 95%) and particle removal efficiency (close to 100%) are observed at the inlet region and the trifurcate zone.
The fabrication process of this device was simple since only one photo mask, one ICP etching step and anodic glass bonding were required. As for the design of valveless micropump, one asymmetric obstacle was used for the flow-directing device instead of the diffuser/nozzle elements used in previous studies. A mixing region with triangular-wave structures and a trifurcate zone with triple outlet channels were integrated with an obstacle-type valveless micropump for the present multifunctional device. Two side inlet channels with an incline angle of 40° were placed on both sides of the center inlet channel. The fluids from the center and the side inlet channels flow through the throat between the obstacle and the side-wall. Two recirculation zones occurred upstream the obstacle to enhance the mixing efficiency.
Downstream the oscillating chamber, the main channel was connected to a trifurcate zone. The flow velocity in the main channel was measured by flow visualization. At the trifurcate zone, two recirculation zones and two vortices were induced on the both sides of the trifurcate zone and upstream the inlet of the center outlet channel due to the unsteady flow. These vortices served as obstacles to increase the flow resistance of the center channel. Based on the rotating direction of these recirculation zones and vortices, the particles were driven towards side outlet channels to achieve the removal effect.
Micro-particle-image-velocimetry (μ-PIV) with external trigger was used to measure the flow characteristics of the inlet region. Streamtrace patterns were obtained at the inlet region in a time period. Image processing was used to count the number of particles and to analyze the removal efficiency. This study indicates that this device fulfills the demands for sample preparing of bio-chemical or bio-medical systems. Moreover, the present device can be applied to μ-or lab-on-achip with integration of biosensors in the future.
en
dc.description.provenanceMade available in DSpace on 2021-06-13T02:14:04Z (GMT). No. of bitstreams: 1
ntu-96-D91543002-1.pdf: 4261201 bytes, checksum: d8b99419b3b77f7a3b5c3c189a575cca (MD5)
Previous issue date: 2007
en
dc.description.tableofcontents目次
摘要 I
Abstract III
目次 V
表目錄 VII
圖目錄 VIII
符號說明 XI
第一章 緒論 1
1-1 前言 1
1-2 研究動機 2
1-3 文獻回顧 4
1-3-1 無閥門微幫浦 4
1-3-2 微混合器 8
1-3-3 微粒子分離器 10
1-3-4 微粒子影像測速儀 14
1-4 研究目的 16
第二章 元件工作原理與設計 18
2-1 元件工作原理與設計 18
2-1-1無閥門微幫浦 18
2-1-2 微混合器 21
2-1-3 微粒子分離器 23
2-2 驅動源選擇 25
2-3 壓電材料選擇 26
2-4 製程選擇 28
2-4-1 微流道製程 28
2-4-2 微流道封裝接合製程 29
第三章 元件製作與實驗設備架設 32
3-1 光罩設計與製作 32
3-2 基材清潔 33
3-3 矽晶圓微流道製作 35
3-3-1黃光室微影製程 36
3-3-2光阻的選擇 36
3-3-3 微影製作流程 37
3-3-4矽晶圓微流道乾蝕刻製程 38
3-3-5電感耦合電漿蝕刻機工作原理與製作流程 39
3-4矽晶圓微流道之封裝 40
3-4-1 流道出入口開孔 40
3-4-2 陽極接合 41
3-4-3 壓電片的選用與黏貼 42
3-5流場視察設備架設 43
3-6微粒子顯像測速儀設備架設 44
3-7光媒粒子的選取 47
3-8 顯微物鏡 48
第四章 實驗結果與討論 52
4-1 壓電片震幅量測 52
4-2 微流道內非穩態流場之流場探討 54
4-3 主流道之流體流動速率量測 56
4-4 混合效能探討 60
4-5 混合區域內流場狀況 63
4-6 微粒子移動效率 72
4-7 不同粒徑粒子之混合與分離 74
第五章 結論與展望 76
5-1結論 76
5-2未來展望 80
參考文獻 82
發表著作 118
專利申請 119
dc.language.isozh-TW
dc.title以非穩態流場開發多功能微流體裝置之研究zh_TW
dc.titleDevelopment of Multifunctional Unsteady Flow Microfluidic Deviceen
dc.typeThesis
dc.date.schoolyear95-2
dc.description.degree博士
dc.contributor.oralexamcommittee吳光鐘(Kuang-Chong Wu),張正憲(Jeng-Shian Chang),李雨(U Lei),林世明(Shi-Ming Lin),楊龍杰(Lung-Jieh Yang)
dc.subject.keyword微流體,微幫浦,混合器,微粒子分離器,非穩態流場,zh_TW
dc.subject.keywordmicrofluidics,micropump,micromixer,particle separator,micro-TAS,en
dc.relation.page119
dc.rights.note有償授權
dc.date.accepted2007-05-23
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept應用力學研究所zh_TW
顯示於系所單位:應用力學研究所

文件中的檔案:
檔案 大小格式 
ntu-96-1.pdf
  目前未授權公開取用
4.16 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved