Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 海洋研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/30670
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor孫志陸(Chi-Lu Sun)
dc.contributor.authorYi-Cheng Fuen
dc.contributor.author傅以承zh_TW
dc.date.accessioned2021-06-13T02:11:50Z-
dc.date.available2007-07-03
dc.date.copyright2007-07-03
dc.date.issued2007
dc.date.submitted2007-06-21
dc.identifier.citation沈世傑主編 (1993) 台灣魚類誌. 國立台灣大學動物學系印行, 960pp
郭世榮 (1989) 墾丁國家公園海域產雀鯛科魚類攝食生態學之研究. 國立台灣大學海洋研究所碩士論文, 141pp 
鄒燦陽 (1983) 魚類攝食生態的研究. 國立台灣大學海洋研究所碩士論文, 86pp
Abbott IA and Hollenberg GJ (1976) Marine algae of California. Stanford University Press, 827pp
Allen GR (1975) Damselfishes of the Southern Seas. TFH Publications, Neptune City, New Jersey, 240pp
Allen GR (1991) Damselfishes of the world. Megus Publishers, Melle, Germany, 271pp
Clarke RD (1992) Effects of microhabitat and metabolic rate on food intake, growth and fecundity of two competing coral reef fishes. Coral Reefs 11: 199-205
Cocheret de la Morinière E, Pollux BJA, Nagelkerken I, Hemminga MA, Huiskes AHL and van der Velde G (2003) Ontogenetic dietary changes of coral reef fishes in the mangrove-seagrass-reef continuum: stable isotopes and gut-content analysis. Mar Ecol Prog Ser 246: 279-289
DeNiro MJ and Epstein S (1978) Influence of diet on the distribution of carbon isotope in animals. Geochim Cosmochim Acta 42: 495-506
DeNiro MJ and Epstein S (1981) Influence of diet on the distribution of nitrogen isotopes in animals. Geochim Cosmochim Acta 45: 341-351
Deudero S, Pinnegar JK, Polunin NVC, Morey G and Morales-Nin B (2004) Spatial variation and ontogenic shifts in the isotopic composition of Mediterranean littoral fishes. Mar Biol 145: 971-981
Dill LM (1983) Adaptive flexibility in the foraging behaviour of fishes. Can J Fish Aquat Sci 40: 398-408
Ebersole JP (1985) Niche separation of two damselfish species by aggression and differential microhabitat utilization. Ecology 66: 14-20
Fry B and Sherr EB (1984) δ13C measurements as indivators of carbon flow on marine and freshwater ecosystems. Contrib Mar Sci 27: 13-47
Geber RP and Marshall N (1974) Ingestion of detritus by lagoon pelagic community at Eniwetok Atoll. Limol Oceanogr 19: 815-824
Gerking SD (1994) Feeding ecology of fish. Academic Press, San Diego, 416pp
Guzman HM and Robertson DR (1989) Population and feeding responses of the corallivorous pufferfish Arothron meleagris to coral mortality in the eastern pacific. Mar Ecol Prog Ser 55: 121-131
Harvey CJ, Hanson PC, Essington TE, Brown PB and Kitchell JF (2002) Using bioenergetics models to predict stable isotope ratios in fishes. Can J Fish Aquat Sci 59: 115-124
Hebert CE, Shutt JL, Hobson KA and Weseloh DVC (1999) Spatial and temporal differences in the diet of Great Lakes herring gulls (Larus argentatus): evidence from stable isotope analysis. Can J Fish Aquat Sci 56: 323-338
Hiatt RW and Strasburg DW (1960) Ecological relationships of the fish fauna on coral reefs of the Marshall Islands. Ecol Monogr 30: 65-127
Hobson ES (1974) Feeding relationships of teleostean fishes on coral reefs in Kona, Hawaii. Fish Bull 72: 915-1031
Hobson KA (1999) Tracing origins and migration of wildlife using stable isotopes: a review. Oecologia 120: 314-326
Hsieh HL (1995) Spatial and temporal patterns of polychaete communities in a subtropical mangrove swamp: influences of sediment and microhabitat. Mar Ecol Prog Ser 127: 157-167
Hyslop EJ (1980) Stomach content analysis-a review of methods and their application. J Fish Biol 17: 411-429
Klumpp DW, McKinnon AD and Mundy CN (1988) Motile cryptofauna of a coral reef: abundance, distribution and trophic potential. Mar Ecol Prog Ser 45: 95-108
La Mesa M, Nacchi M and Sertorio TZ (2000) Feeding plasticity of Trematomus newnesi (Pisces, Nototheniidae) in Terra Nova Bay, Ross Sea, in relation to environmental conditions. Polar Biol 23: 38-45
Letourneur Y, Galzin R and Harmelin VM (1997) Temporal variations in the diet of the damselfish Stegastes nigricans (Lacepede) on a Reunion fringing reef. J Exp Mar Biol Ecol 217: 1-8
Letourneur Y (2000) Spatial and temporal variability in territoriality of a tropical benthic damselfish on a coral reef (Réunion Island). Environ Biol Fishes 57: 377-391
Lieske E and Myers R (1994) Collins Pocket Guide. Coral reef fishes. Indo-Pacific and Caribbean including the Red Sea. Haper Collins Publishers, 400pp
Lobel PS (1980) Herbivory by damselfishes and their role in coral reef community ecology. Bull Mar Sci 30: 273-289
Lugendo BR, Nagelkerken I, van der Velde G and Mgaya YD (2006) The importance of mangroves, mud and sand flats, and seagrass beds as feeding areas for juvenile fishes in Chwaka Bay, Zanzibra: gut content and stable isotope analyses. J Fish Biol 69: 1639-1661
MacDonald JS, Waiwood KG and Green RH (1982) Rates of digestion of different prey in atlantic cod (Gadus-morhua), ocean pout (Macrozoarces americanus), winter flounder (Pseudopleuronectes americanus), and American plaice (Hippoglossoides-platessoides). Can J Fish Aquat Sci 39: 651-659
Martin FD (1984) Diet of four sympatric species of Etheostoma (Pisces: Percidae) from southern Indiana: interspecific and intraspecific multiple comparisons. Environ Biol Fishes 11: 113-120
McClure MM, McIntyre PB and McCune AR (2006) Notes on the natural diet and habitat of eight danionin fishes, including the zebrafish Danio rerio. J fish Bio l69:553-570
McMahon KW, Johnson BJ and Ambrose WG (2005) Diet and movement of the killfish, Fundulus heteroclitus, in a Maine salt marsh assessed using gut contents and stable isotope analyses. Estuaries 28: 966-973
Minagawa M and Wade E (1984) Stepwise enrichment of 15N along food chains: further evidence and the relation between δ15N and animal age. Geochim Cosmochim Acta 48: 1135-1140
Myers RF (1991) Micronesian reef fishes. Second Ed. Coral Graphics, Barrigada, Guam, 298pp
Nagelkerken I and van der Velde G (2004) Are Caribbean mangroves important feeding grounds for juvenile reef fish from adjacent seagrass beds. Mar Ecol Prog Ser 274: 143-151
Peterson BJ, Howarth RW and Garritt RH (1985) Mutiple stable isotopes used to trace the flow of organic matterin estuarine food webs. Science 227: 1361-1363
Peterson BJ and Fry B (1987) Stable isotopes in ecosystem studies. Annu Rev Ecol Syst 18: 293-320
Pinnegar JK and Polunin NVC (1999) Differential fractionation of δ13C and δ15N among fish tissues: implications for the study of trophic interactions. Funct Ecol13: 225-231
Pinnegar JK, Campbell N and Polunin NVC (2001) Unusual stable isotope fractionation patterns observed for fish hostparasite trophic relationships. J Fish Biol 59: 494-503
Randall JE, Allen GR and Steene RC (1990) Fishes of the Great Barrier Reef and Coral Sea. University of Hawaii Press, Honolulu, Hawaii, 506pp
Robertson DR (1987) Responses of two coral reef toadfishes (Batrachoididae) to the demise of their primary prey, the sea urchin Diadema antillarum. Copeia 3: 637-642
Robertson DR (1996) Interspecific competition controls abundance and habitat use of territorial Caribbean damselfishes. Ecology 77: 885-899
Ruttenberg BI, Haupt AJ, Chiriboga AI and Warner RR (2005) Patterns, causes and consequences of regional variation in the ecology and life history of reef fish. Oecologia 145: 394-403
Sale PF (1971) Apparent effect of prior experience on a habitat preference exhibited by the reef fish, Dascyllus aruanus (Pisces: Pomacentridae). Anim Behav 19: 251-256
Sale PF (2002) Coral reef fishes: Dynamics and diversity in a complex ecosystem Academic Press, San Diego, 549pp
Sano M, Shimizu M and Nose Y (1984) Food habits of Teleostean reef fishes in Okinawa Island, southern Japan. Univ Mus of Tokyo Bull 25: 1-128
Schoener TW (1970) Non-synchronous spatial overlap of lizards in patchy habitats. Ecology 51: 408-418
Stromberg H. and Kvarnemo C (2005) Effects of territorial damselfish on cryptic bioeroding organisms on dead Acropora formosa. J Exp Mar Biol Ecol 327: 91-102
Williams DM (1986) Temporal variation in the structure of structure of reef slope fish communities (central Barrier Reef): Short-term effects of Acanthaster planci infestation. Mar Ecol Prog Ser 28: 157-164
Zaret T and Rand AS (1971) Competion in tropical stream fishes support for the competitive exclusion principle. Ecology 52: 336-342
Zeller DC (1988) Short-term effects of territoriality of a tropical damselfish and experimental exclusion of large fishes on invertebrates in algal turfs. Mar Ecol Prog Ser 44: 85-93
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/30670-
dc.description.abstract珊瑚礁魚類的食性一般具有適應性。在一個變動的環境中,攝食適應性強的魚種因為較能適應食物源的改變,所以族群受變動的影響較少,同時這些魚類也具有較大的機會入主新生的棲地。墾丁南灣核三廠入水口海域,原本以軸孔珊瑚為主要優勢種,但是近年來海葵大量的蔓生,改變魚類的棲息環境,連帶著兩種固曲齒雀鯛:迪克氏雀鯛 (Plectroglyphidodon dickii Lienard 1983) 和約島雀鯛 (P. johnstonianus Fowler and Ball 1924) 的分布有所改變。本論文將入水口海域環境分為兩個樣區:以軸孔珊瑚為主的A區以及以海葵為優勢的B區;並針對棲息在此的這兩種雀鯛,利用胃內含物分析和穩定同位素分析兩種方法,研究它們的食性變化,並探討這兩種雀鯛的食性在這不同環境中的適應能力。
  胃內含物及穩定同位素分析顯示,棲息在A、B兩區的約島雀鯛,皆以珊瑚蟲為主要食物來源。而迪克氏雀鯛的胃內含物中顯示,其在A區的主要食物來源為藻類 (33.4%) 和珊瑚蟲 (22.3%),在B區則為藻類 (35.8%) 和海葵 (28.2%);ANCOVA分析顯示,樣區間迪克氏雀鯛在同位素δ15N值上沒有差異 (F=0.36, df=1和26, P=0.56),而在同位素δ13C值上有差異 (F=162.07, df=1和26, P<0.01),表示在兩樣區中的個體有不同的有機碳來源,而此差異可能為樣區間食物來源差異所造成。此外,雖然藻類是迪克氏雀鯛胃內含物中的主要項目,但其與迪克氏雀鯛無論是在同位素δ13C或δ15N值之間的差異均超過一個食階 (δ13C值平均1∼2‰差異;δ15N值平均3.4‰差異),顯示藻類並非其有機碳或有機氮的主要來源;相對的,除了海葵和珊瑚蟲,多毛類和星蟲可能也是迪克氏雀鯛的重要有機碳和有機氮來源。上述的結果顯示,約島雀鯛食性不受不同樣區環境的影響,皆以珊瑚蟲為主要攝食對象;迪克氏雀鯛在以海葵為主的樣區中,攝食海葵的比例增加,亦即具有較高的食性適應性,此一特質可以解釋最近迪克氏雀鯛在一新生環境中個體大量增加的現象。
zh_TW
dc.description.abstractThe feeding habit of a coral reef fish is generally adaptable. While the environment is ever changing, the fish with a higher feeding plasticity would be less affected by changes of available foods. It is also more capable of immigrating into a newly developed habitat with suitable food substitutions. The substrate in the small embayment, the intake bay of the third nuclear power plant at Kenting, was previously dominated by Acropora corals. The recent outbreak of sea-anemones has eliminated branching corals in some areas. It also occurred that more Plectroglyphidodon dickii had immigrated into these sea-anemone dominated habitats than its cogener P. johnstonianus. In this study, the reef area in the embayment was divided into two different zones, zone A dominated by branching corals and zone B, by sea-anemone. In order to study whether the distribution pattern was underlain by the food availability and feeding habit plasticity, both stomach content and stable isotope analyses were used to delineate feeding habits of these two damselfishes at two different zones.
Both analyses showed that coral polyps were the major food source for P. johnstonianus from both zones (70.0%). The major food sources for P. dickii from zone A were algae (33.4%) and coral polyps (22.3%) while in zone B it mainly took algae (35.8%) and sea anemones (28.2%). ANCOVA analysis showed that, for P. dickii, difference between sample sites was significant in δ13C values, but not in δ15N values, indicating that P. dickii might have accessed different sources of organic carbon. This is consistent with the finding from stomach content analysis that the fish had taken different foods in the two zones. Meanwhile, differences in both δ13C and δ15N values between P. dickii and algae are higher than per-trophic level increase, indicating that algae might not be as important as the stomach content showed. Instead, in addition to coral polyps and sea-anemones, polychaete and sipuncula are possibly its major food source. Overall, P. dickii used sea-anemones to substitute coral polyps in the diet in the sea-anemone dominated habitat, thus showing a higher feeding plasticity than P. johnstonianus. This may help explain the recent dramatic occurrence of P. dickii in the newly developed habitat.
en
dc.description.provenanceMade available in DSpace on 2021-06-13T02:11:50Z (GMT). No. of bitstreams: 1
ntu-96-R94241206-1.pdf: 1396573 bytes, checksum: 84e1f9ba43d6feefea8904454101911d (MD5)
Previous issue date: 2007
en
dc.description.tableofcontents謝辭……………………………………………………………………Ⅰ
中文摘要………………………………………………………………Ⅱ
英文摘要………………………………………………………………Ⅲ
目錄……………………………………………………………………Ⅳ
壹、前言……………………………………………………………… 1
貳、材料與方法……………………………………………………… 4
一、魚種描述……………………………………………………4
二、研究地點……………………………………………………4
三、取樣及實驗項目……………………………………………5
四、胃內含物分析………………………………………………5
五、穩定同位素分析……………………………………………6
六、資料分析……………………………………………………8
叁、結果………………………………………………………………10
一、胃內含物分析…………………………………………… 10
(一)、迪克氏雀鯛……………………………………………10
(二)、約島雀鯛………………………………………………12
二、穩定同位素分析………………………………………… 14
肆、討論………………………………………………………………20
一、迪克氏雀鯛的食性………………………………………20
二、約島雀鯛食性……………………………………………21
三、穩定同位素分析結果……………………………………22
伍、參考文獻…………………………………………………………25
陸、圖…………………………………………………………………30
柒、表…………………………………………………………………45
dc.language.isozh-TW
dc.title台灣南部珊瑚礁海域兩種固曲齒雀鯛食性適應性之研究 - 利用胃內含物和穩定同位素分析zh_TW
dc.titlePlasticity of feeding habits of two Plectroglyphidodon damselfishes on coral reefs at southern Taiwan, evidence from stomach content and stable isotope analysesen
dc.typeThesis
dc.date.schoolyear95-2
dc.description.degree碩士
dc.contributor.coadvisor詹榮桂(Rong-Quen Jan)
dc.contributor.oralexamcommittee陳仲吉(Chung-Chi Chen),高樹基(Shuh-Ji Kao)
dc.subject.keyword穩定同位素,雀鯛,適應性,食性,胃內含物,珊瑚礁,迪克氏雀鯛,約島雀鯛,zh_TW
dc.subject.keywordStable isotope,damselfish,plasticity,feeding habits,gut content,coral reef,plectroglyphidodon dickii,plectroglyphidodon johnstonianus,en
dc.relation.page59
dc.rights.note有償授權
dc.date.accepted2007-06-25
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept海洋研究所zh_TW
顯示於系所單位:海洋研究所

文件中的檔案:
檔案 大小格式 
ntu-96-1.pdf
  目前未授權公開取用
1.36 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved