Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 森林環境暨資源學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/30668
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor鹿兒陽
dc.contributor.authorChih-Yi Leeen
dc.contributor.author李治逸zh_TW
dc.date.accessioned2021-06-13T02:11:46Z-
dc.date.available2007-07-19
dc.date.copyright2007-07-19
dc.date.issued2007
dc.date.submitted2007-06-21
dc.identifier.citation王相華、潘富俊、劉景國、于幼新、洪聖峰 (2000) 台灣北部福山試驗林永久樣區之植物社會分類及梯度分析。台灣林業科學 15:411-428。
林光清、洪富文、程煒兒、蔣先覺、張雲翔 (1996) 福山試驗林土壤調查與分類。台灣林業科學 11:159-174。
林則桐、馬復京、張乃航 (1995) 福山試驗林的植物社會與天然更新之研究。林業試驗所百週年慶學術研討會論文集。71-81頁。
林國銓、黃吳清標、劉政哲 (1997) 福山試驗林天然闊葉樹之物候現象。台灣林業科學 12(3):347-353。
陳主恩 (1999) 福山試驗林台灣獼猴(Macaca cyclopis)對於植物種子傳播的影響。國立臺灣大學動物學硏究所碩士論文。
張可揚 (1999) 宜蘭福山試驗林台灣彌猴(Macaca cyclopis)之覓食策略。國立臺灣大學動物學硏究所碩士論文。
楊淑燕 (1996) 關刀溪森林生態系林下植群與昆蟲相之關係。國立中興大學植物學研究所碩士論文。
董景生 (1997) 樟科植物蟲癭多樣性及土肉木蝨蟲癭的形成。國立台灣大學森林環境暨資源學系碩士論文。
董景生、楊平世、楊曼妙 (2006) 台灣蟲癭寄主植物之類型分析。台灣林業科學 21(2):205-214。
郭奇芊 (1999) 福山試驗林大赤鼯鼠(Petaurista petaurista)之食性、活動範圍及活動模式。國立臺灣大學動物學硏究所碩士論文。
趙榮台、范義彬、袁艾倫、莊鈴木、陳一銘 (1999) 福山試驗林的大型蛾類(鱗翅目:蠶蛾總科、天蛾總科)。台灣林業科學 14:469-478。
劉育延 (2006) 福山三種地形主要樹種葉部養分濃度之季節變化。國立台灣大學森林環境暨資源學系碩士論文。
Aide, T. M. and J. K. Zimmerman (1990) Patterns on insect herbivory, growth, and survivorship in juveniles of a neotropical liana. Ecology 71:1412-1421.
Allen, D. C. and J. E. Coufal (1984) Introduction to forest entomology. Syracuse University Press, Syracuse, New York.
Almeida, F. V. M., J. C. Santos, F. A. O. Silveira and G. W. Fernandes (2006) Distribution and frequency of galls induced by Anisodiplosis waltheriae Maia (Diptera: Cecidomyiidae) on the invasive plant Waltheria indica L. (Sterculiaceae). Neotropical Entomology 35:435-439.
Alonso, C. and C. M. Herrera (2000) Seasonal variation in leaf characteristic and food selection by larval noctuids on an evergreen Mediterranean shrub. Acta Oecologica, 21:257-265.
Baraza, E., J. M. Gomez, J. A. Hodar, and R. Zamora (2004) Herbivory has a greater impact in shade than in sun response of Quercus pyrenaica seedlings to multifactorial environmental variation. Canadian Journal of Botany 82:357-364.
Barone, J. A (1998) Host-specificity of folivorous insects in a moist tropical forest. Journal of Animal Ecology 67:400-409.
Basset, Y. (1991) The spatial distribution of herbivory, mines and galls within an Australian rain forest tree. Biotropica 23:271-281.
Basset, Y. (1994) Palatability of tree foliage to chew insects: a comparison between a temperate and a tropical site. Acta Oecologica 15: 181-191.
Belovsky, G. E. and J. B. Slade (2000) Insect herbivory accelerates nutrient cycling and increases plant production. PNAS 97:14412-14417.
Berryman, A. A. (1986) Forest insects: principles and practice of population management. Plenum Press. New York and London.
Brunt, C., J. Read and G. D. Sanson (2006) Changes in resource concentration and defense during leaf development in a tough-leaved (Nothofagus moorei) and soft-leaved (Toona ciliata). Oecologia 148:583-592.
Bryant, J. P., F. S. III and D. R. Klein (1983) Carbon/nutrient balance of boreal plants in relation to vertebrate herbivory. Oikos 40:357-368.
Chapin, F. S. III, D. A. Johnson and J. D. McKendrick (1980) Seasonal movement of nutrients in plants of differing growth form in an Alaskan tundra ecosystem: implications for herbivory. The Journal of Ecology 68:189-209.
Chapin, F. S. III and R. A. Kedrowski (1983) Seasonal changes in nitrogen and phosphorus fractions and autumn retranslocation in evergreen and deciduous taiga trees. Ecology 64:376-391.
Chapman, S. K., S. C. Hart, N. S. Cobb, T. G. Whitham and G. W. Koch (2003) Insect herbivory increases litter quality and decomposition: an extension of the acceleration hypothesis. Ecology 84:2867-2876.
Choong, M. F. (1996) What makes a leaf tough and how this affects the pattern of Castanopsis fissa leaf consumption by caterpillars. Functional Ecology 10:668-674.
Coley, P. D. (1983a) Intraspecific variation in herbivory on two tropical tree species. Ecology 64:426-433.
Coley, P. D. (1983b) Herbivory and defense characteristics of tree species in a lowland tropical forest. Ecological Monographs 53:209-233.
Coley, P. D., J. P. Bryant and F. S. Chapin III (1985) Resource availability and plant antiherbivore defense. Science 230:895-899.
Coley, P. D. and T. M. Aide (1991) Comparison of herbivory and plant defenses in temperate and tropical broad-leaved forests. In “Plant-animal interaction: evolutionary ecology in tropical and temperate regions” (P. W. Price, T. M. Lewinsohn, G. W. Fernandes and W. W. Benson, ed.) John Wiley and Sons, Canada.
Coley, P. D. and J. A. Barone (1996) Herbivory and plant defense in tropical forests. Annual Review of Ecology and Systematics 27:305-335.
Coley, P. D., M. Massa, C. E. Lovelock and K. Winter (2002) Effects of elevated CO2 on foliar chemistry of saplings of nine species of tropical tree. Oecologia 133:62-69.
Conn, E. E. (1979) Cyanide and cyanogenic glycosides. In “Herbivores: their interaction with secondary plant metabolites. (G. A. Rosenthal and D. H. Janzen, ed.) Academic Press, New York.
Dajoz, R. (2000) Insects and forests : the role and diversity of insects in the forest environment. Intercept, New York.
Danell, K. and R. Bergström (2002) Mammalian herbivory in terrestrial environments. In “Plant-animal interaction: an evolutionary approach” (C. M. Herrera and O. Pellmyr, ed.) Blackwell, Oxford.
De Groat, R. C. (1967) Twig and branch mortality of American beech infested with oystershell scale. Forest Science 13:448-455.
Dobzhansky, T. (1950) Evolution in tropics. American Scientist 38:209-221.
Dorsey, C. K. (1956) The bionomics of certain insects associated with oak wilt withparticular reference to the Nitidulidae. Journal of Economic Entomology 49:219.
Dudt, J. F. and D. J. Shure (1994) The influence of light and nutrients on foliar phenolics and insect herbivory. Ecology 75:86-98.
Editorial Committee of the Flora of Taiwan (1993) Flora of Taiwan. Second edition, volume three. National Science Council of the Republic of China.
Editorial Committee of the Flora of Taiwan (1994) Flora of Taiwan. Second edition, volume one. National Science Council of the Republic of China.
Editorial Committee of the Flora of Taiwan (1996) Flora of Taiwan. Second edition, volume two. National Science Council of the Republic of China.
Editorial Committee of the Flora of Taiwan (1998) Flora of Taiwan. Second edition, volume four. National Science Council of the Republic of China.
Erwin, T. L. (1982) Tropical forests: their richness in Coleoptera and other arthropod species. Coleopterists Bulletin 36:74-75.
Feeny, P. (1968) Effect of oak leaf tannins on larval growth of the winter moth Operophtera brumata. Journal of Insect Physiology 14: 805–817.
Feeny, P. (1969) Inhibitory effect of oak leaf tannins on the hydrolysis of proteins by trypsin. Phytochemistry 8: 2119–2126.
Feeny, P. (1970) Seasonal changes in Oak leaf tannins and nutrients as a cause of spring feeding by winter moth caterpillars. Ecology 51:565-581.
Feeny, P. (1976) plant apparency and chemical defense. Recent Advances in Phytochemistry 10:1-40.
Feeny, P. and H. Bostock (1968) Seasonal changes in the tannin content of oak leaves. Phytochemistry 7:871-880.
Fischer, A. G. (1960) Latitudinal variations in organic diversity. Evolution 14:64-81.
Forkner, R. E., R. J. Marquis and J. T. Lill (2004) Feeny revisited: condensed tannins as anti-herbivore defenses in leaf-chewing herbivore communities of Quercus. Ecological Entomology 29:174-187.
Fortin, M. and Y. Mauffette (2002) The suitability of leaves from different canopy layers for a generalist herbivore (Lepidoptera: Lasiocampidae) foraging on sugar maple. Canadian Journal of Forest Research 32:379-389.
Frost, C. J. and M. D. Hunter (2004) Insect canopy herbivory and frass deposition affect soil nutrient dynamics and export in oak mesocosms. Ecology 85: 3335-3347.
Futuyma, D. (1976) Food plant specialization and environmental predictability in Lepidoptera. American Naturalist 110:285-292.
Hairston, N. G., F. E. Smith and L. B. Slobodkin (1960) Community structure, population control, and competition. American Naturalist 94:421-425.
Hattenschwiler, S. and P. M. Vitousek (2000) The role of polyphenols in terrestrial ecosystem nutrient cycling. Trees 15:238-243.
Haukioja, E. P. Niemelä and S. Sirén (1985) Foliage phenols and nitrogen in relation to growth, insect damage, and ability to recover after defoliation, in the mountain birch Betula pubescens ssp. tortuosa. Oecologia (Berlin) 65:214-222.
Hoffman, G. D. and P. B. Mcevoy (1985) The mechanism of trichome resistance in Anaphalis magaritacea to the meadow spittlebug Philaenus spumarius. Entomologia Experimentalis et Applicata 39:123-129.
Howe, F. H., L. C. Westley (1988) Ecological relationship of plants and animals. Oxford University Press, New York.
Hulley, P. E. (1988) Caterpillar attacks plant mechanical defense by mowing trichomes beforefeeding. Ecological Entomology 13:239–241.
Hyvärinen, M. B. Walter and R. Koopmann (2003) Impact of fertilization on phenol content and growth rate of Cladina sttellaris: a test of the carbon-nutrient balance hypothesis. Oecologia 134:176-181.
Jung, H. G. and M. S. Allen (1995) Characteristics of plant cell walls affecting intake and digestibility of forages by ruminants. Journal of Animal Science 73:2774-2790.
Klocke, J. A. and Chan, B. G. (1982) Effects of cotton condensed tannin on feeding and digestion in the cotton pest, Heliothis zea. Journal of Insect Physiology 28:911–915.
Knepp, R. G., J. G. Hamilton, J. E. Mohan. A. R. Zangerl, M. R. Berenbaum and E. H. DeLucia (2005) Elevated CO2 reduces leaf damage by insect herbivores in forest community. New Phytologist 167:207-218.
Kudo, G. (1996) Herbivory pattern and induced responses to simulated herbivory in Quercus monogolica var. grosseserrata. Ecological Research 11:283-289.
Lambdon, P. W., M. Hassall, R. R. Boar and R. Mithen (2003) Asynchrony in the nitrogen and glucosinolate leaf-age profile of Brassica: is this a defensive strategy against generalist herbivores? Agriculture, Ecosystems and Environment 97:205-214.
Levin, D. A. (1973) The role of trichomes in plant defense. Quarterly Review of Biology 48:3-15.
Lewington, R. and D. Streeter (1993) The natural history of the oak tree. D. K. Limited, London. pp. 40-43.
Lewinsohn, T. M., G. W. Fernandes, W. W. Benson and P. W. Price (1991) Introduction: historical roots and current issues in tropical evolutionary ecology. In “Plant-animal interaction: evolutionary ecology in tropical and temperate regions” (P. W. Price, T. M. Lewinsohn, G. W. Fernandes and W. W. Benson, ed.) John Wiley and Sons, Canada.
Lowman, M. D. (1984) An assessment of techniques for measuring herbivory: is rainforest defoliation more intensethan we thought? Biotropica 16:264-268.
Lowman, M. D. (1985) Temporal and spatial variability in insect grazing of the canopies of five Australian rainforest tree species. Australian Journal of Ecology 10:7-24.
Lowman, M. D. (1992) Leaf growth dynamics and herbivory in five species of Australian rain-forest canopy trees. Journal of Ecology 80:433-447.
Lowman, M. D. (1995) Herbivory as a canopy process in rain forest trees. In “Forest canopy”(M. D. Lowman and N. Nadkarni, ed.) Academic Press Inc., San Diego. pp. 431-455.
Lowman, M. D. and J. D. Box (1983) Variation in leaf toughness and phenolic content among five species of Australian rain forest trees. Australian Journal of Ecology 8:17-25.
Lowman, M. D. and H. Heatwole (1992) Spatial and temporal variability in defoliation of Australian eucalypts. Ecology 73:129-142.
MacArthur, R. H. (1972) Geographical ecology. Harper and Row, New York.
MacDonald, K. P., C. E. Bach (2005) Resistance and tolerance to herbivory in Salix cordata are affected by different environmental factors. Ecological Entomology 30:581-589.
Marquis, R. J., I. R. Diniz and H. C. Morais (2001) Patterns and correlates of the interspecific variation in foliar insect herbivory and pathogen attack in Brazilian cerrado. Journal of Tropical Ecology 17:127-148.
Marschner, H. (1995) Mineral nutrition of higher plants. Academic Press, San Diego, London.
Mattson, W. J. (1980) Herbivory in relation to plant nitrogen content. Annual Review of Ecology and Systemetics 11:119-161.
Mazía, C. N., T. Kitzberger and E. J. Chaneton (2004) Interannual changes in folivory and bird insectivory along a natural productivity gradient in northern Patagonian forests. Ecography 27:29-40.
Mckey, D. (1979) The distribution of secondary compounds within plants. In “Herbivores: their interaction with secondary plant metabolites. (G. A. Rosenthal and D. H. Janzen, ed.) Academic Press, New York.
Moore, P. D. and S. B. Chapman. (1986) Methods in plant ecology. 2nd edition. Blackwell Scientific Publications. Oxford, London, Edinburgh.
Murali, K. S. and R. Sukumar (1993) Leaf flushing phenology and herbivory in a tropical dry deciduous forest, southern India. Oecologia 94: 114-119.
Niemelä, P., E. Haukioja (1982) Seasonal patterns in species richness of herbivores: Macrolepidopteran larvae of Finnish deciduous trees. Ecological Entomology 7:169-175.
Novotny, V., S. E. Miller, J. Leps, Y. Basset, D. Bito, M. Janda, J. Hulcr, K. Damas and G. D. Weiblen (2004) No tree an island: the plant-caterpillar food web of a secondary rain forest in New Guinea. Ecology Letters 7:1090-1100.
Oghiakhe, S., L. E. N. Jackai, W. A. Makanjuola and C. J. Hodgson (1992) Morphology, distribution, and the role of trichomes in cowpea (Vigna unguiculata) resistance to the legume pod borer, Maruca testulalis (Lepidoptera: Pyralidae). Bulletin of Entomological Research 82:499–505.
Osier, T. L., S. Y. Hwang and R. L. Lindroth (2000) Effects of phytochemical variation in quaking aspen Populus tremuloides clones on gypsy moth Lymantria dispar performance in the field and laboratory. Ecological Entomology 25:197-207.
Peeters, P. J. (2002) Correlations between leaf structural traits and the densities of herbivorous insect guilds. Biological Journal of the Linnean Society 77:43-65.
Perry, D. A. (1994) Forest ecosystems. Johns Hopkins, London.
Price, P. W. (1991) Patterns in communities along latitudinal gradients. In “Plant-animal interaction: evolutionary ecology in tropical and temperate regions” (P. W. Price, T. M. Lewinsohn, G. W. Fernandes and W. W. Benson, ed.) John Wiley and Sons, Canada.
Rausher, M. D. and P. Feeny (1980) Herbivory, plant density, and plant reproductive success: the effect of Battus philenor on Aristolochia reticulate. Ecology 61: 905-917.
Riipi, M., V. Ossipov, K. Lempa, E. Haukioja, J. Koricheva, S. Ossipova and K. Pihlaja (2002) Seasonal changes in birch leaf chemistry: are there trade-off between leaf growth and accumulation of phenolics? Oecologia 130:380-390.
Riley, J. M. and R. H. Jones (2003) Factors limiting regeneration of quercus alba and Cornus florida in formerly cultivated coastal plain sites, South Carolina. Forest ecology and management 177: 571-586.
Robbins, C. T., T. A. Hanley, A. E. Hagerman, O. Hjeljord, D. L. Baker, C. C. Schwartz and W. W. Mautz (1987a) Role of tannins in defending plants against ruminants: reduction in protein availability. Ecology 68:98-107.
Robbins, C. T., S. Mole, A. E. Hagerman and T. A. Hanley (1987b) Role of tannins in defending plants against ruminants: reduction in dry matter digestion? Ecology 68:1606-1615.
Rodriguez, J. G. (1960) Nutrition to the host and reaction to pests. In “Biological chemical control of plants and animal pest” (L. P. Reipz, ed.) American Association for the Advancement and Science, Washington.
Rossiter, M. J. C. Schultz and I. T. Baldwin (1988) Relationships among defoliation, red oak phenolics, and gypsy moth growth and reproduction. Ecology 69:267-277.
Ruusila, V., J. Morin, T. van Ooik, I. Saloniemi, V. Ossipov and E. Haukioja (2005) A short-lived herbivore on a long-lived host: tree resistance to herbivory depends on leaf age. Oikos 108:99-104.
Selman, B. and M. D. Lowman (1983) The biology and herbivory rates of Novacastria nothofagi Selman (Coleoptera: Chrysomelidae), a new genus and species on Nothofagus moorei in Australian temperate rain forest. Australian Journal of Zoology 31:179-191.
Scheirs, J., I. Vandevyvere and L. De Bruyn, (1997) Influence of monocotyl leaf anatomy on the feeding pattern of a grass-mining agromyzid (Diptera). Annals of the Entomological Society of America 90:646-654.
Schoonhoven, L. M., J. J. A. van Loon and M. Dicke (2005) Insect-plant biology. Oxford University Press, New York.
Schowalter, T. D., J. W. Webb and D. A. Crossley (1981) Community structure and nutrient content of canopy arthropods in clearcut and uncut forest ecosystems. Ecology 62:1010-1019.
Schowalter, T. D., W. W. Hargrove and D. A. Crossley (1986) Herbivory in forested ecosystems. Annual Review of Entomology 31:177-196.
Schultz, J. C. and I. T. Baldwin (1982) Oak leaf quality declines in response to defoliation by gypsy moth larvae. Science 217: 149-151.
Scogings, P. F., L. E. Dziba and I. J. Gordon (2004) Leaf chemistry of woody plants in relation to season, canopy retention and goat browsing in a semiarid subtropical savanna. Austral Ecology 29:278-286.
Scriber, J. M. and F. Slansky (1981) Nutritional ecology of immature insects. Annual Review of Entomology 26:183-211..
Slansky, F. and P. Feeny (1977) Stabilization of the rate of nitrogen accumulation by larvae of the cabbage ltivated food plants. Ecological Monographs 47:209-228.
Su, H. J. (1985) Studies on the climate and vegetation types of the natural forests in Taiwan.(III). A Scheme of Geographical Climatic Regions. Quarterly Journal of China Forestry 18:33-44.
Turlings, T. C. J., J. H. Tumlinson and W. J. Lewis (1990) Exploitation of herbivore-induced plant odors by host-seeking parasitic wasps. Science 250:1251-1253.
Unsicker, S. B. and K. Mody (2005) Influence of tree species and compass bearing on insect folivory of nine common tree species in the West African savanna. Journal of Tropical Ecology 21:227-231.
van Dam, N. M., T. J. de Jong, Y. Iwasa and T. Kubo (1996) Optimal distribution of defenses: are plant smart investors? Functional Ecology 10:128-136.
Wallner, W. E. and G. S. Walton (1979) Host defoliation – possible determinant of gypsy moth (Lepidoptera Lymantriidae) population quality. Annals of the Entomological society of America 72:62-67.
Waterman, P. G., and S. Mole (1994) Analysis of phenolic plant metabolites. Oxford Blackwell Scientific Publications. London. pp. 66-103.
Williams, A. G. and T. G. Whitham (1986) Premature leaf abscission: an induced plant defense against gall aphids. Ecology 67:1619-1627.
Williams-Linera, G. and F. Herrera (2003) Folivory, herbivores, and environment in the understory of a tropical montane cloud forest. Biotropica 35:67-73.
Xiang, Hui and J. Chen (2004) Interspecific variation of plant traits associated with resistance to herbivory among four species of Ficus (Moraceae). Annals of Botany 94:377-384.
Zangerl, A. R., J. G. Hamilton, T. J. Miller, A. R. Crofts, K. Oxborough, M. R. Berenbaum and E. H. De Lucia (2002) Impact of folivory on photosynthesis is greater than the sum of its holes. PNAS 99:1088-1091.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/30668-
dc.description.abstract本研究主要目的在了解台灣森林生態系中的植食現象,研究區域位於宜蘭福山試驗林,屬於亞熱帶雨林氣候,我們選擇福山9個常見樹種(山龍眼、黃杞、白校欑、三斗石櫟、錐果櫟、長葉木薑子、紅楠、綠樟及山紅柿),實驗從2005年3月24日開始,至2006年1月16日為止,實驗期間共採集植物樣本8次。本研究觀察7種葉片受害型式(咀嚼式、骨骼化、潛葉、蟲癭、捲葉、刺吸式及撕裂)中以葉片遭受咀嚼式型式的受害頻度最高,顯示森林內的各種植食動物中,應以咀嚼式口器昆蟲的數量佔有較高比例;本研究以葉面積損失量來量化福山地區主要樹種植食程度,植食程度在種間及月份間具有顯著差異,各樹種8月至11月葉面積損失平均值由高至低分別為黃杞(14.52 %)、山龍眼(11.56 %)、三斗石櫟(10.86 %)、白校欑(7.60 %)、長葉木薑子(6.77 %)、錐果櫟(6.77 %)、紅楠(6.00 %)、山紅柿(5.72 %)及綠樟(3.81 %),綜合整理9個樹種葉面積損失比率後得出福山試驗林2005年因植食行為造成的年葉面積損失為8.18 %,此外各樹種葉面積損失大部分出現在幼葉階段;本研究分析5個主要影響植食性動物取食行為的葉部特性(葉硬度、全酚類化合物、縮聚單寧、葉部氮及磷),結果發現5個葉部特性在樹種間均有顯著差異,其中以綠樟與黃杞的植食程度較符合前人研究中對葉部特性所預測出的結果,植食程度最低的綠樟葉硬度較高、全酚類化合物及縮聚單寧的含量較多、氮與磷濃度較低,而植食程度最高的黃杞葉硬度較低、全酚類化合物及縮聚單寧的含量較少、氮與磷濃度較高;5個葉部特性在月份間均有顯著差異,各樹種的葉硬度、全酚類化合物與縮聚單寧會在幼葉最低,之後隨著葉齡增加而上升,葉部氮與磷濃度則隨葉齡增加而逐漸降低,這可以解釋為什麼幼葉的植食程度高於成熟葉;各樹種植食程度與幼葉及成熟葉葉部特性間相關分析中,葉硬度與氮濃度呈現顯著相關,顯示葉硬度與氮濃度對植食程度而言最具有指標性。zh_TW
dc.description.abstractThis study investigated herbivory in the subtropical forest of Fushan experimental forest, northeastern of Taiwan. Nine common species of Fushan were selected in this study, including Helicia formosana, Engelhardia roxburghiana, Castanopsis cuspidata var. carlesii f. sessilis, Pasania hancei var. ternaticupula f. ternaticupula, Cyclobalanopsis longinux var. longinux, Litsea acuminate, Machilus thunbergii, Meliosma squamulata, and Diospyros morrisiana. Leaves were sampled on eight sampling dates from 24 March, 2005 to 16 January, 2006. Seven types of leaf damages were examined on each leaf, including chew, skeletonize, mine, insect gall, roll, suck and laceration. Among seven types of leaf damages, chewing occurred most frequently on leaves. In addition, the leaf area loss was used as an index to evaluate the level of herbivory. Leaf area loss differed significantly among species and sampling dates. The leaf area loss of mature leaves, average from Aug11, Sep13 and Nov06, was 14.52 % for E. roxburghiana, H. formosana (11.56 %), P. hancei var. ternaticupula f. ternaticupula (10.86 %), C. s cuspidata var. carlesii f. sessilis (7.60 %), L. acuminate (6.77 %), C. longinux var. longinux (6.77 %), M. thunbergii (6.00 %), D. morrisiana (5.72 %), and M. squamulata (3.81 %). From nine species, the leaf area loss averaged 8.21 %. For all nine species, leaf area loss occurred mostly before leaves matured. All five leaf traits differed significantly among species. Herbivory rate of M. squamulata and E. roxburghiana were more consistent with the palatability predicted by leaf traits. With the lowest leaf area loss, M. squamulata had higher leaf toughness, total phenol and condense tannin, and lower N and P concentration. By contrast, with the highest leaf area loss, E. roxburghiana had lower leaf toughness, total phenol and condense tannin, and higher N and P concentration. Leaf toughness, total phenol and condense tannin were usually lower in young leaves, and then increased rapidly afterwards. By contrast, the foliar concentrations of N and P decreased in aging leaves. Due to their higher palatability, young leaves suffered higher loss of leaf area. The leaf area loss of nine species was significantly correlated with leaf toughness and nitrogen concentration, suggesting that toughness and nitrogen concentration were the better indicators of herbivory.en
dc.description.provenanceMade available in DSpace on 2021-06-13T02:11:46Z (GMT). No. of bitstreams: 1
ntu-96-R93625024-1.pdf: 905166 bytes, checksum: 47f882ecbb9858681411f748dc6242e2 (MD5)
Previous issue date: 2007
en
dc.description.tableofcontents前言 ……………………………………………………………………………..1
前人研究…………………………………………………………………………4
一. 各種森林型態的植食程度……………………………………………...4
二. 各種口器傷害型式及影響……………………………………………...5
三. 植物防禦方式…………..…………………………………………….....8
四. 植物防禦理論…………………………….…………………………….11
材料與方法……………………………………….……………………………..15
一. 研究區概述…………………………….………………..…………….15
二. 樣本採集……………………………….……………..……………….17
三. 實驗室分析…………………………….………………..…………….18
四. 資料分析……………………………….………………..…………….21
結果……………………………………………….……………………………..24
一. 葉片受害型式………………………..….…………....……………….24
二. 葉面積損失比率..……………..………….……………..…………….28
三. 葉部特性………………………………….…..………..……………...32
四. 植食程度與葉部特性間之相關性……………………..…………….40
討論……………………………………………………………………………..41
一. 樹種的選擇……………………………………………..…………….41
二. 葉片受害型式……………………………………..………………….41
三. 葉面積損失………………………………………..………………….44
四. 植物種間差異……………………………………..………………….45
五. 植食行為之時間變化……………………………..………………….46
六. 撕裂造成的葉面積損失…………………………..………………….47
七. 葉部特性的時間變化……………………………..………………….48
八. 樹種間葉部特性與植食程度之相關性…………..………………….50
結論……………………………………………………………………………..53
參考文獻………………………………………………………………………..56
附錄…………………………………………………………………………..…95
dc.language.isozh-TW
dc.subject縮聚單寧zh_TW
dc.subject福山試驗林zh_TW
dc.subject亞熱帶雨林zh_TW
dc.subject植食現象zh_TW
dc.subject植食動物zh_TW
dc.subject咀嚼式口器昆蟲zh_TW
dc.subject葉硬度zh_TW
dc.subject全酚類化合物zh_TW
dc.subjectcondensed tanninsen
dc.subjectFushan experimental foresten
dc.subjectsubtropical rain foresten
dc.subjectherbivoryen
dc.subjectherbivoreen
dc.subjectchewer insecten
dc.subjectleaf toughnessen
dc.subjecttotal phenolen
dc.title福山試驗林九種常見樹種的植食現象及葉部特性zh_TW
dc.titleHerbivory and Leaf Characteristics of Nine Common Tree Species in Fushan Experimental Foresten
dc.typeThesis
dc.date.schoolyear95-2
dc.description.degree碩士
dc.contributor.oralexamcommittee趙榮台,林宗岐,黃紹毅
dc.subject.keyword福山試驗林,亞熱帶雨林,植食現象,植食動物,咀嚼式口器昆蟲,葉硬度,全酚類化合物,縮聚單寧,zh_TW
dc.subject.keywordFushan experimental forest,subtropical rain forest,herbivory,herbivore,chewer insect,leaf toughness,total phenol,condensed tannins,en
dc.relation.page100
dc.rights.note有償授權
dc.date.accepted2007-06-25
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept森林環境暨資源學研究所zh_TW
顯示於系所單位:森林環境暨資源學系

文件中的檔案:
檔案 大小格式 
ntu-96-1.pdf
  未授權公開取用
883.95 kBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved