Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 光電工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/30656
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor曾雪峰(Snow H. Tseng)
dc.contributor.authorWei-Chun Chungen
dc.contributor.author鐘煒竣zh_TW
dc.date.accessioned2021-06-13T02:11:25Z-
dc.date.available2009-07-03
dc.date.copyright2007-07-03
dc.date.issued2007
dc.date.submitted2007-06-22
dc.identifier.citation[1] K.L. Kelly, A.A. Lazarides, and G.C. Schatz, “Computational electromagnetics of metal nanoparticles and their aggregates,” IEEE Comp. Scie. Engi. , 67(2001).
[2] J.J. Storhoff, A.A. Lazarides, R.C. Mucic, C.A. Mirkin, R.L. Letsinger, and G.C. Schatz, “What Controls the Optical Properties of DNA-Linked Gold Nanoparticle Assemblies?” J. Am. Chen. Soc. 120, 1959(1998).
[3] S.J. Park, T.A. Taton, C.A. Mirkin, “Array-Based Electrical Detection of DNA with Nanoparticle Probes,” Science , 295, 1503(2002).
[4] S.J. Chen, F.C. Chien, G.Y. Lin, and K.C. Lee, “Enhancement of the Resolution of Surface Plasmon Resonance Biosensors by Control of the Size and Distribution of Nanoparticles,” Optics Letters, 29, 1390(2004).
[5] W.P. Hu, S.J. Chen, K.T. Huang, J.H. Hsu, W.Y. Chen, G.L. Chang, and K.A. Lai, “A Novel Ultrahigh-Resolution Surface Plasmon Resonance Biosensor with an Au Nanocluster-Embedded Dielectric Film,” Biosensors and Bioelec- tronics, 19, 1465(2004).
[6] J.C. Hulteen, D.A. Treichel, M.T. Smith, M.L. Duval, T R. Jensen, and R.P. van Duyne, “Nanosphere Lithography: Size-Tunable Silver Nanoparticle and Surface Cluster Arrays,” J. Phys, Chem. B, 103, 3854(1999).
[7] T.J. Silve and S.Schultz, “A Scanning Near-Field Optical Microscope for the Imaging of Magnetic Domains in Reflection,” Rev. Sci. Instrum, 67, 715 (1996).
[8] R.M. Stockle, Y.D. Suh, V. Deckert, and R. Zenobi, “Nanoscale Chemical Analysis by Tip-Enhanced Raman Spectroscopy,” Chem. Phys. Lett., 318, 131 (2000).
[9] D. B. Shao and S. C. Chen, 'Numerical simulation of surface-plasmon-assisted nanolithography,' Optics Express, vol. 13, pp. 6964-6973, 2005.
[10] R. W. Wood, Philos. Mag., vol. 4, pp. 396, 1902.
[11] U. Fano, J. Opt. Soc. Am, vol. 31, pp. 213, 1941.
[12] R. H. Ritchie, 'Plasma Losses by Fast Electrons in Thin Films,' Phys. Rev., vol. 106, pp. 874, 1957.
[13] E. A. Stern and R. A. Ferrell, 'Surface Plasma Oscillations of a Degenerate Electron Gas,' Physical Review, vol. 120, pp. 130-136, 1960.
[14] J. P. Kottmann and O. J. F. Martin, 'Spectral response of plasmon resonant nanoparticles with a non-regular shape,' Opt. Express, vol. 6, pp. 213, 2000.
[15] J. P. Kottmann and O. J. F. Martin, 'Retardation-induced plasmon resonances in coupled nanoparticles,' Opt. Lett., vol. 26, pp. 1096, 2001.
[16] J. o. P. Kottmann and O. J. F. Martin, 'Plasmon resonant coupling in metallic nanowires,' Opt. Express, vol. 8, pp. 655, 2001.
[17] S.A. Maier, P.G. Kik, and H.A. Atwater, “Observation of Coupled Plasmon- Polariton Modes in Au Nanopartical Chain Waveguides of Different Length: Estimation of Waveguide Loss,” Appl. Phys. Lett., 81, 1714(2002).
[18] S.A. Maier, P.G. Kik, and H.A. Atwater, “Optical Pulse Propagation in Metal Nanoparticle Chain Waveguide,” Phys. Rev. B, 67, 205402(2003).
[19] S. K. Gray and T. Kupka, 'Propagation of light in metallic nanowire arrays: Finite-difference time-domain studies of silver cylinders,' Phys. Rev. B, vol. 68, 2003.
[20] C. Rockstuhl, M. Salt, and H. Herzig, 'Application of the boundary-element method to the interaction of light with single and coupled metallic nanoparticles,' J. Opt. Soc. Am. A, vol. 20, pp. 1969, 2003.
[21] C. Rockstuhl, M. G. Salt, and H. P. Herzig, 'Analyzing the scattering properties of coupled metallic nanoparticles,' J. Opt. Soc. Am. A, vol. 21, pp. 1761, 2004.
[22] S. E. Sburlan, L. A. Blanco, and M. Nieto-Vesperinas, 'Plasmon excitation in sets of nanoscale cylinders and spheres,' Physical Review B, vol. 73, pp. 35403, 2006.
[23] V. Twersky, 'Multiple Scattering of Radiation by an Arbitrary Configuration of Parallel Cylinders,' The Journal of the Acoustical Society of America, vol. 24, pp. 42, 1952.
[24] V. Twersky, 'On Scattering of Waves by Random Distributions. I. Free-Space Scatterer Formalism,' Journal of Mathematical Physics, vol. 3, 1962.
[25] V. Twersky, 'Multiple Scattering of Electromagnetic Waves by Arbitrary Configurations,' Journal of Mathematical Physics, vol. 3, pp. 589, 1967.
[26] G. O. Olaofe, 'Scattering of two cylinders(Multiple scattering boundary value problem for two parallel circular cylinders),' RADIO SCIENCE, vol. 5, pp. 1351-1360, 1970.
[27] G. O. Olaofe, 'Scattering by an arbitrary configuration of parallel circular cylinders,' J. Opt. Soc. Am, vol. 60, pp. 1233–1236, 1970.
[28] D. Felbacq, G. Tayeb, and D. Maystre, 'Scattering by a random set of parallel cylinders,' J. Opt. Soc. Sm. A, vol. 11, pp. 2526, 1994.
[29] E. Moreno, D. Erni, C. Hafner, and R. Vahldieck, 'Multiple multipole method with automatic multipole setting applied to the simulation of surface plasmons in metallic nanostructures,' J. Am. Opt. Soc. A, vol. 19, pp. 101-111, 2002.
[30] A. Taflove and S.C. Hagness, Computational Electrodynamics: The Finite-difference Time-Domain Method, Second Edition , (Artech House, Boston, 2000).
[31] C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles, 2nd ed. (Wiley, New York, 1983).
[32] D.W. Lynch and W. R. Hunter, in Handbook of Optical Constants of Solids, edited by E. D. Palik (Academic, Orlando, 1985), pp. 350–357.
[33] 蘇英杰,“以散射矩陣法研究二維奈米金屬圓柱之表面電漿共振”,國立臺灣大學應用力學研究所碩士論文(2006).
[34] 張鐵明,“利用時域有限差分法對奈米銀柱結構的奈米成像性質之研究”,國立臺灣大學物理學研究所碩士論文(2006).
[35] E. Hecht, Optics 4th edition, Addison-Wesley, New York (2002).
[36] G. R. Fowles, Introduction to Modern Optics 2nd edition, 新智 (1977).
[37] M. Fox, Optical properties of solids, Oxford (2001).
[38] C. Kittel, “Introduction to solid state physics,” Wiley, New York (1953).
[39] H. Raether, “Surface Plasmons on Smooth and Rough Surface and on Gratings,” Springer-Verlag, Berlin (1998).
[40] S. Kawata, “Near-field Optics and Surface Plasmon Polaritons,” Springer, Berlin (2001).
[41] U. Kreibig, Optical Properties of Metal Cluster, Springer, Berlin (1995).
[42] K. S. Yee,“Numerical solution of initial boundary value problems involving Maxwell’s equation in isotropic media,”IEEE Trans. Antenna and Propagat., vol.14, No.3, pp300-307, May 1966.
[43] J. P. Berenger, A perfect matched layer for the absorption of electromagnetic waves, Journal of Computational Physics, 114, 1, p.185-200 (1994).
[44] R. J. Luebbers and F. Hunsberger, “FDTD for Nth-order dispersive media,” IEEE Trans. Anten. and Propa., vol. 40, 1992, pp. 1297-1301.
[45] R. J. Luebbers, D. Steich, and K. Kunz, “FDTD calculation of scattering from frequency-dependent materials,” IEEE Trans. Anten. and Propa., vol. 41, 1993, pp. 1249-1257.
[46] D. F. Kelley and R. J. Luebbers, “Piecewise linear recursive convolution for dispersive media using FDTD,” IEEE Trans. Anten. and Propa., vol. 44, 1996, pp. 792-797.
[47] Kashiwa, T., and I. Fukai, 'A treatment by the FD-TD method of the dispersive characteristics associated with electronic polarization,' Microwave Opt. Technol. Lett., vol. 3, no. 6, pp. 203--205, 1990.
[48] R. M. Joseph, S. C. Hagness, and A. Taflovc, “Direct time integration of Maxwcll’s equations in linear dispersive media with absorption for scatteriug and propagation of femtosecond Electromagnetic Pulses,” Opt. Lett., vol. 16, pp. 1412-1414, 1991.
[49] M. Okoniewski, M. Mrozowski, and M. A. Stuchly, “Simple treatment of. multi-term dispersion in FDTD,” IEEE Microwave Guided Wave Lett.,. vol. 7, pp. 121–123, May 1997.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/30656-
dc.description.abstract表面電漿共振(surface plasmon resonance)現象發生於金屬與介電質的交界面,為金屬內之自由電子受入射光激發,產生集體式的偶極振盪。近年來,此現象正廣受各界領域學者所關注與研究。本論文即採用時域有限差分法(finite-difference time-domain method),模擬探討二維奈米銀粒子在可見光波段照射下的表面電漿共振與侷域場增強現象。
時域有限差分法是將馬克斯威爾方程式(Maxwell’s equations)作差分離散化,並藉由蛙跳(leapfrog)方式,交互計算時間與空間中的電場與磁場場量。本論文分別探討單顆與多顆二維奈米銀粒子系統在不同的結構參數變化下,諸如:粒子半徑、間距、數目以及入射光角度等對表面電漿共振行為之影響,並藉由計算散射系統的散射截面積(total scattering cross section),模擬求得奈米粒子之表面電漿共振波長。
zh_TW
dc.description.abstractThe optical properties of metal nanoparticles have long been of interest for scientists, beginning with Faraday’s investigations of colloidal gold in the middle 1800s. Recently, new lithographic techniques as well as improvements to classical wet chemistry methods have made it possible to synthesize noble metal nanoparticles with a wide range size, shapes and dielectric environments. In this thesis, we investigate the theory and simulation of plasmon resonances of interacting silver nanoparticles by employing the finite-difference time-domain method and Drude model. Discussion of the analytical and numerical methods for calculating total scattering cross section is included in this thesis; in addition, optical properties for various parameters are analyzed, such as different radius, separation distance and incident direction. While individual particle exhibit a single plasmon resonance, we observe a complex spectrum of resonances for interacting structures. It is found that the number and magnitude of the different resonances depend on the illumination angle and on the distance between the particles.en
dc.description.provenanceMade available in DSpace on 2021-06-13T02:11:25Z (GMT). No. of bitstreams: 1
ntu-96-R94941041-1.pdf: 1564588 bytes, checksum: a7e211e28c1817f7024aaac0ccda72b7 (MD5)
Previous issue date: 2007
en
dc.description.tableofcontents口試委員會審定書 Ⅰ
誌謝 Ⅱ
中文摘要 Ⅲ
英文摘要 Ⅳ
目錄 Ⅴ
圖目錄 Ⅶ
第一章 序論 1
1.1 前言 1
1.2 文獻回顧 2
1.3 本文內容 4
第二章 光與物質交互作用之基礎理論 5
2.1 光在光學介質中的傳遞 5
(a) 原子振盪子(atomic oscillators) 6
(b) 振動振盪子(vibrational oscillators) 9
(c) 自由電子振盪子(free electron oscillators) 9
2.2 電漿子共振(plasmon resonance) 10
(a) 表面電漿子(surface plasmon) 11
(b) 顆粒電漿子(particle plasmon) 12
第三章 時域有限差分法 16
3.1 FDTD演算法 16
3.2 Courant穩定準則 22
3.3 總場/散射場(total-field/scattered-field, TF/SF) 23
3.4 吸收邊界條件(absorbing boundary condition, ABC) 27
3.5 輔助差分方程(auxiliary differential equation, ADE) 32
第四章 數值模擬結果與分析 35
4.1 單顆奈米銀圓柱系統 35
4.2 入射角度對兩顆奈米銀圓柱系統的影響 42
4.3 間距對兩顆奈米銀圓柱系統的影響 49
4.4 結構大小對兩顆奈米銀圓柱系統的影響 50
4.5 不對稱結構對兩顆奈米銀圓柱系統的影響 54
4.6 鏈數對多顆奈米銀圓柱系統的影響 57
第五章 結論與未來展望 62
5.1 結論 62
5.2 未來展望 63
參考文獻 64
dc.language.isozh-TW
dc.title以時域有限差分法模擬二維奈米金屬粒子之表面電漿共振現象zh_TW
dc.titleFDTD Simulation of Surface Plasmon Resonance on 2-D Metal Nanoparticlesen
dc.typeThesis
dc.date.schoolyear95-2
dc.description.degree碩士
dc.contributor.oralexamcommittee陳士元(Shih-Yuan Chen),張世慧(Shih-Hui Chang)
dc.subject.keyword時域有限差分法,表面電漿共振,金屬奈米粒子,zh_TW
dc.subject.keywordFinite-difference time-domain method,Surface plasmon resonance,Metallic nanoparticles,en
dc.relation.page68
dc.rights.note有償授權
dc.date.accepted2007-06-25
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept光電工程學研究所zh_TW
顯示於系所單位:光電工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-96-1.pdf
  目前未授權公開取用
1.53 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved