Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
    • Advisor
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 管理學院
  3. 商學研究所
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/30649
Full metadata record
???org.dspace.app.webui.jsptag.ItemTag.dcfield???ValueLanguage
dc.contributor.advisor游張松
dc.contributor.authorChun-Cheng Linen
dc.contributor.author林春成zh_TW
dc.date.accessioned2021-06-13T02:11:13Z-
dc.date.available2009-07-03
dc.date.copyright2007-07-03
dc.date.issued2007
dc.date.submitted2007-06-23
dc.identifier.citationAmerican Association of Blood Bank (AABB). 2005. Technical Manual -- 15th ed. M.E. Mrecher eds. Bethesda, MD.
Churchill, W.H. 1991. Blood Groups II. Transfusion Therapy. W.S. Beck, eds. Hematology. MIT Press, Cambridge, MA. pp. 321--338.
Dantzig, G.B. 1947. Maximization of a linear function of variables subject to linear inequalities. T.C. Koopmans eds. Activity Analysis of Production and Allocation (published in 1951). pp. 339--347.
Hogman, C.F., L. Eriksson. 1990. Optimizing blood component preparation: qualitative, logistic and economic aspects. Biomedica Biochimica Acta. 49(2-3): S198--203.
Karmarkar, N. 1984. A new polynomial time algorithm for linear programming. Combinatorica. 4(4): 373--395.
Khachiyan, L.G. 1979. A polynomial algorithm in linear programming. Soviet Mathematics Doklady. 20: 191--194.
Khachiyan, L.G. 1980. A polynomial algorithm in linear programming, USSR Computational Mathematics and Mathematical
Physics. 20: 53--72.
Klee, V. and G.J. Minty. 1972. How good is the simplex algorithm? O. Shisha, eds. Inequalities, III. Academic Press, New York, NY. pp. 159--175.
Van Rhenen, D.J., J. Vermeij, J. de Voogt, J.C. Bernes, J.M. Payrat. 1998. Quality and standardization in blood component preparation with an automated blood processing technique. Transfusion Medicine. 8: 319--324.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/30649-
dc.description.abstract本研究提出並探討衍生品樹狀問題(derivatives tree problem),並設計與分析其線性時間之演算法。衍生品樹為一樹狀結構,其中每一個節點代表一個有價值之衍生品,而每一個衍生品係由其父親節點依某特定比例所衍生而生成的。起初給定一衍生品樹之樹根衍生品之某特定量(其他衍生品的初始量為零),衍生品樹狀問題係關於如何決定此衍生品樹中每個衍生品之數量,使得當滿足每個衍生品之需求量限制下總價值之最大化。在實務上,此問題可應用在輸血醫學中血液成分製劑之決策分析。雖然本研究提出可用線性規劃來解決此問題,然而線性規劃未必是有效率的解決方法。因此,本研究提出一線性時間之演算法(以節點的數目來測度)來有效率地處理衍生品樹狀問題,並包含此演算法之一些理論上的分析。zh_TW
dc.description.abstractIn this paper, we investigate the derivatives tree problem as well as design a linear time algorithm for solving it. In a derivatives tree, each vertex representing a derivative with a certain value is derived from its parent vertex. Initially given certain amount of the root derivative in a derivatives tree (noticing that the amount of every other derivative is zero initially), the derivatives tree problem is concerned with finding the assignment of amount of each derivative such that the total value is maximized while satisfying the demand limit of every derivative. In practice, the problem has application to the decision-making of blood component preparation in transfusion medicine. Although the derivatives tree problem can be solved by linear programming which is proposed in this paper, one should notice that the linear programming may not be an efficient approach. As a consequence, in this paper, we propose a linear time algorithm (in the size of vertices) for efficiently coping with the derivatives tree problem. Some theoretical analysis is also included in this paper.en
dc.description.provenanceMade available in DSpace on 2021-06-13T02:11:13Z (GMT). No. of bitstreams: 1
ntu-96-R92741061-1.pdf: 675888 bytes, checksum: 06b4c29ae1c208e800e9fd5ddc5da0b2 (MD5)
Previous issue date: 2007
en
dc.description.tableofcontentsChapter 1: Introduction -- page 1
Chapter 2: Derivatives Tree Problem -- page 4
Chapter 3: A Linear Algorithm for the DTP -- page 9
Chapter 4: Applications to Blood Component Preparation -- page 20
Chapter 5: Conclusion and Future Work -- page 25
References -- page 26
dc.language.isoen
dc.subject衍生品zh_TW
dc.subject線性規劃zh_TW
dc.subject演算法之設計與分析zh_TW
dc.subject血液成分製劑zh_TW
dc.subject輸血醫學zh_TW
dc.subjectDerivativesen
dc.subjecttransfusion medicineen
dc.subjectblood component preparationen
dc.subjectdesign and analysis of algorithmsen
dc.subjectlinear programmingen
dc.title衍生品樹狀問題之研究zh_TW
dc.titleDerivatives Tree Problemen
dc.typeThesis
dc.date.schoolyear95-2
dc.description.degree碩士
dc.contributor.oralexamcommittee周宣光,張銀益,李慶長
dc.subject.keyword衍生品,線性規劃,演算法之設計與分析,血液成分製劑,輸血醫學,zh_TW
dc.subject.keywordDerivatives,linear programming,design and analysis of algorithms,blood component preparation,transfusion medicine,en
dc.relation.page27
dc.rights.note有償授權
dc.date.accepted2007-06-26
dc.contributor.author-college管理學院zh_TW
dc.contributor.author-dept商學研究所zh_TW
Appears in Collections:商學研究所

Files in This Item:
File SizeFormat 
ntu-96-1.pdf
  Restricted Access
660.05 kBAdobe PDF
Show simple item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved