請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/30640完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 蔡向榮 | |
| dc.contributor.author | Chun-Hsien Tseng | en |
| dc.contributor.author | 曾俊憲 | zh_TW |
| dc.date.accessioned | 2021-06-13T02:10:58Z | - |
| dc.date.available | 2007-07-03 | |
| dc.date.copyright | 2007-07-03 | |
| dc.date.issued | 2007 | |
| dc.date.submitted | 2007-06-25 | |
| dc.identifier.citation | Black, W.D., Hartley, C.A., Ficorilli, N.P., Studdert, M.J., 2005. Sequence variation divides Equine rhinitis B virus into three distinct phylogenetic groups that correlate with serotype and acid stability. J. Gen. Virol. 86, 2323-2332.
Blom, N., Hansen, J., Blaas, D., Brunak, S., 1996. Cleavage site analysis in picornaviral polyproteins: discovering cellular targets by neural networks. Protein Sci. 5, 2203-2216. Boonyakiat, Y., Hughes, P.J., Ghazi, F., Stanway, G, 2001. Arginine-glycine-aspartic acid motif is critical for human parechovirus 1 entry. J. Virol. 75, 10000-10004. Caro, V., Guillot, S., Delpeyroux, F., Crainic, R., 2001. Molecular strategy for ′serotyping' of human enteroviruses. J. Gen. Virol. 82, 79-91. Chard, L.S., Kaku, Y., Jones, B., Nayak, A., Belsham, G.J., 2006a. Functional analyses of RNA structures shared between the internal ribosome entry sites of hepatitis C virus and the picornavirus porcine teschovirus 1 Talfan. J. Virol. 80, 1271-1279. Chard, L.S., Bordeleau, M.E., Pelletier, J., Tanaka, J., Belsham, G.J., 2006b. Hepatitis C virus-related internal ribosome entry sites are found in multiple genera of the family Picornaviridae. J. Gen. Virol. 87, 927-936. Cheney, I.W., Naim, S., Shim, J. H., Reinhardt, M., Pai, B., Wu, J.Z., Hong, Z., Zhong, W., 2003. Viability of poliovirus/rhinovirus VPg chimeric viruses and identification of an amino Aacid residue in the VPg gene critical for viral RNA replication. J. Virol. 77, 7434-7443. Chow, M., Newman, J.F., Filman, D., Hogle, J.M., Rowlands, D.J., Brown, F., 1987. Myristylation of picornavirus capsid protein VP4 and its structural significance. Nature 327, 482-486. Cohen, S.H., Naviaux, R.K., Vanden Brink, K.M., Jordan, G.W., 1988. Comparison of the nucleotide sequences of diabetogenic and nondiabetogenic encephalomyocarditis virus. Virology 166, 603-607. Ding, C., Zhang, D., 2007. Molecular analysis of duck hepatitis virus type 1. Virology 361, 9-17. Doherty, M., Todd, D., McFerran, N., Hoey, E.M., 1999. Sequence analysis of a porcine enterovirus serotype 1 isolate: relationships with other picornaviruses. J. Gen. Virol. 80, 1929-1941. Donnelly, M.L., Luke, G., Mehrotra, A., Li, X., Hughes, L.E., Gani, D., Ryan, M.D., 2001. Analysis of the aphthovirus 2A/2B polyprotein 'cleavage' mechanism indicates not a proteolytic reaction, but a novel translational effect: a putative ribosomal 'skip'. J. Gen. Virol. 82, 1013-1025. Duque, H., Palmenberg, A.C., 2001. Phenotypic characterization of three phylogenetically conserved stem-loop motifs in the Mengovirus 3′ untranslated region. J. Virol. 75, 3111-3120. Duque, H., Baxt, B., 2003. Foot-and-mouth disease virus receptors: comparison of bovine alpha (V) integrin utilization by type A and O viruses. J. Virol. 77, 2500-2511. Felsenstein, J., 1985. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39, 783-791. Frazier, J.A., Farmer, H., Martland, M.F., 1986. Enteric virus-like particles associated with a stunting syndrome of chickens. Vet. Rec. 118, 303-304. Fry, E.E., Newman, J.W., Curry, S., Najjam, S., Jackson, T., Blakemore, W., Lea, S. M., Miller, L., Burman, A., King, A.M., Stuart, D.I., 2005. Structure of foot-and-mouth disease virus serotype A1061 alone and complexed with oligosaccharide receptor: receptor conservation in the face of antigenic variation. J. Gen. Virol. 86, 1909-1920. Ghazi, F., Hughes, P.J., Hyypiä, T., Stanway, G., 1998. Molecular analysis of human parechovirus type 2 (formerly echovirus 23). J. Gen. Virol. 79, 2641-2650. Goodwin, M.A., Davis, J.F., McNulty, M.S., Brown, J., Player, E.C., 1993. Enteritis (so-called runting stunting syndrome) in Georgia broiler chicks. Avian Dis. 37 , 451-458. Gough, R.E., Collins, M.S., Borland, E.D., Keymer, I.F., 1984. Astrovirus-like particles associated with hepatitis in ducklings. Vet. Rec. 114, 279. Gough, R.E., Borland, E.D., Keymer, I.F., Stuart, J.C., 1985. An outbreak of duck hepatitis type II in commercial ducks. Avian Pathol. 14, 227-236. Gough, J., Karplus, K., Hughey, R., Chothia, C., 2001. Assignment of homology to genome sequences using a library of hidden Markov models that represent all proteins of known structure. J. Mol. Biol. 313, 903-919. Guo, Y.P., Pan, W.S., 1984. Preliminary identifications of the duck hepatitis virus serotypes isolated in Beijing, China. Chinese J. Vet. Med. 10, 2-3. Haider, S.A., Calnek, B.W., 1979. In vitro isolation, propagation and characterization of duck hepatitis virus type III. Avian Dis. 23, 715-729. Hellen, C.U., de Breyne, S., 2007. A distinct group of hepacivirus/pestivirus-like IRESs in members of diverse Picornavirus genera: evidence for modular exchange of functional noncoding RNA elements by recombination. J. Virol. 81, 5850-5863. Huang, J.A., Ficorilli, N., Hartley, C. A., Wilcox, R.S., Weiss, M., Studdert, M.J., 2001. Equine rhinitis B virus: a new serotype. J. Gen. Virol. 82, 2641-2645. Hughes, P.J., Stanway, G., 2000. The 2A proteins of three diverse picornaviruses are related to each other and to the H-rev107 family of proteins involved in the control of cell proliferation. J. Gen. Virol. 81, 201-207. Hughes, A.L., 2004. Phylogeny of the Picornaviridae and differential evolutionary divergence of picornavirus proteins. Infect. Genet. Evol. 4, 143-52. Hyypiä, T., Horsnell, C., Maaronen, M., Khan, M., Kalkkinen, N., Auvinen, P., Kinnunen, L., Stanway, G., (1992). A distinct picornavirus group identified by sequence analysis. Proc. Natl. Acad. Sci. U.S.A. 89,8847-8851. Ito, M., Yamashita, T., Tsuzuki, H., Takeda, N., Sakae, K., 2004. Isolation and identification of a novel human parechovirus. J. Gen. Virol. 85, 391-398. Jackson, R.J., Howell M.T., Kaminski, A., 1990. The novel mechanism of initiation of picornavirus RNA translation. Trends Biochem. Sci. 15, 477-483. Jang, S.K., Pestova, T.V., Hellen, C.U., Witherell, G.W., Wimmer. E., 1990. Cap-independent translation of picornavirus RNAs: structure and function of the internal ribosomal entry site. Enzyme 44:292-309. Johansson, S., Niklasson, B., Maizel, J., Gorbalenya, A. E., Lindberg, A. M., 2002. Molecular analysis of three Ljungan virus isolates reveals a new, close-to-root lineage of the Picornaviridae with a cluster of two unrelated 2A proteins. J. Virol. 76, 8920-8930. Johansson, S., Niklasson, B., Tesh, R. B., Shafren, D. R., Travassos da Rosa , A. A., Lindberg, A. M., 2003. Molecular characterization of M1146, an American isolate of Ljungan virus (LV) reveals the presence of a new LV genotype. J. Gen. Virol. 84, 837-844. Joki-Korpela, P., Roivainen, M., Lankinen, H., Pöyry, T., Hyypiä, T., 2000. Antigenic properties of human parechovirus 1. J. Gen. Virol. 81, 1709-1718. Kaku, Y., Sarai, A., Murakami, Y., 2001. Genetic reclassification of porcine enterovirus. J. Gen. Virol. 82, 417-424. Kalter, S.S., 1982. Enteric viruses of nonhuman primates. Vet. Pathol. 19, 33-43. Kim, M.C., Kwon, Y.K., Joh, S.J., Lindberg, A.M., Kwon, J.H., Kim, J.H., Kim, S.J., 2006. Molecular analysis of duck hepatitis virus type 1 reveals a novel lineage close to the genus Parechovirus in the family Picornaviridae. J. Gen. Virol. 87, 3307-3016. King, A.M.Q., Brown, F., Christian, P., Hovi, T., Hyypiä, T., Knowles, N.J., Lemon, S.M., Minor, P.D., Palmenberg, A.C., Skern, T., Stanway, G., 2000. Picornaviridae. In 'Virus Taxonomy. Seventh Report of the International Committee for the Taxonomy of Viruses'. Eds Van Regenmortel, M.H.V., Fauquet, C.M., Bishop, D.H.L., Calisher, C.H., Carsten, E.B., Estes, M.K., Lemon, S.M., Maniloff, J., Mayo, M.A., McGeoch, D.J., Pringle, C.R. and Wickner, R.B. Academic Press, New-York, San Diego, pp. 657-673. Knowles, N.J., Buckley, L.S., Pereira, H.G., 1979. Classification of porcine enteroviruses by antigenic analysis and cytopathic effects in tissue culture: description of three new serotypes. Arch. Virol. 62, 201-208. Krücken, J., Schroetel, R.M.U., Müller, I.U., Saïdani, N., Marinovski, P., Benten, W.P.M., Stamm, O., Wunderlich, F., 2004. Comparative analysis of the human gimap gene cluster encoding a novel GTPase family. Gene 341, 291-304. Krumbholz, A., Dauber, M., Henke, A., Birch-Hirschfeld, E., Knowles, N. J., Stelzner, A., Zell, R., 2002. Sequencing of porcine enterovirus groups II and III reveals unique features of both virus groups. J. Virol. 76, 5813-5821. Kumar, S., Tamura, K., Nei, M., 2004. MEGA3: Integrated software for molecular evolutionary genetics analysis and sequence alignment. Brief Bioinform. 5, 150-163. Kusov, Y.Y., Shatirishvili, G.., Dzagurov, G., Gauss-Müller, V., 2001. A new G-tailing method for the determination of the poly(A) tail length applied to hepatitis A virus RNA. Nucleic Acids Res. 29, e57-7. Laemmli, U.K., 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227, 680-685. Leippert, M., Pfaff, E., 2001. Foot-and-mouth disease virus can utilize the C-terminal extension of coxsackievirus A9 VP1 for cell infection. J. Gen. Virol. 82, 1703-11. Levine, P.P., Fabricant, J., 1950. A hitherto-undescribed virus disease of ducks in North America. Cornell Vet. 40, 71-86. Li, F., Browning, G.F., Studdert, M.J., Crabb, B.S., 1996. Equine rhinovirus 1 is more closely related to foot-and-mouth disease virus than to other picornaviruses. Proc. Natl. Acad. Sci. U.S.A. 93, 990-995. Lu, Y.S., 1981. Characteristics and pathogenecity of duck hepatitis virus islated in Taiwan. J. Chinese Soc. Vet. Sci. 7, 153-173. Lu, Y.S., Lin, D.F., Lee, Y.L., Liao, Y.K., Tsai, H.J., 1993. Infectious bill atrophy syndrome caused by parvovirus in a co-outbreak with duck viral hepatitis in ducklings in Taiwan. Avian Dis. 37, 591-596. Mathews, D.H., Sabina, J., Zuker, M., Turner, D.H., 1999. Expanded sequence dependence of thermodynamic parameters improves prediction of RNA secondary structure. J. Mol. Biol. 288, 911-940. McNulty, M.S., 2001. Picornaviridae. In Poultry Diseases, 5th edn. pp.305-318. Edited by F. Jordan, M. Pattison, D. Alexander & T. Faragher. London: W.B. Saunders. Monroe, S.S., Carter, M.J., Herrmann, J., Mitchel, D.K., Sanchez-Fauquier, A., 2005. Family Astroviridae. In: 'Virus Taxonomy. Eighth Report of the International Committee on Taxonomy of Viruses'. Eds. Fauquet, C.M., Mayo, M.A., Maniloff, J., Desselberger, U. and Ball, L.A. Elsevier/Academic Press, London. p. 859-864. Nateri, A.S., Hughes, P.J., Stanway, G., 2000. In vivo and in vitro identification of structural and sequence elements of the human parechovirus 5' untranslated region required for internal initiation. J. Virol. 74, 6269-6277. Oberste, M.S., Maher, K., Pallansch, M.A., 2002. Molecular phylogeny and proposed classification of the simian picornaviruses. J. Virol. 73, 1244-1251. Oberste, M.S., Maher, K., Pallansch, M.A., 2003. Genomic evidence that simian virus 2 and six other simian picornaviruses represent a new genus in Picornaviridae. Virology 314, 283-293. Oberste, M.S., Maher, K., Pallansch, M.A., 1998. Complete sequence of echovirus 23 and its relationship to echovirus 22 and other human enteroviruses. Virus Res. 56, 217-223. Oberste, M.S., Maher, K., Kilpatrick, D.R., Pallansch, M.A., 1999. Molecular evolution of the human enteroviruses: correlation of serotype with VP1 sequence and application to picornavirus classification. J. Virol. 73, 1941-1948. OIE, 2004. Duck Virus Hepatitis. In: Manual of Diagnostic Tests and Vaccines for Terrestrial Animals. Part 2. Section 2.7. Chapter 2.7.9. http://www.oie.int/eng/publicat/en_standards.htm. Pilipenko, E.V., Blinov, V.M., Agol, V.I., 1990. Gross rearrangements within the 5'-untranslated region of the picornaviral genomes. Nucleic Acids Res. 18, 3371-3375. Poirier, G.M., Anderson, G., Huvar, A., Wagaman, P.C., Shuttleworth, J., Jenkinson, E., Jackson, M.R., Peterson, P.A., Erlander, M.G., 1999. Immune-associated nucleotide-1 (IAN-1) is a thymic selection marker and defines a novel gene family conserved in plants. J. Immunol. 163, 4960-4969. Pulli, T., Koivunen, E., Hyypiä, T., 1997. Cell-surface interactions of echovirus 22. J. Biol. Chem. 272, 21176-21180. Pulli, T., Lankinen, H., Roivainen, M., Hyypia, T., 1999. Antigenic sites of coxsackievirus A9. Virology 240, 202-212. Rao, S.B.V., Gupta, B.R., 1967. Studies on a filterable agent causing hepatitis in duckling, and biliary cirrhosis and blood dyscrasia in adults. Indian J Poult Sci. 2, 18-30. Rieder, E., Henry, T., Duque, H., Baxt, B., 2005. Analysis of a foot-and-mouth disease virus type A24 isolate containing an SGD receptor recognition site in vitro and its pathogenesis in cattle. J. Virol. 79, 12989-12998. Rohll, J.B., Moon, D.H., Evans, D.J., Almond, J.W., 1995. The 3’ untranslated region of Picornavirus RNA: Features required for efficient genome replication. J. Virol. 69, 7835-7844. Rossman, M.G., Arnold, A., Erickson, J.W., Frankenberger, E.A., Griffith, J.P., Hecht, H.J., Johnson, J.E., Kamer, G., Luo, M., Mosser, A.G., Rueckert, R.R., Sherry, B., Vriend, G., 1985. Structure of a human common cold virus and functional relationship to other picornaviruses. Nature 317, 145-153. Rovozzo, G..C., Burke, C.N., 1973. Biochemical and Biophysical Characterization of a Virus. In: A Manual of Basic Virological Techniques. Edited by Hollaender, A. Prentice-Hall, Inc, Englewood Cliffs, New Jersey, pp. 126-152. Samuilova, O., Krogerus, C., Poyry, T., Hyypia, T., 2004. Specific interaction between human parechovirus nonstructural 2A protein and viral RNA. J. Biol. Chem. 279, 37822-31. Sandhu, T.S., Calnek, B.W., Zeman, L., 1992. Pathologic and serologic characterization of a variant of duck hepatitis type Ι virus. Avian Dis. 36, 932-936. Sarnow, P., Bernstein, H.D., Baltimore, D., 1986. A poliovirus temperature-sensitive RNA synthesis mutant located in a noncoding region of the genome. Proc. Natl. Acad. Sci. U.S.A. 83, 571-575. Schultheiss, T., Emerson, S.U., Purcell, R.H., Gauss-Muller, V., 1995. Polyprotein processing in echovirus 22: a first assessment. Biochem. Biophys. Res. Commun. 217, 1120-7. Shalaby, M.A., Ayoub, M.N.K., Reda, I.M., 1978. A study on a new isolate of duck hepatitis virus and its relationship to other duck hepatitis virus strains. Vet. Med. J. Cairo Univ. 26, 215-221. Spector, D. H., Baltimore, D., 1974. Requirement of 3′-terminal polyadenylic acid for the infectivity of poliovirus RNA. Proc. Natl. Acad. Sci. U.S.A. 71, 2983-2987. Stanway, G., 1990. Structure, function and evolution of picornaviruses. J. Gen. Virol. 71, 2483-2501. Stanway, G., Kalkkinen, N., Roivainen, M., Ghazi, F., Khan, M., Smyth, M., Meurman, O., Hyypiä, T., 1994. Molecular and biological characteristics of echovirus 22, a representative of a new picornavirus group. J. Virol. 68, 8232-8238. Stanway, G., Hyypiä, T., 1999. Minireviews: Parechoviruses. J. Virol. 73, 5249-5254. Stanway, G., Brown, F., Christian, P., Hovi, T., Hyypiä, T., King, A.M.Q., Knowles, N.J., Lemon, S.M., Minor, P.D., Pallansch, M.A., Palmenberg, A.C., Skern, T., 2005. Family Picornaviridae. In: 'Virus Taxonomy. Eighth Report of the International Committee on Taxonomy of Viruses'. Eds. Fauquet, C.M., Mayo, M.A., Maniloff, J., Desselberger, U. and Ball, L.A. Elsevier/Academic Press, London. p. 757-778. Tauraso, N.M, Coghill, G.E., Klutch, M.J., 1969. Properties of the attenuated vaccine strain of duck hepatitis virus. Avian Dis. 13, 321-329. Thoelen, I., Moes, E., Lemey, P., Mostmans, S., Wollants, E., Lindberg, A.M., Vandamme, A.M., Van Ranst, M., 2004. Analysis of the serotype and genotype correlation of VP1 and the 5' noncoding region in an epidemiological survey of the human enterovirus B species. J. Clin. Microbiol. 42, 963-971. Thompson, J.D., Higgins, D.G., Gibson, T.J., 1994. CLUSTALW:improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 22, 4673-4680. Thompson, J.D., Gibson, T.J., Plewniak, F., Jeanmougin, F., Higgins, D.G., 1997. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res. 25, 4876-4882. Thurner, C., Witwer, C., Hofacker, I.L., Stadler, P.F., 2004. Conserved RNA secondary structures in Flaviviridae genomes. J. Gen. Virol. 85, 1113-1124. Toth, T.E., 1969. Studies of an agent causing mortality among ducklings immune to duck virus hepatitis. Avian Dis. 13, 834-846. Tseng, C.H., Knowles, N.J., Tsai, H.J., 2007. Molecular analysis of type 1 duck hepatitis virus indicated that it should be assigned to a new genus. Virus Res. 123, 190-203. Tseng, C.H., Tsai, H.J., 2007. Molecular characterization of a new serotype of duck hepatitis virus, Virus. Res. 126, 19-31. Weitz, M., Baroudy, B.M., Maloy, W. L., Ticehurst, J.R., Purcell, R.H., 1986. Detection of a genome-linked protein (VPg) of hepatitis A virus and its comparison with other picornaviral VPgs. J. Virol. 60, 124-130. Williams, CH., Kajander, T., Hyypia, T., Jackson, T., Sheppard, D., Stanway, G., 2004. Integrin alpha v beta 6 is an RGD-dependent receptor for coxsackievirus A9. J. Virol. 78, 6967-6973. Woolcock, P.R., 2003. Duck hepatitis. In: Diseases of Poultry, 11th edition. Edited by Y.M. Saif, H.J. Barnes, J.R. Glisson, A.M. Fadly, L.R. McDougald & D.E. Swayne. Iowa State Press, Ames, IA, pp. 343-354. Wutz, G., Auer, H., Nowotny, N., Grosse, B., Skern, T., Kuechler, E., 1996. Equine rhinovirus serotypes 1 and 2: relationship to each other and to aphthoviruses and cardioviruses. J. Gen. Virol. 77, 1719-1730. Yamashita, T., Sakae, K., Tsuzuki, H., Suzuki, Y., Ishikawa, N., Takeda, N., Miyamura, T., Yamazaki, S., 1998. Complete nucleotide sequence and genetic organization of Aichi virus, a distinct member of the picornaviridae associated with acute gastroenteritis in humans. J. Virol. 72, 8404-8412. Yamashita, T., Ito, M., Kabashima, Y., Tsuzuki, H., Fujiura, A., Sakae, K., 2003. Isolation and characterization of a new species of kobuvirus associated with cattle. J. Gen. Virol. 84, 3069-3077. Yogo, Y., Wimmer, E., 1972. Polyadenylic acid at the 3′ terminus of poliovirus RNA. Proc. Natl. Acad. Sci. U.S.A. 69, 1877-1882. Yogo, Y., Wimmer, E., 1975. Sequence studies of poliovirus RNA. III. Polyuridylic acid and polyadenylic acid as components of the purified poliovirus replicative intermediate. J. Mol. Biol. 92, 467-477. Zell, R., Dauber, M., Krumbholz, A., Henke, A., Birch-Hirschfeld, E., Stelzner, A., Prager, D., Wurm, R., 2001. Porcine teschoviruses comprise at least eleven distinct serotypes:molecular and evolutionary aspects. J. Virol. 75, 1620-1631. Zuker, M., Mathews, D.H., Turner, D.H., 1999. Algorithms and thermodynamics for RNA secondary structure prediction: a practical guide. In: Barciszewski, J., Clark, B.F.C. (Eds.), RNA Biochemistry and Biotechnology. NATO ASI Series, Kluwer Academic, Dordrecht, pp.11-43. Zuker, M., 2003. Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res. 31, 3406-3415. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/30640 | - |
| dc.description.abstract | There were two epidemics of duck viral hepatitis (DH) in 1971 and 1990 in Taiwan, respectively, and both epidemics caused massive deaths in ducklings. During the first epidemic immune sera collected from the infected and survived ducks were used to control the disease, and then a vaccine based on the 5886 strain duck hepatitis virus type 1 (DHV-1) was developed and used in the field. Since then the DHV-1 vaccine was used to vaccinate breeder ducks, and yolk antibody against DHV-1 was also used in day-old ducklings in most of the duck farms in Taiwan. The second epidemic of DH occurred in 1990, with the co-infection of waterfowl parvovirus and led to the death of a toll of 300,000 ducklings. It was suggested by some researchers that the inadequacy practice of DHV-1 vaccine maybe the cause of the epidemic of DH in 1990.
After 1990, the DHV-1 vaccine and yolk antibody have remained the two important tools for the prevention and control of the DH in duck farms. But sometimes disputes arise over some of the one-week old ducklings still suffered from DH even the DHV-1 vaccine and yolk antibody have been applied in the farms. The DHV-1 was fist outbreak in Long Island, USA, about a half century ago, but there still had no any nucleic acid sequence been published. Thus the diagnosis of DHV-1 infection still relied on the traditional virus isolation and identification methods or serology assay. In order to realize the real cause of the DH in the field and also to develop the molecular diagnostic method for DH, total of six strains of duck-originated picornavirus were characterized, sequenced and pylogenetic analyzed in this study. In this study, we have successfully decoded the complete genome sequences of six trains of duck-originated picornavirus and revealed the existence of three types of duck-originated picornaviruses, Duck hepatitis virus type 1 (DHV-1), new serotype duck hepatitis virus (N-DHV) and Duck picornavirus (DPV). After comparing these genome sequences with other picornaviruses, it has revealed that although all these 3 duck-originated picornaviruses belong to Picornaviridae, their genome structures, sequence similarities and evolution analyses are quite different from other known picornaviruses. Therefore, in the future DHV-1 and N-DHV will probably be classified into a new genus, Avihepatovirus, and DPV with several serotypes of simian picornavirus and serotype 8 of porcine enterovirus will be classified into another new genus, Sapelovirus. The reasons for theses 3 duck-originated picornaviruses will probably be classified into two new genera are based on the 3 duck-originated picornaviruses possess complete different genome structures and the similarities of their polyprotein sequences are less than 30% comparing to other known picornaviruses. The major difference between DHVs and other picornaviruses is that genome of DHVs possess three in-tandem 2A genes. 2A1, 2A2, and 2A3 proteins, represented an aphthovirus-like 2A protein, AIG1-like protein, and human parechovirus-like 2A protein, respectively. And the pair-wise amino acid sequence identities between polyprotein of DHVs and other picornaviruses are all less than 30%. The pair-wise amino acid sequence identities in the 3D region of DHVs with ljungan virus and human parechovirus type 1 is only 38.6% and 36.6%, respectively, and less than 30% with all other picornaviruses. As to DPV, its genome possess several different characteristics from other picornaviruses, i.e. the L protein, composed of 451 amino acids, is the largest within the family Picornaviridae, the 2A protein was composed of only 12 amino acids, which is the shortest of any member of the family Picornaviridae, and the phylogenetic analysis of the polyprotein and 3D sequences indicated that the DPV together with the porcine enterovirus type 8 virus and several simian picornaviruses form a distinct branch of the family Picornaviridae. In this study, we first demonstrated the existence of 3 types of duck-originated picornaviruses in Taiwan. The two serotypes of duck hepatitis viruses, DHV-1 and N-DHV, are highly virulent to ducklings under 3-week old. The mortality was above 80% in ducklings infected with either DHV-1 or N-DHV, and it was indistinguishable between DHV-1 and N-DHV by the postmortem and pathological examinations, and the mortality rates. It is suspected that the outbreaks of DH in the duck farms that DHV-1 vaccine and yolk antibody have been used might be due to the infection of the N-DHV. With the complete decoded of the genome sequences, it will be very easy to differentiate between DHV-1 and N-DHV infection in the field by the molecular diagnostic method. As to DPV, its virulence was much lower than DHVs and didn’t cause high mortality in infected duck flocks. Only one-day-old ducklings suffered from DPV could lead to growth inhibition and result in an economic loss in the infected duck farms. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-13T02:10:58Z (GMT). No. of bitstreams: 1 ntu-96-D89629002-1.pdf: 1112196 bytes, checksum: cb7e9bb0043da290f8c231c1a76e1d7c (MD5) Previous issue date: 2007 | en |
| dc.description.tableofcontents | Certificate I
Acknowledgments II Abstract III Abstract in Chinese VI Contents VIII Chapter 1. Introduction 1 Chapter 2. Literature Review 4 Chapter 3. Molecular analysis of duck hepatitis virus type 1 indicates that it should be assigned to a new Picornaviridae genus 13 3.1. Abstract 13 3.2. Abstract in Chinese 13 3.3. Introduction 14 3.4. Materials and methods 16 3.4.1. Viruses and cells 16 3.4.2. Neutralization assays 17 3.4.3. Isolation and purification of DHV-1 RNA 18 3.4.4. Reverse transcription-polymerase chain reaction (RT-PCR) and sequencing of DHV-1 18 3.4.5. Sequence analysis 19 3.4.6. Accession numbers of the sequences used in this study 20 3.5. Results and discussion 21 3.5.1. Neutralization assays 21 3.5.2. Sequencing genomes of three DHV-1 isolates 21 3.5.3. Features of the DHV-1 genome and deduced polyprotein sequence 22 3.5.4. 5’ UTR 25 3.5.5. 2A1 26 3.5.6. 2A2 27 3.5.7. 2A3 28 3.5.8. 3’ UTR 29 3.5.9. Structure proteins 29 3.5.10. Non-structural proteins 31 3.5.11. Phylogenetic analyses 32 3.6. Conclusion 32 Chapter 4. Molecular characterization of a new serotype of duck hepatitis virus 34 4.1. Abstract 34 4.2. Abstract in Chinese 34 4.3. Introduction 35 4.4. Materials and methods 36 4.4.1. Isolation of N-DHV and preparation of antiserum 36 4.4.2. Physicochemical characterization 37 4.4.3. Cross-neutralization tests 38 4.4.4. Reverse transcription-polymerase chain reaction (RT-PCR) and sequencing of N-DHV 38 4.4.5. Sequence analysis 39 4.5. Results and Discussion 40 4.5.1. Physicochemical characterization 40 4.5.2. Cross-neutralization assay 40 4.5.3. Features of the N-DHV genome and deduced polyprotein sequence 41 4.5.4. 5’UTR 43 4.5.5. 2A 44 4.5.6. 3’UTR 45 4.5.7. Structural proteins 45 4.5.8. Non-structural proteins 48 4.5.9. Phylogenetic analyses 49 4.6. Conclusion 49 Chapter 5. Sequence analysis of a duck picornavirus isolate indicates that it together with porcine enterovirus type 8 and simian picornavirus type 2 should be assigned to a new picornavirus genus 51 5.1. Abstract 51 5.2. Abstract in Chinese 52 5.3. Introduction 53 5.4. Materials and methods 55 5.4.1. Virus growth and characterization 55 5.4.2. Pathogenicity test 55 5.4.3. Production of the hyperimmune sera 56 5.4.4. Cross-neutralization tests 56 5.4.5. Purification of duck picornavirus TW90A 56 5.4.6. Reverse transcription-polymerase chain reaction (RT-PCR) and sequencing of DPV 57 5.4.7. Sequence analysis 57 5.4.8. Protein sequencing 58 5.5. Results and Discussion 59 5.5.1. Virus growth and characterization 59 5.5.2. Pathogenicity test 60 5.5.3. Cross-neutralization tests 60 5.5.4. Features of the DPV genome and deduced polyprotein sequence 61 5.5.5. 5’UTR 63 5.5.6. 3’ UTR 65 5.5.7. Leader protein of the DPV 65 5.5.8. Structural and non-structural proteins of the DPV 66 5.5.9. Phylogenetic analysis 67 5.5.10. Protein sequencing 68 5.6. Conclusion 69 Chapter 6. Conclusions 71 Figures 80 Tables 99 References 112 Author introduction 124 | |
| dc.language.iso | en | |
| dc.subject | 鴨肝炎病毒 | zh_TW |
| dc.subject | 小核糖核酸病毒 | zh_TW |
| dc.subject | picornavirus | en |
| dc.subject | duck hepatitis virus | en |
| dc.title | 鴨源小核糖核酸病毒之分子病毒學分析 | zh_TW |
| dc.title | Molecular analysis of duck originated picornaviruses | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 95-2 | |
| dc.description.degree | 博士 | |
| dc.contributor.oralexamcommittee | 謝快樂,李龍湖,闕玲玲,黃金城,張伯俊,王金和 | |
| dc.subject.keyword | 小核糖核酸病毒,鴨肝炎病毒, | zh_TW |
| dc.subject.keyword | picornavirus,duck hepatitis virus, | en |
| dc.relation.page | 123 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2007-06-26 | |
| dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
| dc.contributor.author-dept | 獸醫學研究所 | zh_TW |
| 顯示於系所單位: | 獸醫學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-96-1.pdf 未授權公開取用 | 1.09 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
