Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 物理學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/30639
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor梁啟德(C.-T. Liang)
dc.contributor.authorWen-Chang Hsuehen
dc.contributor.author薛文章zh_TW
dc.date.accessioned2021-06-13T02:10:56Z-
dc.date.available2008-07-03
dc.date.copyright2007-07-03
dc.date.issued2007
dc.date.submitted2007-06-25
dc.identifier.citationReferences for chapter 1
[1] K. von Klitzing, G. Dorda, and M. Pepper, Phys. Rev. Lett. 45, 494 (1980).
[2] D. C. Tsui, H. L. Stormer, and A. C. Gossard, Phys. Rev. Lett. 48, 1559 (1982).
[3] John Baker and A. G. Rojo, Phys. Rev. B 64, 014513 (2001).
[4] S. Agrawal, M. B. A. Jalil, S. G. Tan, K. L. Teo, and T. Liew, Phys. Rev. B 72,
075352 (2005).
[5] R. Dingle, H. L. Störmer, A. C. Gossard, and W. Wiegmann, Appl. Phys. Lett. 33,
665 (1978).
[6] T. Mimura, S. Hiyamizu, T. Fujii, and K. Nanbu, Jpn J. Appl. Phys. 19, L255 (1980).
[7] A. Ozgur, W. Kim, Z. Fan, A. Botchkarev, A. Salvador, S. N. Mohmmad, B. Sverdlov, and H. Morkoc, Electron. Lett. 31, 1389 (1995).
[8] O. Ambacher, J. Smart, J. R. Shealy, N. G. Weimann, K. Chu, M. Murphy, W. J. Schaff, and L. F. Eastman, J. Appl. Phys. 85, 3222 (1999).
[9] F. Bernardini, V. Fiorentini, and D. Vanderbilt, Phys. Rev. B 56, 10024 (1997).
[10] I. P. Smorchkova, C. R. Elsass, J. P. Ibbetson, R. Vetury, B. Heying, P. Fini, E. Haus, S. P. DenBaars, J. S. Speak, and U. K. Mishra, J. Appl. Phys. 86, 4520 (1999).
[11] R. Dimitrov, M. Murphy, J. Smart, W. Schaff, J. R. Shealy, L. F. Eastman, O. Ambacher, and M. Stutzmann, J. Appl. Phys. 87, 3375 (2000).
[12] H. W. Jang, C. M. Jeon, K. H. Kim, J. K. Kim, S.-B. Bae, J.-H. Lee, J. W. Choi, and J.-L. Lee, Phys. Stat. Sol. (b) 228, 621 (2001).
[13] J. R. Juang, Master thesis, National Taiwan University (2003).

References for chapter 2
[1] Charles Kittel, “Introduction to Solid State Physics”, Willy (1996).
[2] J. Y. Lin, Master Thesis, National Taiwan University (2006).
[3] S. M. Sze, “Semiconductor devices: physics and technology”, John Wiley & Sons, INC.
[4] R. E. Prange, Phys. Rev. B 23, 4802 (1981).
[5] P. T. Coleridge, R. Stoner, and R. Fletcher, Phys. Rev. B 39, 1120 (1989).
[6] L. W. Wong, S. J. Cai, R. Li, Kang Wang, H. W. Jiang, and Mary Chen, Appl.
Phys. Lett. 73, 1391 (1998).
[7] K. von Klitzing, G. Dorda, and M. Pepper, Phys. Rev. Lett. 45, 494 (1980).
[8] K. von Klitzing, Surf. Sci. 113, 1 (1982).
[9] B. I. Halperin, Phys. Rev. B 25, 2185 (1982).
[10] M. Büttiker, Phys. Rev. B 38, 9375 (1988).
[11] M. JanBen, O. Viehweger, U. Fastenrath, and J. Hajdu, “ Introduction to the Theory of the Integer Quantum Hall Effect ”
[12] T. M. Chen, Master Thesis, National Taiwan University (2004).
[13] T. Y. Huang, Ph. D. Thesis, National Taiwan University (2005).

References for chapter 3
[1] Operator’s Handbook of HelioxTL Superconducting Magnet System.
[2] T. Y. Huang, Ph. D Thesis, National Taiwan University (2005).

References for chapter 4
[1] S. Nakamura, T. Mukai, and M. Senoh, Appl. Phys. Lett. 64, 1687 (1994).
[2] O. Ambacher, J. Smart, J. R. Shealy, N. G. Weimann, K. Chu, M. Murphy, W. J.
Schaff, and L. F. Eastman, J. Appl. Phys. 85, 3222 (1999).
[3] A. Ozgur, W. Kim, Z. Fan, A. Botchkarev, A. Salvador, S. N. Mohmmad, B.Sverdlov, and H. Morkoc, Electron. Lett. 31, 1389 (1995).
[4] M. A. Khan, Q. Chen, M. S. Shur, B. T. Dermott, J. A. Higgins, J. Burm, W. J. Schaff, and L. F. Eastman, IEEE Electron Device Lett. 17, 584 (1996).
[5] S. C. Binari, J. M. Redwing, G. Kelner, and W. Kruppa, Electron. Lett. 33, 242 (1997).
[6] R. Gaska, Q. Chen, J. Yang, A. Osinsky, M. A. Khan, and M. S. Shur, IEEE Electron Device Lett. 18, 492 (1997).
[7] Y. F. Wu, S. Keller, P. Kozodoy, B. P. Keller, P. Parikh, D. Kapolnek, S. P. DenBaars, and U. K. Mishra, IEEE Electr. Device Lett. 18, 290 (1997).
[8] R. Dimitrov, L. Wittmer, H. P. Felsl, A. Mitchell, O. Ambacher, and M. Stutzmann, Phys. Status Solidi A 168, 7 (1998).
[9] R. Birkhahn and A. J. Steckl, Appl. Phys. Lett. 73, 2143 (1998).
[10] K. S. Cho, T. Y. Huang, H. S. Wang, M. G. Lin, T. M. Chen, C.-T. Liang, Y. F. Chen, and I. Lo, Appl. Phys. Lett. 86, 222102 (2005).
[11] K. Y. Zang, S. J. Chua, L. S. Wang, and C. V. Thompson, Phys. Status Solidi C 0,
2067 (2003).
[12] S. Pal and C. Jacob, Bull. Mater. Sci. 27, 501 (2004).
[13] S. Kang, W. Alan Doolittle, K. K. Lee, Z. R. Dai, Z. L. Wang, Stuart R. Stock, and A. S. Brown, J. Electron. Matter 30, 156 (2001).
[14] D. R. Leadley, R. J. Nicholas, J. J. Harris, and C. T. Foxon, Semicond. Sci. Technol. 4, 879 (1989).
[15] A. K. M. Wennberg, S. N. Ytterboe, C. M. Gould, H. M. Bozler, J. Klem, and H. Morkoc, Phys. Rev. B 34, 4409 (1986).
[16] H. Scheret, L. Schweitzer, F. J. Ahlers, L. Bliek, R. Losch, and W. Schlapp, Semicond. Sci. Technol. 10, 959-964 (1995).
[17] H. P. Wei, D. C. Tsui, M. A. Paalanen, and A. M. M. Pruisken, Phys. Rev. Lett. 61, 1294 (1988).
[18] A. M. M. Prusiken, Phys. Rev. Lett. 61, 1297 (1988).
[19] P. L. McEuen, A. Szafer, C. A. Richter, B. W. Alphenaar, J. K. Jain, A. D. Stone, R. G. Wheeler, and R. N. Sacks, Phys. Rev. Lett. 64, 2062 (1990).
[20] S. Koch, R. J. Haug, K. v. Klitzing, and K. Ploog, Phys. Rev. Lett. 67, 883 (1991).
[21] L. W. Engel, D. Shahar, C. Kurdak, and D. C. Tsui, Phys. Rev. Lett. 71, 2638 (1993).
[22] S. W. Hwang, H. P. Wei, L. W. Engel, D. C. Tsui, and A. M. M. Pruisken, Phys. Rev. B 48, 11416 (1993).
[23] B. Huckestein and B. Kramer, Phys. Rev. Lett. 64, 1437 (1990).
[24] Y. Huo, R. E. Hetzel, and R. N. Bhatt, Phys. Rev. Lett. 70, 481 (1993).
[25] D. Liu and S. Das Sarma, Mod. Phys. Lett. 7, 449 (1993).
[26] D. G. Polyakov and B. I. Shklovskii, Phys. Rev. Lett. 70, 3796 (1993).
[27] D. H. Lee, Z. Wang, and S. Kivelson, Phys. Rev. Lett. 70, 4130 (1993).
[28] H. L. Zhao and S. Feng, Phys. Rev. Lett. 70, 4134 (1993).
[29] B. Huckestein, Phys. Rev. Lett. 72, 1080 (1994).
[30] T. Brandes, L. Schweitzer, and B. Kramer, Phys. Rev. Lett. 72, 3582 (1994).
[31] P. W. Anderson, E. Abrahams, and T. V. Ramakrishnan, Phys. Rev. Lett. 43, 718
(1979).
[32] H. P. Wei, L. W. Engel, and D. C. Tsui, Phys. Rev. B 50, 14609 (1994).
[33] M. L. Roukes, M. R. Freeman, R. S. Germain, R. C. Richardson, and M. B. Ketchen, Phys. Rev. Lett. 55, 422 (1985).
[34] A. Isihara and L. Smrcka, J. Phys. C 19, 6777 (1986).
[35] T. Ando, J. Phys. Soc. Jpn. 37, 1233 (1974).
[36] P. T. Coleridge, R. Stoner, and R. Fletcher, Phys. Rev. B 39, 1120 (1989).
[37] R. Fletcher, J. J. Harris, C. T. Foxon, and R. Stoner, Phys. Rev. B 45, 6659
(1992).
[38] B. K. Ridley, Rep. Prog. Phys. 54, 169 (1991).
[39] A. J. Vickers, Phys. Rev. B 46, 13315 (1992).
[40] B. K. Ridley, “Quantum Processes in Semiconductors” (Oxford, New York, 1991).
[41] N. Balkan, H. Celik, A. J. Vickers, and M. Cankurtaran, Phys. Rev. B 52, 17210 (1995).
[42] M. E. Daniels, B. K. Ridley, and M. Emeny, Solid State Electron. 32, 1207
(1989).
[43] K. J. Lee, J. J. Harris, A. J. Kent, T. Wang, S. Sakai, D. K. Maude, and J.-C. Portal, Appl. Phys. Lett. 78, 2893 (2001).
[44] P. L. Gammel, D. J. Bishop, J. P. Eisenstein, J. H. English, A. C. Gossard, R. Ruel, and H. L. Stormer, Phys. Rev. B 38, 10128 (1988).
[45] Kun-Ta Wu, P. H. Chang, S. T. Lien, N. C. Chen, Ching-An Chang, C. F. Shih, W. C. Lien, Y. H. Wu, Shang-Chia Chen, Y. H. Chang, and C.-T. Liang, Physica E 32, 566 (2006).
[46] A. Barski, U. Rössner, J. L. Rouvière, and M. Arlery, MRS. Internet J. Nitride Semicond. Res. 1, 21 (1996).
[47] T. Lei, M. Fanciulli, R. J. Molnar, T. D. Moustakas, R. J. Graham, and J. Scanlon, Appl. Phys. Lett. 59, 944 (1991).
[48] T. D. Moustakas, T. Lei, and R. J. Molnar, Physica B 185, 36 (1993).
[49] J. W. Yang, C. J. Sun, Q. Chen, M. Z. Anwar, M. A. Khan, S. A. Nikishim, G. A. Seryogin, A. V. Osinsky, L. Chernyak, H. Temkin, C. Hu, and S. Mahajan, Appl. Phys. Lett. 69, 3566 (1996).
[50] A. Krost and A. Dadgar, Mater. Sci. Eng. B 93, 77 (2002).
[51] T. W. Weeks Jr., M. D. Bremser, K. S. Ailey, E. Carlson, W. G. Perry, and R. F. Davis, Appl. Phys. Lett. 67, 401 (1995).

References for chapter 5
[1] H. P. Wei, L. W. Engel, and D. C. Tsui, Phys. Rev. B 50, 14609 (1994).
[2] John Singleton, “Band Theory and Electronic Properties of Solids” (Oxford 2001).
[3] R. J. Nicholas, R. A. Stradling, and R. J. Tidey, Solid State Commun. 23, 341 (1977).
[4] M. Pepper, J. Phys. C 10, L173 (1977).
[5] A. Usher, R. J. nicholas, J. J. Haris, and C. T. Foxon, Phys. Rev. B 41, 1129 (1990).
[6] Y. Ono, J. Phys. Soc. Jpn. 51, 237(1982).
[7] J. F. Janak, Phys. Rev. 178, 1416 (1969).
[8] T. M. Chen, Master Thesis, National Taiwan University (2004).
[9] R. J. Haug, K. v. Klitzing, and K. Ploog, Phys. Rev. B 35, 5933 (1987).
[10] P. Svoboda, P. Streda, G. Nachtwei, A. Jaeger, M. Cukr, and M. Laznicka, Phys. Rev. B 45, 8763 (1992).
[11] G. Nachtwei, C. Breitlow, A. Jaeger, P. Svoboda, P. Streda, M. Cukr, L. Bliek, F. –J. Ahlers, and H. Schlegel, Semicond. Sci. Techno1 8, 25 (1993).
[12] G. Nachtwei, C. Breitlow, J. Seyfarth, S. Heide, L. Bliek, F-J. Ahlers, P. Svoboda, and M. Cukr, Semicond. Sci. Technol 9, 10 (1994).
[13] J. H. Chen, D. R. Hang, C. F. Huang, T.-Y. Huang, J.-Y. Lin, S. H. Lo, J. C. Hsiao, M.-G. Lin, M. Y. Simmons, D. A. Ritchie, and C.-T. Liang, J. Korean Phys. Soc. 50, 776 (2007).
[14] T. Kramer, Int. J. Modern Phys. B 20, 1243 (2006).
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/30639-
dc.description.abstract本篇論文主要描述加在二維氮化鎵和砷化鎵電子系統下的加熱電子。本論文包含下列二個主題:

1. 在二維氮化鎵下加熱電子和電流尺度的關係
我們量測無磁場下在二維氮化鎵異質結構電子傳輸特性,以從0.27 K 到 60 K 量測到的縱向電阻率當成溫度計,在低溫可看到像絕緣體的行為。我們固定晶格溫度在 0.27 K 後改變電流從 10^-7 A 到 10^-4 A 量測縱向電阻率,可得到電流尺度關系式 Te ~ I^a 和 電子能量損耗率P ~ Te^n -TL^n。 最後我們選擇高功率區修正有效電子溫度對改變電流和能量損耗的函數。

2. 在二維砷化鎵下加熱電子和態密度的關系
我們分別完成在砷化鎵二維電子氣不同溫度以及不同電流下傳輸特性的量測,得到在填充係數等於3, 5, 7, 9 附近以及在填充係數等於2上的電流尺度a 的值 。我們觀察到在自旋向上的區域中電阻率有強大地不對稱行為,這現象可以在高遷移率的樣品中看到。我們分析活化能得到自旋能隙、增強的g-系數和臨界磁場Bc,我們也量測低場量子霍爾效應和發現藍道能階間隔比感應侷域化遷移率能隙大了許多。
zh_TW
dc.description.abstractThe thesis describes the electron heating in two-dimensional GaAs and GaN electron systems. This dissertation consists of the following two topics.
1. The relation between electron heating and current scaling in GaN/AlGaN two-dimensional electron system
We have measured the electron transport properties in a AlGaN/GaN heterostructure without magnetic field. We measured the longitudinal form 0.27 K to 60K as a self-thermometer. An insulator-like behavior is seen at low temperature. We also measured the longitudinal as a function varying with currents from 10^-7 A to 10^-4 A at a fixed lattice temperature 0.27 K. We obtained a current scaling relation, Te ~ I^a , and the electron energy loss rate, P ~ Te^n -TL^n. Finally, we picked the high-power regime to modify the effective carrier temperature as a function of current and energy loss rate.
2. The relation between electron heating and density of state in GaAs/AlGaAs two-dimensional electron system
We performed transport measurements on a GaAs/AlGaAs 2DEG as a function of magnetic fields at different temperatures and currents, respectively. We got the value a of the current scaling in the vicinity of filling factors v = 3, 5, 7, and 9 and at the filling factor v = 11. We observed that the longitudinal resistivity has a strongly asymmetric behavior in the spin-up regions. This phenomenon can be seen in a high mobility sample. We analyzed the activation energy to obtain the spin gap, the enhanced g-factor, and the critical field Bc. We also probed the low-field QHE and found the Landau-level spacing is much larger than the localization-induced mobility gap.
en
dc.description.provenanceMade available in DSpace on 2021-06-13T02:10:56Z (GMT). No. of bitstreams: 1
ntu-96-R94222022-1.pdf: 2350100 bytes, checksum: d39e4f81b01fc2630b6a0106c48afa33 (MD5)
Previous issue date: 2007
en
dc.description.tableofcontentsChapter 1
Introduction to two-dimensional electron systems 1

1.1 Two-dimensional electron systems.....1
1.2 GaAs/AlGaAs two-dimensional electron system.....2
1.2.1 The diamond and zinc-blende structures.....2
1.2.2 The modulation doped GaAs/AlGaAs heterostructure.....3
1.3 GaN/AlGaN two-dimensional electron systems.....4
1.4 Varying carrier concentration in a 2DES.....6
1.5 References.....8

Chapter 2
Theoretical Background 9
2.1 Density of states.....9
2.1.1 Density of states for a three-dimensional system.....9
2.1.2 Density of states for a lower-dimensional systems......11
2.2 The classical Drude theory.....13
2.3 Classical Hall Effect....15
2.4 Landau quantization.....17
2.4.1 Landau levels.....17
2.4.2 Shubnikov-de Hass oscillations.....18
2.4.3 Integer quantum Hall effect.....20
2.4.4 Edge states.....21
2.5 References.....24

Chapter 3
Sample fabrication and experimental techniques 25
3.1 Sample fabrication.....25
3.1.1 Hall bar.....25
3.1.2 Ohmic contacts.....27
3.1.3 Sample packaging and handing.....27
3.2 Cryogenic system.....28
3.2.1 Preparation.....25
3.2.2 He3 condensing.....29
3.2.3 Controlling the temperature.....29
3.3 Four-terminal resistance measurements.....30
3.4 References.....31

Chapter 4
The relation between electron heating and current scaling in a GaN/AlGaN two-dimensional electron system 32
4.1 Introduction.....32
4.2 Theoretical background and previous work.....34
4.2.1 Current scaling.....34
4.2.2 Electron-phonon scattering.....38
4.2.3 Two bath model.....41
4.3 Sample structure and experiments.....42
4.3.1 Sample structure.....42
4.3.2 Experiments.....43
4.4 Results and discussions.....43
4.5 Conclusion.....49
4.6 References.....50

Chapter 5
The relation between electron heating and density of state in a GaAs/AlGaAs two-dimensional electron system 53
5.1 Introduction.....53
5.2 Theoretical background and previous work.....54
5.2.1 The Arrhenius equation and activation energy.....54
5.2.2 The spin splitting.....56
5.2.3 Density of state and electron heating.....57
5.3 Sample structure and experiments.....59
5.4 Results and discussions.....60
5.5 Conclusion.....70
5.6 References.....71
Chapter 6
Conclusions 72
dc.language.isoen
dc.title二維氮化鎵和砷化鎵電子系統加熱電子之研究zh_TW
dc.titleElectron heating in AlGaN/GaN and AlGaAs/GaAs two-dimensional electron systemsen
dc.typeThesis
dc.date.schoolyear95-2
dc.description.degree碩士
dc.contributor.oralexamcommittee張本秀(Pen-Hsiu Chang),林立弘(Lin Li-hung)
dc.subject.keyword砷化鎵,砷化氮,量子霍爾效應,電子加熱,zh_TW
dc.subject.keywordtwo-dimensional electron system,GaN,GaAs,electon heating,spin splitting,en
dc.relation.page72
dc.rights.note有償授權
dc.date.accepted2007-06-26
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept物理研究所zh_TW
顯示於系所單位:物理學系

文件中的檔案:
檔案 大小格式 
ntu-96-1.pdf
  目前未授權公開取用
2.3 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved