請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/30636完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 吳俊傑 | |
| dc.contributor.author | Wan-Ting Chou | en |
| dc.contributor.author | 周婉婷 | zh_TW |
| dc.date.accessioned | 2021-06-13T02:10:50Z | - |
| dc.date.available | 2007-07-03 | |
| dc.date.copyright | 2007-07-03 | |
| dc.date.issued | 2007 | |
| dc.date.submitted | 2007-06-26 | |
| dc.identifier.citation | 曾忠一,2006:大氣科學中的反問題—反演、分析與同化,國立編譯館主編出版。
吳俊傑、林博雄、林依依與葉天降,2004:「侵台颱風之GPS Dropsonde飛機偵察觀測實驗」(追風計畫)與「颱風及海洋物理及生物地球化學交互作用研究」之研究回顧。大氣科學, 32, 275-292. 黃葳芃,2006:投落送資料對颱風路徑模擬評估研究 ─ 康森及米雷颱風個案分析 Aberson, S. D., and J. L. Franklin, 1999: Impact on hurricane track and intensity forecasts of GPS dropwindsonde observations from the first-season flights of the NOAA gulfstream-IV Jet Aircraft. Bull. Amer. Meteor. Soc., 80, 421-427. ______, 2002: Two years of operational hurricane synoptic surveillance. Wea. and Fore. , 17, 1101-1110. ______, 2003: Targeted observations to improve operational tropical cyclone track forecast guidance. Mon. Wea. Rev., 131, 1613-1628. ______, and B. J. Etherton, 2006: Targeted and data assimilation studies during Hurricane Humberto (2001). J. Atmos. Sci., 63, 175-186. Atlas, R., R. N. Hoffman, S. M. Leidner, J. Sienkiewicz, T. W. Yu, S. C. Bloom, E. Brin, J. Ardizzone, J. Terry, D. Bungato and J. C. Jusem 2001: The Effects of Marine Winds from Scatterometer Data on Weather Analysis and Forecasting. Bull. Amer. Meteor. Soc., 9, 1965-1990. Barker, D. M., W. Huang,Y.-R. Guo, and A. J. Bourgeois, 2003: A three-dimensional variational (3DVAR) data assimilation system for use with MM5. NCAR Tech. Note. NCAR/TN-453 + STR, 68 pp. [Available from UCAR Communications, P.O. Box 3000, Boulder, CO, 80307, USA.] ______, W. Huang, Y.-R. Guo, A. J. Bourgeois and Q. N. Xiao, 2004: A three-dimensional variational data assimilation system for MM5: Implementation and initial results. Mon. Wea. Rev., 132, 897-914. Burpee, R. W., D. G. Marks, and R. T. Merrill,1984: An assessment of Omega dropwindsonde data in track forecasts of Hurricane Debby (1982). Bull. Amer. Meteor. Soc., 65, 1050-1058. ______, J. L. Franklin, S. J. Lord, R. E. Tuleya, and S. D. Aberson, 1996: The impact of Omega dropwindsondes on operational hurricane track forecast models. Bull. Amer. Meteor. Soc., 77, 925-933. Chen, S. H., 2007: The Impact of Assimilating SSM/I and QuikSCAT Satellite Winds on Hurricane Isidore Simulations. Mon. Wea. Rev., 135, 549-566 Chou, K. H., and C.-C. Wu, 2007: Development of the typhoon initialization in a mesoscale model - Combination of the bogused vortex and the dropwindsonde data in DOTSTAR. Submitted to Mon. Wea. Rev. Dudhia, J., 1993: A nonhydrostatic version of the Penn State–NCAR Mesoscale Model: Validation tests and simulation of an Atlantic cyclone and cold front. Mon.Wea. Rev., 121, 1493-1513. Dunion, J. P., and C. S. Velden, 2002: Application of surface-adjusted GOES low-level cloud-drift winds in the environment of Atlantic tropical cyclones. part I: methodology and validation. Mon. Wea. Rev., 130, 1333–1346. Gelaro, T. E. Rosmond, and R. Daley, 2002: Singular vector calculations with an analysis error variance metric. Mon. Wea. Rev., 130, 1166-1186. Goerss, J. S., C. S. Velden, and J. D. Hawkins, 1998: The impact of multispectral GOES-8 wind information on Atlantic tropical cyclone track forecasts in 1995. Part II: NOGAPS Forecasts. Mon. Wea. Rev., 126, 1219-1227. Grell, G. A., 1993: Prognostic evaluation of assumptions used by cumulus parameterization. Mon. Wea. Rev., 121, 764–787. ______, J. Dudhia, and D. Stauffer, 1995: A description of the Fifth-generation Penn State/NCAR Mesoscale Model (MM5). NCAR Tech. Note NCAR/TN-398+STR, 138 pp. Huang, W.-P., C.-C. Wu, P.-H. Lin, and K.-H. Chou, 2006: The impact of the dropwindsonde data from DOTSTAR on the track prediction of typhoon Conson (2004). Preprints, 27th Conf. on Hurricanes and Tropical Meteorology, Amer. Meteor. Soc. Hock, T. F., and J.L. Franklin, 1999: The NCAR GPS dropwindsondes. Bull. Amer. Meteor. Soc., 80, 407-420. Hong, S.-Y., and H.-L. Pan, 1996: Nonlocal boundary layer vertical diffusion in a medium-range forecast model. Mon. Wea. Rev., 124, 2322–2339. Ide, K., P. Courtier, M. Ghil, and A. C. Lorenc, 1997: Unified notation for data assimilation: Operational, sequential and variational. J. Met. Soc. Japan, 75, 181-189. Kurihara, Y., M. A. Bender, R. E. Tuleya, and R. J. Ross, 1995: Improvements in the GFDL hurricane prediction system. Mon. Wea. Rev., 123, 2791–2801. Leslie, L. M., J. F. Le Marshall, R. P. Morison, C. Spinoso, R. J. Purser, N. Pescod, and R. Seecamp, 1998: Improved hurricane track forecasting from the continuous assimilation of high quality satellite wind data. Mon. Wea. Rev., 126, 1248-1257. Majumdar, S. J., C. H. Bishop, R. Buizza and R. Gelaro, 2002: A comparison of ensemble-transform Kalman-filter targeting guidance with ECMWF and NRL total-energy singular-vector guidance. Q. J. R. Meteorol. Soc., 128, 2527-2549 Parrish, D. F. and J. C. Derber, 1992: The National Meteorological Center's Spectral Statistical-Interpolation analysis system. Mon. Wea. Rev., 120, 1747-1763. Pu, W.-K. Tao, S. Braun, J. Simpson, Y. Jia, J. Halverson, W. Olson, and A. Hou, 2002: The impact of TRMM data on mesoscale numerical simulation of Supertyphoon Paka. Mon. Wea. Rev., 130, 2448–2458. ______, X. Li, C. Velden,S. Aberson, W. T. Liu, 2007: Impact of aircraft dropsonde and satellite wind data on the numerical simulation of two landfalling tropical storms during tropical cloud systems and processes experiment. Wea. Forecasting. (Conditionally accepted) Reisner, J., R. J. Rasmussen, and R. T. Bruintjes, 1998: Explicit forecasting of supercooled liquid water in winter storms using the MM5 mesoscale model. Quart. J. Roy. Meteor. Soc., 124B, 1071–1107. Rosmond, T. E., 1997: A technical description of the NRL adjoint model system, NRL/MR/7532/97/7230, Naval Research Laboratory, Monterey, Calif., 93943-5502, 62pp. Soden, B. J., C. S. Velden, R.E. Tuleya, 2001: The impact of satellite winds on experimental GFDL hurricane model forecasts. Mon. Wea. Rev., 129, 835-852 Vaisala, 2004: Vaisala RD93 GPS dropsonde. [Available online at http://www.vaisala.com.] Velden, C. Hayden, S. Nieman, W. Menzel, S. Wanzong, and J. Goerss, 1997: Upper-tropospheric winds derived from geostationary satellite water vapor observations. Bull. Amer. Meteor. Soc., 78, 173–195. Wu, C.-C., T.-H. Yen, Y.-H. Kuo, and W. Wang, 2002:Rainfall simulation associated with Typhoon Herb (1996) near Taiwan. Part I: The topographic effect. Wea. and Forecasting, 17, 1001-1015. ______, P.-H. Lin, S. Aberson, T.-C. Yeh, W.-P. Huang, K.-H. Chou, J.-S. Hong, G.-C. Lu, C.-T. Fong, K.-C. Hsu, I-I Lin, P.-L. Lin, and C.-H. Liu, 2005: Dropwindsonde Observations for Typhoon Surveillance near the Taiwan Region (DOTSTAR): An overview. Bull. Amer. Meteor. Soc., 86, 787-790. ______, 2006: Targeted observation and data assimilation for tropical cyclone track prediction. Proceeding, 6th International Workshop on Tropical Cyclones, WMO/CAS//WWW, San Jose, Costa Rica, November 21-28, 409-423. ______, K.-H. Chou, Y. Wang and Y.-H. Kuo, 2006: Tropical cyclone initialization and prediction based on four-dimensional variational data assimilation. J. Atmos. Sci., 63, 2383–2395. ______, J.-H. Chen, P.-H. Lin, and K.-H. Chou, 2007a: Targeted observations of tropical cyclone movement based on the adjoint-derived sensitivity steering vector. J. Atmos. Sci., 64, 2593–2610. ______, K.-H. Chou, P.-H. Lin, S. D. Aberson, M. S. Peng, and T. Nakazawa, 2007b: The impact of dropsonde data on typhoon track forecasts in DOTSTAR. Weather and Forecasting. (in press) Zhang, X., Q. Xiao, and P. Fitzpatrick, 2007: The impact of multi-satellite data on the initialization and simulation of Hurricane Lili’s (2002) rapid weakening phase. Mon. Wea. Rev., 135, 526-548 | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/30636 | - |
| dc.description.abstract | 為有效增進西北太平洋地區颱風周遭環境大氣資料的觀測,台灣自2003年起正式展開「侵台颱風之飛機偵察及投落送觀測實驗」,簡稱DOTSTAR (Wu et al. 2005),希望藉由投落送觀測資料來增加對颱風環境流場的掌握,增進颱風模擬之準確度。除了投落送資料外,觀測範圍相當廣泛的衛星資料亦是增進對環境場掌握的重要資源,且亦有助於颱風模擬之改善。另外,在模式初始場中植入一虛擬渦旋將可重新建立颱風內部結構,亦有助於改善颱風強度及路徑之模擬。
本研究為探討植入渦旋、投落送資料、QuikSCAT風場及衛星雲導風場分別對於颱風路徑與強度之模擬有何影響,利用MM5 3DVAR同化系統,選取DOTSTAR所觀測的梅姬 (Megi 2004)與卡努(Khanun 2005)兩颱風,進行一系列資料同化與數值模擬實驗。此外,本研究亦針對觀測誤差之敏感性、植入渦旋大小之敏感性以及移除近颱風中心QuikSCAT風場等部分進行測試與探討。 研究結果顯示,未進行渦旋植入的各組實驗,其模擬的颱風強度皆太弱,颱風垂直結構相當鬆散。這也使得颱風受到駛流的深度和真實的情形不同,因此路徑模擬有較大的誤差。而當植入渦旋之後此一現象大為改善,兩颱風在有植入渦旋的五組實驗中,其路徑移動的掌握都較未植入渦旋的五組實驗佳,此一結果顯示渦旋植入於模擬實驗中扮演了關鍵性的角色。 在梅姬颱風個案中,植入渦旋後同化投落送資料的路徑模擬結果最佳,植入渦旋未同化任何資料實驗結果次之。而卡努颱風則以植入渦旋未同化任何資料的實驗颱風路徑模擬最佳。在敏感性實驗的部分,於MM5 3DVAR系統中對於觀測誤差的選取是有敏感性存在的,而對於植入之渦旋大小的敏感性則不顯著。在移除近颱風中心3度內QuikSCAT風場資料的實驗結果顯示當完全剔除誤差可能較大的近颱風中心風場資料後,其路徑模擬反而較差。故針對QuikSCAT風場資料的品質控制,仍需進行更多實驗與研究來找出最佳的資料品質控制方法。 | zh_TW |
| dc.description.abstract | Starting from 2003, a new typhoon surveillance program, DOTSTAR (Dropwindsonde Observations for Typhoon Surveillance near the Taiwan Region) was launched (Wu et al. 2005). It’s expected to enhance the number of observations in the environment of hurricanes threatening North-West Pacific area.
When dealing with typhoon simulation data, it is obvious that both dropwindsonde data and satellite data are very important for the betterment of typhoon simulation. During the process, we found another method that might be able to approach to the real typhoon initial structure and improve the prediction at the same time-implanting the bogused vortex. According to the experiment results, the typhoon strength is going to be weaker and the typhoon vertical structure is easier to decay without considering the bogused vortex. All the results point out that bogused vortex plays an important role in typhoon simulation. The results reveal that the typhoon strength is weak and typhoon vertical structure is quite decay if the experiments are without implanting the bogused vortex. Therefore, this result presents that the bogused vortex in typhoon simulation plays a very important role. In the case study of the typhoon Magi (2004), we use both the dropwinsonde data and the bogused vortex in setting of the model initial field. And the result shows that it is a method in possibilities for improving the forecasting in typhoon intensity and possible tracks prediction. Even only consider the bogused vortex without assimilating any observation data, it still comes out a better track predictions. In the other case study of the typhoon Khanun(2005), the results point out that only consider the bogused vortex without assimilating any observation data also could comes out a better track simulation. For Megi(2004), appropriate combination of dropwinsonde data and the bogused vortex in the model initialization have the potential to improve both the track and intensity forecasts. Even only consider the bogused vortex without assimilating any observation data, it still comes out a better track predictions. In the other case study of the typhoon Khanun(2005), the results point out that only consider the bogused vortex without assimilating any observation data also could comes out a better track simulation. In sensitivity experiments, the simulation results reveal that MM5 3DVAR assimilation system has the sensitivity for observation inaccuracy (O) , but it’s not obvious for the sensitivity of the bogused vortex size. After removing the QuikSCAT winds near the typhoon center, the result shows the typhoon track becomes worse. More experiments and researches should be done in order to find out the best way for data quality control of QuikSCAT winds. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-13T02:10:50Z (GMT). No. of bitstreams: 1 ntu-96-R93229003-1.pdf: 7627078 bytes, checksum: ad63e6e27e87c4471d855ba8f1e76eb9 (MD5) Previous issue date: 2007 | en |
| dc.description.tableofcontents | 致 謝 I
摘 要 II Abstract III 目 錄 V 圖表目錄 VII 第一章 前言 1 1.1 研究背景 1 1.1.1 颱風飛機觀測之發展與演變 1 1.1.2 DOTSTAR計畫簡介與相關研究 2 1.1.3 衛星資料於模式之應用 4 1.2 研究動機與目的 6 第二章 資料簡介與研究方法 7 2.1 資料簡介 7 2.1.1 投落送資料 7 2.1.2 QuikSCAT海表面風場 8 2.1.3 衛星雲導風場 9 2.2 梅姬颱風與卡努颱風簡介 9 2.3 數值模式簡介 10 2.3.1 MM5模式 10 2.3.2 MM5 3DVAR資料同化系統 13 2.3.3 模式設定 15 2.4 實驗設計 16 第三章 同化不同觀測資料之模擬實驗結果 17 3.1 未植入渦旋同化不同觀測資料對路徑模擬影響之探討 17 3.1.1 同化投落送資料 17 3.1.1.1 梅姬颱風 17 3.1.1.2 卡努颱風 19 3.1.2 同化QuikSCAT風場 20 3.1.3 同化衛星雲導風場 22 3.1.4 同化所有觀測資料 23 3.2 植入渦旋對路徑模擬影響之探討 24 3.2.1 梅姬颱風 24 3.2.2 卡努颱風 25 3.3 植入渦旋後再同化不同觀測資料對路徑模擬影響之探討 26 3.3.1 同化投落送資料 27 3.3.1.1 梅姬颱風 27 3.3.1.2 卡努颱風 28 3.3.2 同化QuikSCAT風場 28 3.3.3 同化衛星雲導風場 30 3.3.4 同化所有觀測資料 30 第四章 其他影響因子之敏感性探討 32 4.1 觀測誤差的敏感性 32 4.1.1 觀測誤差之設定 32 4.1.2 實驗結果 33 4.2 植入渦旋大小的敏感性 34 4.3 移除近颱風中心QuikSCAT風場對颱風路徑模擬之影響 36 第五章 結論 37 5.1 綜合討論 37 5.2 未來展望 40 參 考 文 獻 42 圖 表 47 | |
| dc.language.iso | zh-TW | |
| dc.subject | 投落送 | zh_TW |
| dc.subject | 海表面風場(QuikSCAT) | zh_TW |
| dc.subject | 衛星雲導風 | zh_TW |
| dc.subject | 資料同化 | zh_TW |
| dc.subject | 颱風路徑 | zh_TW |
| dc.subject | DOTSTAR | en |
| dc.subject | assimilation | en |
| dc.subject | Cloud-drift wind | en |
| dc.subject | QuikSCAT | en |
| dc.subject | typhoon simulation | en |
| dc.subject | Dropwindsonde | en |
| dc.title | DOTSTAR投落送資料與其他衛星觀測資料對颱風
路徑模擬影響之探討 ─ 梅姬與卡努颱風個案研究 | zh_TW |
| dc.title | Evaluation of the impact of the dropwindsonde data in DOTSTAR and other satellite data on typhoon track predictions | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 95-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 曾忠一,林博雄,陳淑華,葉錫圻 | |
| dc.subject.keyword | 投落送,海表面風場(QuikSCAT),衛星雲導風,資料同化,颱風路徑, | zh_TW |
| dc.subject.keyword | DOTSTAR,Dropwindsonde,QuikSCAT,Cloud-drift wind,assimilation,typhoon simulation, | en |
| dc.relation.page | 46 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2007-06-26 | |
| dc.contributor.author-college | 理學院 | zh_TW |
| dc.contributor.author-dept | 大氣科學研究所 | zh_TW |
| 顯示於系所單位: | 大氣科學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-96-1.pdf 未授權公開取用 | 7.45 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
