請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/30596完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 張耀文(Yao-Wen Chang) | |
| dc.contributor.author | Yi-Lin Chuang | en |
| dc.contributor.author | 莊易霖 | zh_TW |
| dc.date.accessioned | 2021-06-13T02:09:46Z | - |
| dc.date.available | 2014-08-05 | |
| dc.date.copyright | 2011-08-05 | |
| dc.date.issued | 2011 | |
| dc.date.submitted | 2011-08-02 | |
| dc.identifier.citation | [1] Cadence Design Systems. http://www.cadence.com.
[2] HSPICE. http://www.synopsys.com/community/interoperability/pages/hspice.aspx. [3] ISPD 2006 Placement Contest. http://www.sigda.org/ispd2006/contest.html. [4] ISPD 2007 Routing Contest. http://www.sigda.org/ispd2007/contest.html. [5] IWLS 2005 Benchmarks. http://iwls.org/iwls2005/benchmarks.html. [6] Nangate 45nm Open Cell Library. http://www.nangate.com/. [7] NTUplace3 download. http://eda.ee.ntu.edu.tw/research.htm. [8] OpenCores. http://www.opencores.org. [9] C. Alpert, A. Kahng, G.-J. Nam, S. Reda, and P. Villarrubia. A semi-persistent clustering technique for VLSI circuit placement. In Proceedings of ACM International Symposium on Physical Design, pages 185–192, San Francisco, CA, Apr. 2005. [10] K. Athikulwongse, A. Chakraborty, J.-S. Yang, D. Z. Pan, and S. K. Lim. Stress-driven 3D-IC placement with TSV keep-out zone and regularity study. In Proceedings of IEEE/ACM International Conference on Computer-Aided Design, pages 669–674, San Jose, CA, Nov. 2010. [11] T. Baumann, D. Schmitt-Landsiedel, and C. Pacha. Architectural assessment of design techniques to improve speed and robustness in embedded microprocessors. In Proceedings of ACM/IEEE Design Automation Conference, pages 947–950, San Francisco, CA, June 2009. [12] R. Bhooshan. Novel and efficient IR-drop models for designing power distribution network for sub-100nm integrated circuits. In Proceedings of IEEE/ACM International Symposium on Quality of Electronic Design, pages 287–292, San Jose, CA, Mar. 2007. [13] S. Boyd and L. Vandenberghe. Convex Optimation. Cambridge University Press, 2004. [14] Y. Cai, B. Liu, J. Shi, Q. Zhou, and X. Hong. Power delivery aware floorplanning for voltage island designs. In Proceedings of IEEE/ACM International Symposium on Quality of Electronic Design, pages 350–355, San Jose, CA, Mar. 2007. [15] T. Chan, J. Cong, J. Shinnerl, K. Sze, and M. Xie. mPL6: Enhanced multilevel mixed-size placement. In Proceedings of ACM International Symposium on Physical Design, pages 212–214, San Jose, CA, Mar. 2006. [16] T. Chan, J. Cong, and K. Sze. Multilevel generalized force-directed method for circuit placement. In Proceedings of ACM International Symposium on Physical Design, pages 185–192, San Francisco, CA, Apr. 2005. [17] H.-M. Chen, L.-D. Huang, I.-M. Liu, and M. D. F. Wong. Simultaneous power supply planning and noise avoidance in floorplan design. In Proceedings of IEEE/ACM International Conference on Computer-Aided Design, pages 578– 587, San Jose, CA, Apr. 2005. [18] T.-C. Chen, M. Cho, D. Z. Pan, and Y.-W. Chang. Metal-density driven placement for CMP variation and routability. IEEE Transactions on Computer- Aided Design of Integrated Circuits and Systems, 27(12):2145–2155, Dec. 2008. [19] T.-C. Chen, T.-C. Hsu, Z.-W. Jiang, and Y.-W. Chang. NTUplace: a ratio partitioning based placement algorithm for large-scale mixed-size designs. In Proceedings of ACM International Symposium on Physical Design, pages 236– 238, San Francisco, CA, Apr. 2005. [20] T.-C. Chen, Z.-W. Jiang, T.-C. Hsu, H.-C. Chen, and Y.-W. Chang. NTUplace3: An analytical placer for large-scale mixed-size designs with preplaced blocks and density constraints. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 27(7):1228–1240, July 2008. [21] Y. Cheon, P.-H. Ho, A. B. Kahng, S. Reda, and Q. Wang. Power-aware placement. In Proceedings of ACM/IEEE Design Automation Conference, pages 795–800, Anaheim, CA, June 2005. [22] Y. Cheon and D. F. Wong. Design hierarchy guided multilevel circuit partitioning. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 22(4):420–427, Apr. 2003. [23] J.-C. Chi, T.-H. Huang, and M.-C. Chi. An IR drop-driven placer for standard cells in a soc design. In Proceedings of SOC Conference, pages 159–164, Herndon, VA, Nov. 2005. [24] D. Chinnery and K. Keutzer. Closing the Gap between ASIC & custom. Kluwer Academic Publishers, 2002. [25] C. Chu and Y.-C. Wong. Fast and accurate rectilinear steiner minimal tree algorithm for VLSI design. In Proceedings of ACM International Symposium on Physical Design, pages 28–35, San Francisco, CA, Mar. 2005. [26] J. Cong, M. Romesis, and J. R. Shinnerl. Fast floorplanning by look-ahead enabled recursive bipartitioning. In Proceedings of IEEE/ACM Asia South Pacific Design Automation Conference, pages 1119–1122, Shanghai, China, Jan. 2005. [27] M. Edahiro. A clustering-based optimization algorithm in zero-skew routings. In Proceedings of ACM/IEEE Design Automation Conference, pages 612–616, Dallas, Texas, June 1993. [28] J. Fischer and V. Heun. Theoretical and practical improvements on the RMQproblem, with applications to LCA and LCE. In Proceedings of Combinatorial Pattern Matching, pages 36–48, Barcelona, Spain, 2006. [29] B. Goplen and S. Sapatnekar. Thermal via placement in 3D ICs. In Proceedings of ACM International Symposium on Physical Design, pages 167–174, San Francisco, CA, Apr. 2005. [30] J. Hu, J. A. Roy, and I. L. Markov. Completing high-quality global routes. In Proceedings of ACM International Symposium on Physical Design, pages 35–41, San Francisco, CA, Mar. 2010. [31] Z.-W. Jiang, B.-Y. Su, and Y.-W. Chang. Routability-driven analytical placement by net overlapping removal for large-scale mixed-size designs. In Proceedings of ACM/IEEE Design Automation Conference, pages 167–172, Anaheim, CA, June 2008. [32] A. B. Kahng, B. Liu, and Q. Wang. Supply voltage degradation aware analytical placement. In Proceedings of IEEE/ACM International Conference on Computer-Aided Design, pages 437–443, San Jose, CA, Oct. 2005. [33] A. B. Kahng and Q. Wang. Implementation and extensibility of an analytic placer. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 24(5):734–747, May 2005. [34] A. Khatkhate, C. Li, A. R. Agnihotri, M. C. Yildiz, S. Ono, C.-K. Koh, and P. H. Madden. Recursive bisection based mixed block placement. In Proceedings of ACM International Symposium on Physical Design, pages 84–89, Phoenix, AZ, Apr. 2004. [35] S. Kim, I. Han, S. Paik, and Y. Shin. Pulser gating: a clock gating of pulsedlatch circuits. In Proceedings of IEEE/ACM Asia South Pacific Design Automation Conference, pages 190–195, Yokohama, Japan, Jan. 2011. [36] D. Kouroussis and F. N. Najm. A static pattern-independent technique for power grid voltage integrity verification. In Proceedings of ACM/IEEE Design Automation Conference, pages 99–104, Anaheim, CA, June 2003. [37] H. Lee, S. Paik, and Y. Shin. Pulse width allocation and clock skew scheduling: optimizing sequential circuits based on pulsed latches. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 29(3):355–366, Mar. 2010. [38] S. Lee, S. Paik, and Y. Shin. Retiming and time borrowing: optimizing highperformance pulsed-latch-based circuits. In Proceedings of IEEE/ACM International Conference on Computer-Aided Design, pages 375–380, San Jose, CA, Nov. 2009. [39] H.-C. Li, M.-C. Chen, and K. Ho. US patent 7, 694, 242: System and method for replacing flip-flops with pulsed latches in circuit designs. 2010. [40] H.-T. Lin, Y.-L. Chuang, and T.-Y. Ho. Pulsed-latch-aware clock network synthesis for dynamic power reduction. In Proceedings of International Symposium on Low Power Electronics and Design, Fukuoka, Japan, Aug. 2011. [41] C.-W. Liu and Y.-W. Chang. Power/ground network and floorplan co-synthesis for fast design convergence. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 26(4):693–704, Apr. 2007. [42] I. L. M. M.-C. Kim, D. Lee. SimPL: An effective placement algorithm. In Proceedings of IEEE/ACM International Conference on Computer-Aided Design, pages 649–656, San Jose, CA, Nov. 2010. [43] M. P. N. Viswanathan and C. Chu. FastPlace 3.0: A fast multilevel quadratic placement algorithm with placement congestion control. In Proceedings of IEEE/ACM Asia South Pacific Design Automation Conference, pages 135–140, Yokohama, Japan, Jan. 2007. [44] W. C. Naylor, R. Donelly, and L. Sha. US patent 6, 301, 693: Non-linear optimization system and method for wire length and dealy optimization for an automatic electric circuit placer. 2001. [45] M. Pan and C. Chu. A step to integrate global routing into placement. In Proceedings of IEEE/ACM International Conference on Computer-Aided Design, pages 464–471, San Jose, CA, Nov. 2006. [46] H. Qian, S. R. Nassif, and S. S. Sapatnekar. Random walks in a supply network. In Proceedings of ACM/IEEE Design Automation Conference, pages 93–98, Anaheim, CA, June 2003. [47] J. A. Roy, S. N. Adya, D. A. Papa, and I. L. Markov. Min-cut floorplacement. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 25(7):1313–1326, July 2006. [48] J. A. Roy, J. F. Lu, and I. L. Markov. Seeing the forest and the trees: Steiner wirelength optimization in placement. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 24(4):632–644, Apr. 2007. [49] J. A. Roy and I. L. Markov. High-performance routing at the nanometer scale. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 27(6):1066–1077, July 2008. [50] S. M. Sait and H. Youssef. VLSI Physical Design Automation: Theory and Practice. McGraw-Hill, 1995. [51] C. Sechen and A. Sangiovanni-Vincentelli. The TimberWolf placement and routing package. IEEE Journal of Solid-State Circuits, 20:510–522, 1985. [52] E. Sentovich, L. L. K. Singh, R. M. C. Moon, A. Saldanha, H. Savoj, P. Stephan, R. Brayton, and A. Sangiovanni-Vincentelli. SIS: A System for Sequential Circuit Synthesis. UC Berkley, Tech. Rep. UCB/ERL M92/41, 1992. [53] W. Shen, Y. Cai, X. Hong, and J. Hu. Activity and register placement placement aware gated clock network design. In Proceedings of ACM International Symposium on Physical Design, pages 182–189, Portland, OR, Apr. 2008. [54] S. Shibatani and A. H. Li. Pulse-Latch Approach Reduces Dynamic Power. EETimes Online, 2006. [55] Y. Shimazaki and M. Nishibori. US patent 7, 768, 294: Pulsed latch circuit and semiconductor integrated circuit. 2010. [56] Y. Shin and S. Paik. Pulsed-latch circuits: A new dimension in ASIC design. In IEEE Design and Test of Computers, 2011. [57] V. Shukla. Low power ICD talks. Cadence, 2007. [58] P. Spindler and F. M. Johannes. Fast and accurate routing demand estimation for efficient routability-driven placement. In Proceedings of IEEE/ACM Design, Automation and Test in Europe Conference, pages 1–6, Nice, France, Apr. 2007. [59] P. Spindler, U. Schlichtmann, and F. M. Johannes. Kraftwerk2 - a fast forcedirected quadratic placement approach using an accurate net model. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 27(8):1398–1411, Aug. 2008. [60] T. Taghavi, X. Yang, B.-K. Choi, M. Wang, and M. Sarrafzadeh. Dragon2006: Blockage-aware congestion-controlling mixed-size placer. In Proceedings of ACM International Symposium on Physical Design, pages 209–211, San Jose, CA, Apr. 2006. [61] X.-D. Tan and C.-J. Shi. Fast power/ground network optimization based on equivalent circuit modeling. In Proceedings of ACM/IEEE Design Automation Conference, pages 550–554, Las Vegas, NV, June 2001. [62] K. Vorwerk and A. Kennings. An improved multi-level framework for forcedirected placement. In Proceedings of IEEE/ACM Design, Automation and Test in Europe Conference, pages 902–907, Munich, Germany, Mar. 2005. [63] C.-H. Wang, C.-C. Chen, C.-S. Tsai, and S.-Y. Ying. US patent 0, 259, 308: Clock circuit and method for pulsed latch circuits. 2010. [64] X. Wang, J. Shi, and X. Hong. Heuristic power/ground network and floorplan co-design method. In Proceedings of IEEE/ACM Asia South Pacific Design Automation Conference, pages 617–622, Seoul, Korea, June 2008. [65] Y. Wang, Q. Zhou, X. Hong, and Y. Cai. Clock-tree aware placement based on dynamic clock-tree building. In Proceedings of IEEE International Symposium on Circuits and Systems, pages 2040–2043, New Orleans, LA, May 2007. [66] J. Westra, C. Bartels, , and P. Geoeneveld. Probabilistic congestion prediction. In Proceedings of ACM International Symposium on Physical Design, pages 204–209, Phoenix, AZ, Mar. 2004. [67] S.-W. Wu and Y.-W. Chang. Efficient powerground network analysis for power integrity driven design methodology. In Proceedings of ACM/IEEE Design Automation Conference, pages 177–180, San Diego, CA, June 2004. [68] J. Z. Yan, N. Viswanathan, and C. Chu. Handling complexities in modern largescale mixed-size placement. In Proceedings of ACM/IEEE Design Automation Conference, pages 436–441, San Francisco, CA, June 2009. [69] J.-S. Yim, S.-O. Bae, and C.-M. Kyung. A floorplan-based planning methodology for power and clock distribution in ASICs. In Proceedings of ACM/IEEE Design Automation Conference, pages 766–771, New Orleans, LA, June 1999. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/30596 | - |
| dc.description.abstract | 擺置在實體設計中扮演相當重要的角色。雖然擺置技術已經被研究了數十年,現代設計的挑戰,例如可繞性及電源功率消耗,要求電路設計者發展一個更具彈性的擺置演算法。然而,大多數傳統的擺置演算法通常集中注意力在線長最佳化而忽略了實際上的設計問題,如電源供應完整性與可繞性。此外,由於電子應用的進步,減少功率消耗逐漸在電路設計中變成一個不可或缺的考量,但是大部分的擺置演算法仍然沒有針對這點做最佳化。在電路擺置的過程中考慮這些因素可以有效減少後續實體設計流程的負擔 (如繞線、電源供應微調、等等),並且可以改善電路設計完整性。
在這份論文當中,我們提出了數個演算法在產生超大型積體電路擺置的同時,考慮電源供應完整性與可繞性。我們提出一個結合快速電壓分析技術的電源供應完整性 (特別針對電壓壓降) 擺置演算法,以降低違反壓降限制的數量。之後我們利用設計階層的資訊幫助擺置演算法最佳化可繞性,此外,我們還討論了如何能同時得到一個較佳的壓降和可繞性的擺置結果。實驗結果顯示我們提出的電壓壓降及可繞性擺置演算法比之前的相關研究可以分別得到較小的壓降及繞線失敗。 另外,隨著功率消耗成為不可或缺的考量,有許多技術紛紛被提出以降低功率消耗。在這些技術中,使用脈衝栓鎖逐漸成為一個受歡迎的技術,相較於傳統的正反器,脈衝栓鎖是一種擁有較小延遲及功率消耗儲存資料的元件,他們被廣泛應用在目前高效能的微處理器上。在這份論文中,為了在擺置時降低功率消耗,我們首先提出了一個考慮脈衝栓鎖擺置技術以探索如何能在一個數學解析擺置演算法上有效利用脈衝栓鎖以維持栓鎖的時序完整性。之後,我們提出一個整合擺置及時脈網路合成技術以降低時脈網路的功率消耗並同時維持脈衝栓鎖的時序完整性。實驗結果驗證了我們提出的脈衝栓鎖擺置及共同合成技術在脈衝栓鎖電路設計上的有效性。 | zh_TW |
| dc.description.abstract | Placement plays a crucial role in the physical synthesis for
circuit designs. Although the placement problem has been discussed for decades, modern design challenges, such as routability and power, have demanded circuit designers to develop a more flexible placer. Unfortunately, most existing placement algorithms still focus on optimizing wirelength alone while ignoring design-related issues, e.g., power integrity and routability. Moreover, due to the advance of electronic applications, power consumption is becoming an essential metric in a design, which is not addressed in most placement algorithms either. Considering these issues when optimizing a placement can effectively reduce the burden of subsequent physical synthesis procedures (i.e., routing, power refinement, etc.) and thus improve the design closure. In this dissertation, we propose novel algorithms for VLSI placement problems to consider power integrity and routability. We present power-integrity (voltage-drop, in particular) aware analytical placement along with efficient voltage analysis to reduce voltage-drop violations. Then we utilize design-hierarchy information to guide the placer for routability optimization, and we also discuss how to obtain a better trade-off between voltage drops and routability. Experimental results show that our proposed voltage-drop aware placement and routability-driven lacement can achieve respective smaller voltage drops and routing overflows than previous works. Moreover, as power consumption becomes an essential metric, many techniques have been proposed for power reduction. Among which, pulsed-latches have emerged as a popular technique. Compared with a traditional flip-flop, a pulsed-latch is a sequential device with smaller delay and power, which is extensively adopted in modern high-performance microprocessors. In this dissertation, to address power reduction in placement, we first propose pulsed-latch aware placement to explore how to utilize pulsed-latches in an analytical placer for maintaining their timing integrity. After that, we present unified placement and clock-network co-synthesis to reduce the power consumption of a clock network while maintaining the timing integrity of pulsed-latches. Experimental results validate our pulsed-latch aware placement and co-synthesis approach effectiveness on timing integrity and power reduction for pulsed-latch-based designs. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-13T02:09:46Z (GMT). No. of bitstreams: 1 ntu-100-F95943077-1.pdf: 9675660 bytes, checksum: 134cba0dc44e008c9d5abb532cc2fa91 (MD5) Previous issue date: 2011 | en |
| dc.description.tableofcontents | Abstract (Chinese) v
Abstract vii List of Tables xii List of Figures xiv Chapter 1. Introduction 1 1.1 Design Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Placement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.2.1 Placement ProblemFormulation . . . . . . . . . . . . . . . . . . . 2 1.2.2 Analytical Placement . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.3 Design Challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 1.3.1 Voltage Drop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 1.3.2 Routability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 1.3.3 Advanced Device: Pulsed-Latch . . . . . . . . . . . . . . . . . . . 13 1.3.4 Power . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 1.4 Overview of the Dissertation . . . . . . . . . . . . . . . . . . . . . . . . . 17 1.4.1 Voltage-Drop Aware Placement . . . . . . . . . . . . . . . . . . . . 18 1.4.2 Routability-Driven Placement by Design Hierarchy . . . . . . . . . 18 1.4.3 Pulsed-Latch Aware Placement . . . . . . . . . . . . . . . . . . . . 19 1.4.4 Power Reduction by Placement and Clock-Network Co-Synthesis for Pulsed-Latch-Based Designs . . . . . . . . . . . . . . . . . . . . 19 1.5 Organization of the Dissertation . . . . . . . . . . . . . . . . . . . . . . . 20 Chapter 2. Voltage-Drop Aware Placement 21 2.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 2.2 Voltage-Drop AwareMixed-Size Placement . . . . . . . . . . . . . . . . . 25 2.2.1 Discussion of Force Integration in Analytical Placement . . . . . . 26 2.2.2 Current Modelling . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 2.2.3 Macro and Standard-Cell Power Modelling . . . . . . . . . . . . . 29 2.2.4 Power-Density Optimization . . . . . . . . . . . . . . . . . . . . . 35 2.2.5 Power ForceModulation . . . . . . . . . . . . . . . . . . . . . . . . 37 2.2.6 Analysis of Power-Density Optimization . . . . . . . . . . . . . . . 39 2.2.7 AlgorithmFlow . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 2.3 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 2.3.1 Effectiveness of Voltage-Drop Optimization . . . . . . . . . . . . . 44 2.3.2 Impacts ofMacro Current Density . . . . . . . . . . . . . . . . . . 45 2.3.3 Impacts of DifferentWeights of Power Forces . . . . . . . . . . . . 47 2.3.4 Impacts of Higher Design Utilizations . . . . . . . . . . . . . . . . 47 Chapter 3. Routability-Driven Placement by Design Hierarchy 52 3.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 3.2 Proposed Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 3.2.1 Placement Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 3.2.2 Balanced Hierarchy Grouping . . . . . . . . . . . . . . . . . . . . . 56 3.2.3 Hierarchy Aware Clustering . . . . . . . . . . . . . . . . . . . . . . 58 3.2.4 Hierarchy Aware Analytical Global Placement . . . . . . . . . . . 60 3.2.5 Net-Topology-Based Block Spreading . . . . . . . . . . . . . . . . 65 3.3 Discussion: Simultaneous Voltage-Drop and Routability Optimization . . 69 3.4 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 3.4.1 Effectiveness of Routability Optimization . . . . . . . . . . . . . . 72 3.4.2 Comparisons with Routability-Driven Placers . . . . . . . . . . . . 74 3.4.3 Simultaneous Voltage-Drop and Routability Optimization . . . . . 77 Chapter 4. Pulsed-Latch Aware Placement 83 4.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 4.2 Pulsed-Latch Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86 4.2.1 Comparisons among Sequential Devices . . . . . . . . . . . . . . . 86 4.2.2 Pulse-Generator Characteristics . . . . . . . . . . . . . . . . . . . 87 4.2.3 ProblemFormulation . . . . . . . . . . . . . . . . . . . . . . . . . 88 4.3 Multilevel Pulsed-Latch Aware Placement Framework . . . . . . . . . . . 89 4.3.1 Physical Aware Latch Grouping . . . . . . . . . . . . . . . . . . . 89 4.3.2 PGL-Macro-Like Clustering . . . . . . . . . . . . . . . . . . . . . . 92 4.3.3 PGL-Group Aware Placement . . . . . . . . . . . . . . . . . . . . 93 4.3.4 Pulsed-Latch Aware Analytical Placement Algorithm . . . . . . . . 100 4.4 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102 4.4.1 Comparisons among Design Flows . . . . . . . . . . . . . . . . . . 103 4.4.2 Comparisons among Placement Algorithms . . . . . . . . . . . . . 107 4.4.3 Assessment of Latch Grouping . . . . . . . . . . . . . . . . . . . . 108 4.4.4 Comparisons between Net-Weighting and Our Approach . . . . . . 110 4.4.5 Impact of Latch-Group Refinement . . . . . . . . . . . . . . . . . . 111 Chapter 5. Power Reduction by Placement and Clock-Network Co- Synthesis for Pulsed-Latch-Based Designs 116 5.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116 5.2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119 5.2.1 Pulsed-Latch-Based Clock Network . . . . . . . . . . . . . . . . . . 119 5.2.2 Physical Synthesis Flows . . . . . . . . . . . . . . . . . . . . . . . 120 5.3 Proposed Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121 5.3.1 Placement Framework . . . . . . . . . . . . . . . . . . . . . . . . . 121 5.3.2 Three-Stage NetworkMinimization . . . . . . . . . . . . . . . . . . 122 5.3.3 Driver Planning . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128 5.3.4 Sink Aware Clock-Network Synthesis . . . . . . . . . . . . . . . . . 129 5.4 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134 5.4.1 Comparisons of Synthesis Flows . . . . . . . . . . . . . . . . . . . 135 5.4.2 Comparison with Iterative NetWeighting . . . . . . . . . . . . . . 137 Chapter 6. Concluding Remarks and Future Work 143 6.1 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143 6.2 FutureWork . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144 Bibliography 148 Vita 156 Publication List 157 | |
| dc.language.iso | en | |
| dc.subject | 電壓壓降 | zh_TW |
| dc.subject | 實體設計 | zh_TW |
| dc.subject | 擺置 | zh_TW |
| dc.subject | 可繞性 | zh_TW |
| dc.subject | 電源 | zh_TW |
| dc.subject | 脈衝栓鎖 | zh_TW |
| dc.title | 考慮可繞性與電源供應之超大型積體電路擺置 | zh_TW |
| dc.title | VLSI Placement Considering Routability and Power Consumption | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 99-2 | |
| dc.description.degree | 博士 | |
| dc.contributor.oralexamcommittee | 郭斯彥(Sy-Yen Kuo),陳中寬(Chung-Kuan Cheng),陳宏明(Hung-Ming Chen),林家民(Jai-Ming Lin),麥偉基(Wai-Kei Mak),劉樂群(Le-Chin Eugene Liu),王惠貞(Hwei-Tseng (Jane) | |
| dc.subject.keyword | 實體設計,擺置,電壓壓降,可繞性,電源,脈衝栓鎖, | zh_TW |
| dc.subject.keyword | Physical Design,Placement,Voltage Drop,Routability,Power,Pulsed-Latch, | en |
| dc.relation.page | 158 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2011-08-02 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 電子工程學研究所 | zh_TW |
| 顯示於系所單位: | 電子工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-100-1.pdf 未授權公開取用 | 9.45 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
