Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 高分子科學與工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/30593
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor謝國煌(Kuo-Huang Hsieh)
dc.contributor.authorShih-Pin Linen
dc.contributor.author林士斌zh_TW
dc.date.accessioned2021-06-13T02:09:41Z-
dc.date.available2012-07-03
dc.date.copyright2007-07-03
dc.date.issued2007
dc.date.submitted2007-06-27
dc.identifier.citationReference
Chapter 2
1. 韓錦鈴,”環氧樹脂及聚胺酯交聯環氧樹脂之研究”,博士論文,台灣大學(1993)。
2. Henry Lee, “Handbook of Epoxy Resins”, 1972, Ch.1.
3. 許明發,郭文雄,”複合材料”,高立圖書有限公司(2004)。
4. Edward F. Cassidy, Han X. Xiao, Kurt C. Frisch, and Harry L. Frisch, “Journal of Polymer Science : Polymer Chemistry Edition”, 22(1984), P.P. 1839-1850.
5. Edward F. Cassidy, Han X. Xiao, Kurt C. Frisch, and Harry L. Frisch, “Journal of Polymer Science : Polymer Chemistry Edition”, 22(1984), P.P. 1851-1863.
6. Edward F. Cassidy, Han X. Xiao, Kurt C. Frisch, and Harry L. Frisch, “Journal of Polymer Science : Polymer Chemistry Edition”, 22(1984), P.P. 2667-2683.
7. J. L. Han, S. M. Tseng, J. H. Mai, and K. H. Hsieh, “Die Angewandte Makromolekulare Chemie”, 182(1990), P.P. 193-203.
8. J. L. Han, S. M. Tseng, J. H. Mai, and K. H. Hsieh, “Die Angewandte Makromolekulare Chemie”, 184(1990), P.P. 89-97.
9. K. H. Hsieh, and J. L. Han, “Journal of Polymer Science: Part B: Polymer Physics”, 28(1990), P.P. 623-630.
10. K. H. Hsieh, and J. L. Han, “Journal of Polymer Science: Part B: Polymer Physics”, 28(1990), P.P. 783-794.
11. J. L. Han, Y. C. Chern, K. Y. Li, and K. H. Hsieh, “Journal of Applied Polymer Science”, 70(1998), P.P. 529-536.
12. J. L. Han, and K. Y. Li, “Journal of Applied Polymer Science”, 70(1998), P.P. 2635-2645.
13. K. H. Hsieh, J. L. Han, C. T. Yu, and S. C. Fu, “Polymer”, 42(2001), P.P. 2491-2500.
14. K. Dinakaran, and M. Alagar, “Journal of Applied Polymer Science”, 85(2002), P.P. 2853-2861.
15. Z. G. Shaker, R. M. Browne, H. A. Stretz, P. E. Cassidy, and M. T. Blanda, “Journal of Applied Polymer Science”, 84(2002), P.P. 2283-2286.
16. K. P. O. Mahesh, M. Alagar, and S. Ananda Kumar, “Polymer for Advanced Technologies”, 14(2003), P.P. 137-146.
17. Hiroyuki Okuhira, Nobuaki Iwamoto, Mitsukazu Ochi, and Hidekazu Takeyama, “Journal of Polymer Science: Part B: Polymer Physics”, 42(2004), P.P. 1137-1144.
18. Sankarprasad Bhuniya, and Basudam Adhikari, “Journal of Applied Polymer Science”, 90(2003), P.P. 1497-1506.
19. Hongwen Zhang, Bing Wang, Hongtu Li, Yan Jiang, and Jingyuan Wang, “Polymer International”, 52(2003), P.P. 1493-1497.
20. S. P. Lin, J. L. Han, R. Z. Chen and K. H. Hsieh, 2007, “Physical Properties of Epoxy Resin Self-Reinforced with Organic Rigid-Rod Compounds”, “Polymer Engineering and Science”, (Accepted).
21. J. L. Han, S. P. Lin, S. B. Ji, and K. H. Hsieh, 2007, “Graft Interpenetrating Polymer Networks of Polyurethane and Epoxy Containing Rigid Rods in Side Chain”, “Journal of Applied Polymer Science”, (Accepted).
22. S. P. Lin, J. L. Han, R. Z. Chen and K. H. Hsieh, 2007, “Glass Transition Temperatures of Epoxy modified with Pendent Nano-Organic Rigid-Rod Compounds”, “Journal of Macromolecular Science Part B: Polymer Physics”, (Revised).

Chapter 3
1. 許明發,郭文雄,”複合材料”,高立圖書有限公司(2004)。
2. 蔡忠龍,洗杏娟,”超高模聚乙烯纖維增強複合材料”,科學出版社(1997)。
3. You-Lo Hsieh, Shanqing Xu, and Michelle Hartzell, “Journal of Adhesion Science and Technology”, 5(1991), P.P. 1023-1039.
4. M. S. Silverstein and O. Breuer, “Composites Science and Technology”, 48(1993), P.P. 151-157.
5. M. S. Silverstein, O. Breuer, and H. Dodiuk, “Journal of Applied Polymer Science”, 52(1994), P.P. 1785-1795.
6. M. Rezaei, N. G. Ebrahimi, and M. Kontopoulou, “Journal of Applied Polymer Science”, 99(2006), P.P. 2344-2351.
7. L. Mascia, J. Dhillon, and J. F. Harper, “Journal of Applied Polymer Science”, 47(1993), P.P. 487-498.
8. Subir Debnath, rahul Ranade, Stephanie L. Wunder, George R. Baran, Jianming Zhang, and Ellen R. Fisher, “Journal of Applied Polymer Science”, 96(2005), P.P. 1564-1572.
9. Tohru Yoshikawa, Shigeru Machida, Takaaki Ikegami, Anuntasin Techagumpuch, and Seizo Miyata, “Polymer Journal”, 22(1990), P.P. 1-6.
10. Hsien-Tang Chiu, and Jeng-Shyong Lin, “Journal of Materials Science”, 27(1992), P.P. 319-327.
11. Hsien-Tang Chiu, and Jyh-Horng Wang, “Journal of Applied Polymer Science”, 68(1998), P.P. 1387-1395.
12. Hsien-Tang Chiu, and Jyh-Horng Wang, “Polymer Composites”, 19(1998), P.P. 347-351.
13. Guoning Fan, Jingchan Zhao, Hongan Yuan, Zhian Guo, Junlong Wang, and Guozheng Liang, “Journal of Applied Polymer Science”, 102(2006), P.P. 674-678.
14. David A. Biro, Gerald Pleizier, and Yves Deslandes, “Journal of Applied Polymer Science”, 47(1993), P.P. 883-894.
15. M. S. Silverstein, and J. Sadovsky, “Journal of Adhesion Science and Technology”, 9(1995), P.P. 1193-1208.
16. M. S. Silverstein, J.Sadovsky, D. Alon, and V. Wahad, “Journal of Applied Polymer Science”, 72(1999), P.P. 405-418.
17. Sung In Moon, and Jyongsik Jang, “Composites Science and Technology”, 59(1999), P.P. 487-493.
18. Huapeng Zhang, Meiwu Shi, Jianchun Zhang, and Shanyuan Wang, “Journal of Applied Polymer Science”, 89(2003), P.P. 2757-2763.
19. Zhen Zheng, Xiaozhen Tang, Meiwu Shi, and Guotai Zhou, “Polymer International”, 52(2003), P.P. 1833-1838.
20. Zhen Zheng, Xiaozhen Tang, Meiwu Shi, and Guotai Zhou, “Journal of Polymer Science Part B: Polymer Physics”, 42(2004), P.P. 463-472.
21. L. Vaisman, M. F. Gonzalez, G. Maron, “Polymer”, 44(2003), P.P. 1229-1235.
22. Jieliang Wang, Guozheng Liang, Wen Zhao, Shenghua Lu, and Zengping Zhang, “Applied Surface Science”, 253(2006), P.P. 668-673.
23. Y. Cohen, D. M. Rein, L. E. Vaykhansky, and R. S. Porter, “Composites Part A: Applied Science and Manufacturing”, 30(1999) P.P. 19-25.
24. Yachin Cohen, Dmitry M. Rein, and Lev Vaykhansky, “Composites Science and Technology”, 57(1997), P.P. 1149-1154.
25. Shujia Liu, Xinpeng Wang, Yanping Wang, and Yimin Wang, “Journal of Macromolecular Science Part B: Physics”, 45(2006), P.P. 593-600.
26. Yanping Wang, Ruiling Cheng, Linli Liang, and Yimin Wang, “Composites Science and Technology”, 65(2006), P.P. 793-797.

Chapter 4
1. Krishan K. Chawla, “Composite Materials Science and Engineering”, Springer-Verlag(1987).
2. Chen-Chi M. Ma, and Chin-Hsing Chen, “Journal of Applied Polymer Science”, 44(1992), P.P. 807-817.
3. Cheni-Chi M. Ma, and Chih-Hsing Chen, “Journal of Applied Polymer Science”, 44(1992), P.P. 819-827.
4. Hew-Der Wu, Chen-Chi M. Ma, and Jia-Min Lin, “Journal of Applied Polymer Science”, 63(1997), P.P. 911-917.
5. Cheni-Chi M. Ma, Chih-Tsung Lee, and Hew-Der Wu, “Journal of Applied Polymer Science”, 69(1998), P.P. 1129-1136.
6. Cheni-Chi M. Ma, Han-Thing Tseng, and Hew-Dew Wu, “Journal of Applied Polymer Science”, 69(1998), P.P. 1119-1127.
7. King-Fu Lin, and Wen-Xiong Liu, “Transactions of the Aeronautical and Astronautical Society of the Republic of China”, 23(1991), P.P. 179-186.
8. Chen-Chi M. Ma, Chang-Lun Lee, and Nyan-Hwa Tai, “Polymer Composites”, 13(1992), P.P. 435-440.
9. Feng-Yih Wang, Chen-Chi M. Ma, and Wen-Jia Wu, “Journal of Applied Polymer Science”, 73(1999), P.P. 881-887.
10. Jia-Min Lin, Chen-Chi M. Ma, Nyan-Hwa Tai, Wen-Chi Chang, and Chuan-Chung Tsai, “Polymer Composites”, 21(2000), P.P. 305-311.
11. Albert Y. C. Hung, Feng-Yih Wang, Shang-Ru Yeh, Wei-Jen Chen, and Chen-Chi M. Ma, “Journal of Applied Polymer Science”, 84(2002), P.P. 1609-1619.
12. J. M. Hofste, J. A. Schut, and A. J. Pennings, “Journal of Materials Science: Materials in Medicine”, 9(1998), P.P. 561-566.
13. B. Larin, A. Y. Feldman, H. Harel, and G. Maron, “Polymer Engineering and Science”, 46(2006), P.P. 807-811.
14. Y. Kondo, K. Miyazaki, Y. Yamaguchi, T. Sasaki, S. Irie, and K. Sahurai, “European Polymer Journal”, 42(2006), P.P. 1008-1014.
15. Y. D. Zhang, Y. L. Wang, Y. Huang, and Y. Z. Wan, “Journal of Reinforce Plastics and Composites”, 25(2006), P.P. 1601-1609.
16. S.-H. Lu, G.-Z Liang, Z.-W. Zhou, and F. Li, “Journal of Applied Polymer Science”, 101(2006), P.P. 1880-1884.
17. Wen-Yung Shu, and King-Fu Lin, “Polymer Composites”, 13(1992), P.P. 213-222.
18. 許明發, 郭文雄, “複合材料”, 高立圖書, P. P. 207-212。

Chapter 5
1. S. Peter Pappas, “UV Curing: Science and Technology”, Technology Marketing Corporation, Chapter 7 (P.P. 283-323).
2. K. A. Scott, and K. T. Paul, “Composites”, 5(1974), P.P. 201-208.
3. J. G. Williams, “Composites”, 8(1977), P.P. 157-160.
4. C. H. Shen, and G. S. Springer, “Journal of Composite Materials”, 11(1977), P.P. 2-16.
5. R. Selzer, and K. Friedrich, “Journal of Materials Science”, 30(1995), P.P. 334-338.
6. R. Selzer, and K. Friedrich, “Composites Part A: Applied Science and Manufacturing”, 28(1997), P.P. 595-604.
7. F. U. Buehler, and J. C. Seferis, “Composites Part A: Applied Science and Manufacturing”, 31(2000), P.P. 741-748.
8. B. G. Kumar, R. P. Singh, and T. Nakamura, “Journal of Composite Materials”, 36(2002), P.P. 2713-2733.
9. J. Jia, J. Chen, H. Zhou, K. Hu, and L. Chen, “Composites Science and Technology”, 64(2005), P.P. 1139-1147.
10. M. Andrassy, E. Pezelj, and R. Cunko, “Journal of Applied Polymer Science”, 77(2000), P.P. 2340-2345.
11. A. Haque, S. Mahmood, L. Walker, and S. Jeelani, “Journal of Reinforced Plastics and Composites”, 10(1991), P.P. 132-145.
12. F. S. Qureshi, M. B. Amin, A. G. Maadhah, and S. H. Hamid, “Polymer-Plastics Technology and Engineering”, 28(1989), P.P. 649-662.
13. A. L. S. Alves, L. F. C. Nascimento, and J. C. M. Suarez, “Polymer Testing”, 24(2005), P.P. 104-113.
14. J. V. Gulmine, and L. Akcelrud, “European Polymer Journal”, 42(2006), P.P. 553-562.
15. M. M. Hassan, M. R. Islam, and M. A. Khan, “Journal of Polymers and the Environment”, 10(2002), P.P. 139-145.
16. M. M. Hassan, M. R. Islam, M. A. Sawpan, and M. A. Khan, “Journal of Applied Polymer Science”, 89(2003), P.P. 3530-3538.
17. D. Roylance, and M. Roylance, “Polymer Engineering and Science”, 18(1978), P.P. 249-254.
18. G. A. Luoma, and R. D. Rowland, “Journal of Applied Polymer Science”, 32(1986), P.P. 5777-5790.
19. S. R. Patel, and S. W. Case, “International Journal of Fatigue”, 22(2000), P.P. 809-820.
20. S. R. Patel, and S. W. Case, “International Journal of Fatigue”, 24(2002), P.P. 1295-1301.
21. L. M. Matuana, and D. P. Kamdem, “Polymer Engineering and Science”, 42(2002), P.P. 1657-1666.
22. B. Y. Zhao, X. W. Yi, R. Y. Li, P. F. Zhu, and K. A. Hu, “Journal of Applied Polymer Science”, 88(2003), P.P. 12-16.
23. F. P. La Mantia, and N. T. Dintcheva, “Plastics, Rubbers and Composites”, 33(2004), P.P. 184-186.
24. T. K. Tsotsis, and S. M. Lee, “Journal of Reinforced Plastics and Composites”, 16(1997), P.P. 1609-1621.
25. Y. Z. Wan, Y. L. Wang, Y. Huang, B. M. He, and K. Y. Han, “Composites Part A: Applied Science and Manufacturing”, 36(2005), P.P. 1102-1109.
26. K. K. Phani, and N. R. Bose, “Journal of Materials Science”, 21(1986), P.P. 3633-3637.
27. K. K. Phani, and N. R. Bose, “Composites Science and Technology”, 29(1987), P.P. 79-87.
28. V. M. Karbhari, M. A. Abanilla, “Composites Part B: Engineering”, 38(2007), P.P. 10-23.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/30593-
dc.description.abstract本研究之規劃內容,係引入聚胺酯改質環氧樹脂為基材,並以超高分子量聚乙烯纖維為補強材料,利用纏繞成型法將原料加工成預浸布材料,再以熱壓成型法二次加工成為複合材料,輔以水刀切割成各種測試試片,對其熱性質(熱裂解溫度、灰份及玻璃轉移溫度)、型態學性質(破裂面型態觀察與纖維沾潤樹脂情形)、機械性質(抗張強度、Izod與落垂式衝擊強度、彎曲強度以與剪切強度)與防彈性質等進行分析討論。並進行一系列基材、纖維與樹脂界面性質、纖維補強複合材料性質及複材耐候性質之測試。
本論文之研究程序,共針對四個部分加以討論。
一、聚胺酯改質環氧樹脂之基材研究。
二、超高分子量聚乙烯纖維表面改質研究。
三、超高分子量聚乙烯纖維補強聚胺酯改質環氧樹脂複合材料之研究。
四、超高分子量聚乙烯纖維補強聚胺酯改質環氧樹脂複合材料之耐候性質研究。
zh_TW
dc.description.abstractThe aim of this research is to prepare a series of UHMWPE fiber (Ultra-high molecular weight polyethylene fiber) reinforced PU (Polyurethane) modified DGEBA (Epoxy resin) composites composed of the matrices based on PU and Epoxy resin with the reinforcement by neat, plasma treated and chemical agent modified UHMWPE fibers. The UHMWPE fiber/PU-crosslinked DGEBA composites and the UHMWPE fiber/PU/DGEBA grafted-IPNs composites were manufactured by filament winding and hot-press molding and cutting to various testing specimens with hydraulic power cutting machine. The characterization (FTIR and ATR-FTIR), thermal properties (Glassy- transition temperature and Heat-degrading temperature), mechanical properties (Tensile strength, Izod and Falling weight impact strength, Bending strength, Shear strength and bullet-proof testing) and morphology (Fracture surface and wet-out property) of the matrices and composites were investigated. The weathering properties and durable of the two kinds fiber reinforced composites were characterized via light-exposure apparatus (Xenon-arc type) and the standard practice for performing outdoor accelerated weathering tests. There are four basic parts of this research:
1. Research of the PU modified DGEBA matrix.
2. Research of the surface modification of UHMWPE fiber.
3. Research of the UHMWPE fiber reinforced PU/DGEBA composite.
4. Weathering effect of the UHMWPE fiber reinforced PU/DGEBA composites.
en
dc.description.provenanceMade available in DSpace on 2021-06-13T02:09:41Z (GMT). No. of bitstreams: 1
ntu-96-D91549003-1.pdf: 8066487 bytes, checksum: 01d426c8d88b21fe1851497493af602b (MD5)
Previous issue date: 2007
en
dc.description.tableofcontentsOutline of Contents
OUTLINE OF CONTENTS………………………………………………..I
LIST OF TABLES…………………………………………………………V
LIST OF FIGURES……………………………………………………..VIII
ABSTRACT (IN CHINESE)………………………………………..…...XV
ABSTRACT (IN ENGLISH)………………………………………...…XVI
CHAPTER 1 INTRODUCTION…………………………………………...1
CHAPTER 2 THE RESEARCH OF POLYURETHANE MODIFIED
DGEBA MATRIX SYSTEMS……………………………………………..5
2-1 Introduction………………………………………………………………………...5
2-2 Experimental………………………………………………………………………13
2-2-1 Materials…………………………………………………………………...……13
2-2-2 Preparation of PU modified DGEBA systems………………………………13
2-2-2-1 PU-crosslinked-DGEBA system……………………………………………13
2-2-2-2 PU/DGEBA-grafted-IPNs system.…………………………………………15
2-2-3 Testing Methods………...………………………………………………………16
2-3 Results and Discussion……………………………………………………………18
2-3-1 FTIR Spectroscopic Analysis…………………………………………………18
2-3-1-1 PU-crosslinked DGEBA system……………………………………………18
2-3-1-2 PU/DGEBA grafted-IPNs system……………………………………………20
2-3-2 Mechanical Analysis…………………………………………………………….22
2-3-2-1 PU-crosslinked DGEBA system……………………………………………...22
2-3-2-2 PU(PBA series)/DGEBA grafted-IPNs system ……………………………28
2-3-3 Thermal Analysis………………………………………………………………..31
2-3-3-1 PU-crosslinked DGEBA system……………………………………………31
2-3-3-2 PU(PBA series)/DGEBA grafted-IPNs system………………………….......34
2-3-4 SEM Morphology Analysis……………………………………………………..36
2-4 Conclusion………………………………………………………………………39
CHAPTER 3 SURFACE MODIFICATION OF UHMWPE FIBER……..53
3-1 Introduction……………………………………………………………………….55
3-2 Experimental………………………………………………………………………63
3-2-1 Materials………………………………………………………………………...63
3-2-2 Procedures………………………………………………………………………63
3-2-2-1 Plasma Surface Treatment………………………………………………….63
3-2-2-2 Chemical Agent Surface Treatment…………..……………………………..63
3-2-3 Testing Methods……………...…………………………………………………64
3-3 Results and Discussion……………………………………………………………65
3-3-1 Plasma Treatment of UHMWPE fibers………………………………………65
3-3-2 Chemical Agent Treatment Analysis…………………………………………66
3-4 Conclusion……………………………………………………………………….68
CHAPTER 4 MECHANICAL PROPERTIES OF VARIOUS UHMWPE
FIBER REINFORCED PU MODIFIED DGEBA COMPOSITES………72
4-1 Introduction……………………………………………………………………….72
4-2 Experimental………………………………………………………………………79
4-2-1 Materials………………………………………………………………………...79
4-2-2 Preparation of Various Composites………………...………………………….79
4-2-2-1 Preparation of UHMWPE Fiber- and Aramid Fiber-Reinforced
PU-crosslinked DGEBA Composites…………...…………………….......79
4-2-2-2 Preparation of UHMWPE Fiber- and Aramid Fiber-Reinforced
PU/DGEBA grafted-IPNs Composites………...…………………………81
4-2-2-3 Preparation of UHMWPE Fiber- and Aramid Fiber-Reinforced PU
Composites…………………………………………..…………………….82
4-2-3 Testing Methods…………...………………………………………………….83
4-3 Results and Discussion……………………………………………………………87
4-3-1 Effect of Cutting Machine on the Tensile Properties of UHMWPE fiber
Reinforced DGEBA Composites……………..…………………………...87
4-3-2 Effect of Plasma and Chemical Agent Surface Treatment on the Mechanical
Properties of Various Composites………………………………………..88
4-3-3 Mechanical Properties of Various Composites…………………………...…91
4-3-4 Bulletproof Nature of UHMWPE fiber- and Aramid fiber-Reinforced PU
Composites………………………………………………………………97
4-4 Conclusion………………………………………………………………………..100
CHAPTER 5 THE ACCELERATED ARTIFICIAL WEATHERING OF
VARIOUS UHMWPE AND ARAMID FIBER REINFORCED
PU-CROSSLINKED DGEBA COMPOSITES……………………….…109
5-1 Introduction……………………………………………………………………...109
5-2 Experimental…………………………………………………………………….118
5-2-1 Materials……………………………………………………………………….118
5-2-2 Preparation of various composites…………………………………………...118
5-2-2-1 Preparation of PU-crosslinked DGEBA matrices………………………....118
5-2-2-2 Preparation of UHMWPE Fiber- and Aramid Fiber-Reinforced
PU-crosslinked DGEBA composites…………………………………….118
5-2-3 Exposure Studies………………………………………………………………118
5-2-4 Testing Methods…………...…………………………………………………..120
5-3 Results and Discussion…………………………………………………………..121
5-3-1 Moisture Uptake of Weathered Resin and Composite Specimens……….....121
5-3-2 Tensile Properties of Weathered Resin and Composite Specimens……..….123
5-3-3 Surface Characterization of Weathered Resin and Composite Specimens..128
5-4 Conclusion……………………………………………………………………..…131
CHAPTER 6 CONCLUSION AND FUTURE WORK…………………142
REFERENCE……………………………………………………………145
List of Publications………………………………………………………214
List of Conference………………………………………………….……216
List of Patents…………………………...………………………….……218
Introduction to Author………...………………...………………….……219
List of Tables
Table 2-1 common types of epoxy resin and formulas………………………………....41
Table 2-2 common curing agents and their formulas for epoxy resins…………………42
Table 2-3 Experimental Materials……………………………………………………...44
Table 2-4 the formulas of various PU-crosslinked DGEBA systems………………..…45
Table 2-5 the formulas of various PU/DGEBA grafted-IPNs systems………………....46
Table 2-6 Standard Testing Procedures about the mechanical Properties of
PU-crosslinked DGEBA and PU/DGEBA grafted-IPNs systems………….47
Table 2-7 the mechanical properties of PU (PBA series)-crosslinked DGEBA
system………………………………………………………………………48
Table 2-8 the mechanical properties of PU (PPG series)-crosslinked DGEBA
systems……………………………………………………………………48
Table 2-9 the mechanical properties of PU (PTMO series)-crosslinked DGEBA
systems……………………………………………………………………...49
Table 2-10 the mechanical properties of PU (PBA series)/DGEBA grafted-IPNs
systems……………………………………………………………………...49
Table 2-11 thermal gravity analysis of PU(PPG series)-crosslinked DGEBA
systems...........................................................................................................50
Table 2-12 thermal gravity analysis of PU(PTMO series)-crosslinked DGEBA
systems…………………………………………………………………….50
Table 2-13 thermal gravity analysis of PU(PBA series)-crosslinked DGEBA
systems……………………………………………………………………51
Table 2-14 thermal gravity analysis of PU(PBA series)/DGEBA grafted-IPNs
systems……………………………………………………………………...51
Table 2-15 the Tg analysis of PU(PBA series) modified DGEBA systems……………52
Table 3-1 comparison of UHMWPE fiber and other reinforcing fibers………………..69
Table 3-2 the mechanical properties of various UHMWPE fibers……………………..69
Table 3-3 Experimental Materials……………………………………………………...70
Table 3-4 the Element Surface Chemical Analysis (ESCA) of UHMWPE fibers after
plasma treatment……………………………………………………………70
Table 3-5 Weight changes of various chemically treated UHMWPE fibers…………...71
Table 4-1 Experimental Materials…………………………………………………….102
Table 4-2 Tensile Properties of UHMWPE fiber Reinforced DGEBA Composites by
Different Cutting Machines……………………………………………….103
Table 4-3 Mechanical Properties of Composites Formed From Surface Modified
Fibers…………………………………………………………………...…104
Table 4-4 Mechanical Properties of Composites Formed From Various DGEBA
Matrices…………………………………………………………………...104
Table 4-5 Mechanical properties of Various Untreated-UHMWPE-Fiber- and
Aramid-Fiber-Reinforced Composites……………………………………105
Table 4-6 Mechanical properties of Various Plasma-Treated UHMWPE
Fiber-Reinforced Composites……………………………………………..105
Table 4-7 Bulletproof tests of UHMWPE fiber/PU composites and Aramid fiber/PU
composites………………………………………………………………...106
Tabel 4-8 Bulletproof Tests of UHMWPE fiber- and Aramid fiber-Reinforced
Polyurethane Composites…………………………………………………107
Table 4-9 Effect of Fiber Weight per unit Composite Area on the Bulletproof Nature of
UHMWPE fiber- and Aramid fiber-Reinforced PU Composites…………108
Table 5-1 Effect of weathering on the moisture uptake of various PU-crosslinked
DGEBA systems……………………………………………………..……133
Table 5-2 Effect of weathering on the moisture uptake of various UHMWPE fiber
reinforced PU-crosslinked DGEBA composites………………………..…133
Table 5-3 Effect of weathering on the moisture uptake of various aramid fiber reinforced
PU-crosslinked DGEBA composites…………………………………..….133
Table 5-4 The values of diffusion coefficient of various PU-crosslinked DGEBA
systems, UHMWPE fiber- and aramid fiber-reinforced composite
specimens……………………………………………………………….....134
Table 5-5 Effect of weathering on the tensile properties of UHMWPE and aramid
fibers……………………………………………………………………....135
Table 5-6 Effect of weathering on the tensile properties of various PU-crosslinked
DGEBA systems……………………………………………………..……136
Table 5-7 Effect of weathering on the tensile properties of UHMWPE fiber reinforced
PU-crosslinked DGEBA composites…………………………………...…137
Table 5-8 Effect of weathering on the tensile properties of aramid fiber reinforced
PU-crosslinked DGEBA composites………………………………...……138
Table 5-9 Assessment of predictive accuracy of neat DGEBA, UHMWPE fiber- and
aramid fiber-reinforced neat DGEBA composites……...............................139
Table 5-10 Effect of weathering on the color difference of various PU-crosslinked
DGEBA systems………………………………………………………..…140
Table 5-11 Effect of weathering on the color difference of various UHMWPE fiber
reinforced PU-crosslinked DGEBA composites…………………………..140
Table 5-12 Effect of weathering on the color difference of various rramid fiber
reinforced PU-crosslinked DGEBA composites.……..……..…………….140
Table 5-13 Effect of weathering on the values of Carbonyl Index (I1) of various
UHMWPE fibers and PU-crosslinked DGEBA systems………………….141
Table 5-14 Effect of weathering on the Values of Hydroxyl Index (I2) of various aramid
fibers and PU-crosslinked DGEBA systems……………………………...141
List of Figures
Figure 2-1 FTIR spectra of intermediates obtained during the synthesis of the PU(PBA
1000)-crosslinked DGEBA: (a) initial state; PBA 1000 only; (b) MDI added
to PBA 1000; (c) DGEBA added to PU(PBA 1000) prepolymer; (d) final
state; PU (PBA 1000)-crosslinked DGEBA……………………………....154
Figure 2-2 FTIR spectra of intermediates obtained during the synthesis of the PU(PPG
1000)-crosslinked DGEBA: (a) initial state; PPG 1000 only; (b) MDI added
to PPG 1000; (c) DGEBA added to PU(PPG 1000) prepolymer; (d) final
state; PU (PPG 1000)-crosslinked DGEBA……………………………....155
Figure 2-3 FTIR spectra of intermediates obtained during the synthesis of the
PU(PTMO 1000)-crosslinked DGEBA: (a) initial state; PTMO 1000 only; (b)
MDI added to PTMO 1000; (c) DGEBA added to PU(PTMO 1000)
prepolymer; (d) final state; PU (PTMO 1000)-crosslinked DGEBA..……156
Figure 2-4 FTIR spectra recorded at three different reaction stages during the synthesis
of the PU/DGEBA grafted-IPNs and PU prepolymer incorporating PBA 700.
(a) Initially: PBA 700 only; (b) Middle; PU prepolymer (PBA 700 series); (c)
Finally; PU/DGEBA grafted-IPNs incorporating PBA 700………………157
Figure 2-5 FTIR spectra recorded at three different reaction stages during the synthesis
of the PU/DGEBA grafted-IPNs and PU prepolymer incorporating PBA
1000. (a) Initially: PBA 1000 only; (b) Middle; PU prepolymer (PBA 1000
series); (c) Finally; PU/DGEBA grafted-IPNs incorporating PBA 1000....158
Figure 2-6 FTIR spectra recorded at three different reaction stages during the synthesis
of the PU/DGEBA grafted-IPNs and PU prepolymer incorporating PBA
2000. (a) Initially: PBA 2000 only; (b) Middle; PU prepolymer (PBA 2000
series); (c) Finally; PU/DGEBA grafted-IPNs incorporating PBA 2000…159
Figure 2-7 Tensile Strengths of various PU (PBA series)-crosslinked DGEBA systems.........................................................................................................160
Figure 2-8 Tensile Strengths of various PU (PPG series)-crosslinked DGEBA
systems………………………………………………………………….…160
Figure 2-9 Tensile Strengths of various PU (PTMO series)-crosslinked DGEBA
systems…………………………………………………………………….161
Figure 2-10 Izod impact strengths of PU (PBA series)-crosslinked DGEBA
systems………………………………………………………………….…161
Figure 2-11 Izod impact strengths of PU (PPG series)-crosslinked DGEBA
systems…………………………………………..……………………..….162
Figure 2-12 Izod impact strengths of PU (PTMO series)-crosslinked DGEBA
systems………………………………………………………………….....162
Figure 2-13 Bending strengths of PU (PBA)-crosslinked DGEBA systems……….…163
Figure 2-14 Bending strengths of PU (PPG)-crosslinked DGEBA systems……….…163
Figure 2-15 Bending strengths of PU (PTMO)-crosslinked DGEBA systems…….....164
Figure 2-16 Shear strengths of PU (PBA)-crosslinked DGEBA systems………….…164
Figure 2-17 Shear strengths of PU (PPG)-crosslinked DGEBA systems……………..165
Figure 2-18 Shear strengths of PU (PTMO)-crosslinked DGEBA systems………..…165
Figure 2-19 Mechanical properties of various PU contents in PU (PBA 700)/DGEBA
grafted-IPN system……………………………………………………..…166
Figure 2-20 TGA analysis of PU (PPG 2000)-crosslink DGEBA systems………...…167
Figure 2-21 TGA analysis of PU (PPG 1000)-crosslink DGEBA systems…………...167
Figure 2-22 TGA analysis of PU (PPG 400)-crosslink DGEBA systems…………….167
Figure 2-23 TGA analysis of PU (PTMO 2000)-crosslink DGEBA systems………...168
Figure 2-24 TGA analysis of PU (PTMO 1000)-crosslink DGEBA systems……...…168
Figure 2-25 TGA analysis of PU (PTMO 650)-crosslink DGEBA systems……….....168
Figure 2-26 TGA analysis of PU (PBA 2000)-crosslink DGEBA systems………...…169
Figure 2-27 TGA analysis of PU (PBA 1000)-crosslink DGEBA systems…………...169
Figure 2-28 TGA analysis of PU (PBA 700)-crosslink DGEBA systems………….....169
Figure 2-29 TGA analysis of PU (PBA 2000)/DGEBA grafted-IPNs systems…….…170
Figure 2-30 TGA analysis of PU (PBA 1000)/DGEBA grafted-IPNs systems…….…170
Figure 2-31 TGA analysis of PU (PBA 700)/DGEBA grafted-IPNs systems………...170
Figure 2-32 DSC analysis of PU (PBA 700)-crosslinked DGEBA systems………….171
Figure 2-33 DSC analysis of PU (PBA 1000)-crosslinked DGEBA systems………...171
Figure 2-34 DSC analysis of PU (PBA 2000)-crosslinked DGEBA systems………...171
Figure 2-35 DSC analysis of PU (PBA 700)/DGEBA grafted-IPNs systems………...172
Figure 2-36 DSC analysis of PU (PBA 1000)/DGEBA grafted-IPNs systems……….172
Figure 2-37 DSC analysis of PU (PBA 2000)/DGEBA grafted-IPNs systems…….....172
Figure 2-38 The SEM morphological observations of the fracture surfaces of Neat
DGEBA (Pure Epoxy resin)………………………………………………173
Figure 2-39 SEM images of PU (PBA 700)-crosslinked DGEBA systems………..…174
Figure 2-40 SEM images of PU (PBA 1000)-crosslinked DGEBA systems…………175
Figure 2-41 SEM images of PU (PBA 2000)-crosslinked DGEBA systems………....176
Figure 2-42 SEM images of PU (PBA 700)/DGEBA grafted-IPNs systems………....177
Figure 2-43 SEM images of PU (PBA 1000)/DGEBA grafted-IPNs systems……..…178
Figure 2-44 SEM images of PU (PBA 2000)/DGEBA grafted-IPNs systems……..…179
Figure 2-45 SEM images of PU (PTMO 650)-crosslinked DGEBA systems……..….180
Figure 2-46 SEM images of PU (PTMO 1000)-crosslinked DGEBA systems
(-NCO:-OH=1:1)……………………………………………………….…181
Figure 2-47 SEM images of PU (PTMO 2000)-crosslinked DGEBA systems
(-NCO:-OH=1:1)………………………………………………………….181
Figure 2-48 SEM images of PU (PPG 400)-crosslinked DGEBA systems………...…182
Figure 2-49 SEM images of PU (PPG 1000)-crosslinked DGEBA systems
(-NCO:-OH=1:1)………………………………………………………...183
Figure 2-50 SEM images of PU (PPG 2000)-crosslinked DGEBA systems
(-NCO:-OH=1:1)………………………………………………………….183
Figure 3-1 Element Surface Chemical Analysis (ESCA) of UHMWPE fibers after
plasma treatment………………………………………………..…………184
Figure 3-2 SEM images of Original UHMWPE fiber…………………………...……185
Figure 3-3 SEM images of UHMWPE fiber obtained after plasma treatment for 1
min……………………………………………………………………..….185
Figure 3-4 SEM images of UHMWPE fiber obtained after plasma treatment for 5
min………………………………………………………………………...185
Figure 3-5 SEM images of UHMWPE fiber obtained after plasma treatment for 10
min……………………………………………………………………..….186
Figure 3-6 SEM images of UHMWPE fiber obtained after plasma treatment for 20
min……………………………………………………………………..….186
Figure 3-7 the effect of DBSA ratio in chemical agent on various chemically treated
UHMWPE fibers……………………………………………………….....187
Figure 3-8 the effect of temperature on various chemically treated UHMWPE
fibers………………………………………………………………………187
Figure 3-9 SEM images of UHMWPE fibers exposed to pure Decalin solvent in various
temperatures: (a) 25 OC, (b) 70 OC, (c) 80 OC, and (d) 90 OC……….……188
Figure 3-10 SEM images of UHMWPE fibers exposed to DBSA/Decalin (1/9 in weight
ratio) in various temperatures: (a) 25 OC, (b) 70 OC, (c) 80 OC, and (d) 90
OC.................................................................................................................189
Figure 3-11 SEM images of UHMWPE fibers exposed to DBSA/Decalin (2/8 in weight
ratio) in various temperatures: (a) 25 OC, (b) 70 OC, (c) 80 OC, and (d) 90
OC……………………………………………………………………….....190
Figure 3-12 SEM images of UHMWPE fibers exposed to DBSA/Decalin (3/7 in weight
ratio) in various temperatures: (a) 25 OC, (b) 70 OC, (c) 80 OC, and (d) 90
OC……………………………………………………………………….…191
Figure 4-1 Filament winding machine…………………………………………...……192
Figure 4-2 Schematic composites preparation…………………………………...……192
Figure 4-3 Photographs of UHMWPE fiber/DGEBA prepregs …………………...…193
Figure 4-4 Photographs of various composies……………………………………..…193
Figure 4-5 Photographs of various UHMWPE fiber residuums………………………194
Figure 4-6 Photographs of various aramid fiber residuums………………………..…194
Figure 4-7 Effect of cutting machine on the tensile properties of UHMWPE fiber
reinforced DGEBA composites (packing angle; [00]10 )……………….…195
Figure 4-8 Effect of cutting machine on the tensile properties of UHMWPE fiber
reinforced DGEBA composites (packing angle; [00, 900]10 ) ………….…195
Figure 4-9 SEM images of various side-view fracture surfaces: (a) Aramid
fiber/DGEBA composite, (b) original UHMWPE fiber/DGEBA composite,
(c) plasma-treated UHMWPE fiber composite………………………..….196
Figure 4-10 SEM images of various fiber fracture surfaces: (a) Original UHMWPE
fiber/DGEBA, (b) chemically treated UHMWPE fiber/DGEBA, and (c)
Plasma-treated UHMWPE fiber/DGEBA composites……………………196
Figure 4-11(a) Effects that the choices of fiber and matrix have on the tensile strengths
of composites……………………………………………………………...197
Figure 4-11(b) Effects that the choice of fiber and matrix have on the elongation of
composites……………………………………………………………..….197
Figure 4-12 Representative stress/strain curves for unidirectional and cross-ply
UHMWPE fiber reinforced DGEBA composites…………………………198
Figure 4-13 Mechanical properties of various plasma-treated UHMWPE fiber/PU(PBA
700 series)/DGEBA grafted-IPN composites at perpendicular packing
angles…………………………………………………………………..….199
Figure 4-14 Effect of the molecular weight of polyol in the PU on the mechanical
properties of various original UHMWPE fiber-reinforced composites at
perpendicular packing angles…………………………………………..…200
Figure 5-1 Weather meter – Xenon arc lamp apparatus……………………201
Figure 5-2 Moisture Absorptions of PU-crosslinked DGEBA systems at different
weathering times………………………….…..………………………...…202
Figure 5-3 Moisture Absorptions of UHMWPE fiber reinforced PU-crosslinked
DGEBA composite specimens at different weathering times…………..…202
Figure 5-4 Moisture Absorptions of aramid fiber reinforced PU-crosslinked DGEBA
composite specimens at different weathering times………..……………..203
Figure 5-5 The tensile strength retention of UHMWPE and aramid fibers at different
weathering times…………………………………………………………..204
Figure 5-6 The tensile strength retention of PU-crosslinked DGEBA systems at different
weathering times………………………..…………………………………205
Figure 5-7 The tensile strength retention of UHMWPE fiber- and aramid
fiber-reinforced PU-crosslinked DGEBA composites different weathering
times…………………………………………………………………….....206
Figure 5-8 The values of tensile strength and the curves by the Phani and Bose method
of PU-crosslinked DGEBA systems at different weathering times…….…207
Figure 5-9 The values of tensile strength and the curves by the Phani and Bose method
of UHMWPE fiber reinforced PU-crosslinked DGEBA composite specimens
at different weathering times…………………………………………..….208
Figure 5-10 The values of tensile strength and the curves by the Phani and Bose method
of aramid fiber reinforced PU-crosslinked DGEBA composite specimens at
different weathering times…………………………………………...……209
Figure 5-11 Effect of weathering on the values of color difference (△E) of neat
DGEBA, UHMWPE fiber/DGEBA, and aramid fiber/DGEBA
composites...................................................................................................210
Figure 5-12 ATR-FTIR spectra of various fiber specimens recorded at different
weathering times: (a) UHMWPE fiber, and (b) Aramid fiber………….....211
Figure 5-13 ATR-FTIR spectra of various neat DGEBA systems specimens recorded at
different weathering times……………………………………………...…212
Figure 5-14 ATR-FTIR spectra of various PU (PBA 700)-crosslinked DGEBA systems
specimens recorded at different weathering times………………………...212
Figure 5-15 ATR-FTIR spectra of various PU (PBA 1000)-crosslinked DGEBA systems
specimens recorded at different weathering times………………………...213
Figure 5-16 ATR-FTIR spectra of various PU (PBA 2000)-crosslinked DGEBA systems
specimens recorded at different weathering times………………………...213
dc.language.isoen
dc.title超高分子量聚乙烯纖維補強聚胺酯改質環氧樹脂之複合材料研究zh_TW
dc.titleResearch of UHMWPE Fiber Reinforced Polyurethane Modified Epoxy Compositesen
dc.typeThesis
dc.date.schoolyear95-2
dc.description.degree博士
dc.contributor.coadvisor韓錦鈴(Jin-Lin Han)
dc.contributor.oralexamcommittee邱文英(Wen-Yen Chiu),李雅榮,張豐志(Feng-Chih Chang)
dc.subject.keyword超高分子量聚乙烯纖維,聚胺酯,環氧樹脂,預浸布,水刀切割,複合材料,抗張強度,防彈測試,耐候性質,zh_TW
dc.subject.keywordUHMWPE fiber (Ultra-high molecular weight polyethylene fiber),PU (Polyurethane),DGEBA (Epoxy resin),Pre-preg,hydraulic power cutting machine,Composite,Tensile Strength,Bullet-proof test,Weathering effect,en
dc.relation.page153
dc.rights.note有償授權
dc.date.accepted2007-06-27
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept高分子科學與工程學研究所zh_TW
顯示於系所單位:高分子科學與工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-96-1.pdf
  未授權公開取用
7.88 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved