請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/30576完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 舒貽忠(Yi-Chung Shu) | |
| dc.contributor.author | Hung-Chih Chen | en |
| dc.contributor.author | 陳宏志 | zh_TW |
| dc.date.accessioned | 2021-06-13T02:09:15Z | - |
| dc.date.available | 2011-07-31 | |
| dc.date.copyright | 2007-07-16 | |
| dc.date.issued | 2006 | |
| dc.date.submitted | 2007-06-27 | |
| dc.identifier.citation | [1] A. G. Khachaturyan.(1983). Theory of Structural Transformations in Solid. Wiley, New York.
[2] A. L. Roytburd.(1978). Martensitic Transformation as a Typical Pjhase Transformation in solids. Solid State Phys.,33:317-390. [3] Brown, W. F. JR.(1963). Micromagnetics, John Wiley & Sons, New York. [4] Donahue, M. J.(2004).OOMMF User’s Guide 1.1b2. [5] DeSimone, A. & James, R. D.(2002). A constrained theory of magnetoelasticity, Journal of the Mechanics and Physics of Solids,50:283-320. [6] Hubert, A. & Schafer, R.(1998). Magnetic Domains:The Analysis of Magnetic Microstructures, Springer, Berlin. [7] J. S. Bowles and J. K. Mackenzie.(1954). The Crystallography of Martensite Transformations 1 and 2. Acta Metall.,2:129-137. [8] J. M. Ball and R. D. James. (1987). Fine Phase Mixtures as Minimizers of Energy. Arch. Rat. Mech. Anal.,100:13-52. [9] J. M. Ball and R. D. James.(1992). Proposed Experimental Tests of a Theory of Fine Microstructure and the Two Well Problem. Phil. Trans. Royal Soc. London A.,338:389-450. [10] J. Wang, Y. Li, L. Q. Chen, and T. Y. Zhang.(2005). The Effect of Mechanical strains on the Ferroelectric and Dielectric Properties of a Model Single Crystal Phase Field Simulation. Acta Mater.,53:2495-2507. [11] J. Wang, S. Q. Shi. L. Q. Chen, Y. Li, and T. Y. Zhang.(2004). Phase Field Simulations of Ferroelectric / Ferroelastic Polarization Switching. Acta Materialia., 52:749-764. [12] J. Wang, Y. Li, L. Q. Chen, and T. Y. Zhang.(2005). The effect of Mechanical strains in the ferroelectric and dielectric properties of a Model single crystal Phase – field simulation. Acta Mater.,53:2495-2507. [13] J. X. Zhang and L. Q. Chen.(2005). Phase – Field Model for ferromagnetics Shape Memory Alloys. Phil. Mag. Letters.,85:533-541. [14] Jeong, T. G. & Bogy, D. B.(1995). Demagnetization Due to Inverse Magnetostriction Effect in Longitudinal Thin Film Media, IEEE Transaction on Magnetics.,31:1007-1012. [15] K. Bhattacharya and R. V. Kohn.(1996). Symmetry, Texture and the Recoverable Strain of Shape Memory Polycrystals. Acta Matter.,44:529-542. [16] K. Bhattacharya and R. V. Kohn.(1997). Elastic Energy Minimization and the Recoverable Strains of Polycrystalline Shape Memory Materials. Arch. Rat. Mech. Anal.,139:99-180. [17] K. Bhattacharya., A. DeSimone, K. F. Hane, R. D. James, and C. J. Palmstrm.(1999). Tents and Tunnels on Martensitic Films. Materials Science and Engineering A., 273:685-689. [18] K. Bhattacharya and R. D. James.(1999). A Theory of Thin Films of Martensitic Materials with Applications to Microactuators. J. Mech. Phys. Solids.,47:531-576. [19] Landau, L. D. & Lifshitz, E.(1935). On the Theory of the Dispersion of Magnetic Permeability in Ferromagnetic Bodies, Physikalische Zeitschrift der Sowjetunion.,8:153-169. [20] Izawa, F.(1984). Theoretical Study on Stress-Induced Demagnetization in Magnetic Recodeing Media, IEEE Transaction on Magnetics., Mag-20:523-528. [21] Matteo Frigo, Steven G. Johnson.(2003).FFTW User’s Manual 2.1.5. [22] M. Wechsler, D. Libermann, and T. Read.(1953). On the Theory of the formation of Martensite. Trans. AIME.,197:1503-1515. [23] Michael J. Quinn.(2003). PARALLEL PROGRAMMING in C with MPI and OpenMP. Mc Graw Hill. [24] NSF, DARPA under NSF contract CDA-9115428 and Esprit under project HPC Standards.(2003).MPI-2:Extensions to the Message-Passing Interface. [25] Nakatani, Y., Uesaka, Y. & Hayashi, N.(1989). Direct Solution of the Landau-Liftshitz-Gilbert Equation for Micromagnetics, Journal of Applied Physics.,28:2485-2507. [26] P. Krulevitch, A. P. Lee, P. B. Ramsey, J. C. Trevino, J. Hamilton , and M. A. Northrup.(1996). Thin Film Shape Memory Alloy Microactuators. Journal of Microelectromechanical System.,5:270-282. [27] S. Sreekala and G. Ananthakrishna.(2005). Two-Dimensional Model for Ferromagnetic Martensites. Phys. Rev. B.72:134-403. [28] Stroh, A. N. (1958). Disocations and Cracks in Anisotropic Elasticity, Philosophical Magazine. 7:625-646. [29] Schmidts, H. C. & Kronmuller, H.(1994). An algorithm for two-dimensional micromagnetic calculations for ferromagnetic materials, Journal of Magnetism and Magnetic Materials.130:329-341. [30] Voltairas, P. A., Fotiadis, D. I. & Massalas, C. V.(1998). Magnetization reversal in thin ferromagnetic films under mechanical stress., International Journal of Engineering Science.38:903-909. [31] Voltairas, P. A., Fotiadis, D. I. & Massalas, C. V.(1999). Non-uniform magnetization reversal in thin ferromagnetic films, Journal of Magnetism and Magnetic Materials.213:43-50. [32] Wu, K. C., Chiu, Y. T. & Hwu, Z. H.(1992). A New Boundary Integral Equation Formulation for Linear Elastic Solids, Journal of Applied Mechanics.59:344-348. [33] Wu, K. C.(2000). Nonsigular Boundary Integral Equation for Two-Dimensional Anisotropy Elasticity, Journal of Applied Mechanics.67:618-621. [34] Y. C. Shu and K. Bhattacharya.(1998). The Influence of Texture on the Shape-Memory Effect in the Polycrystals. Acta Mater.,46:5457-5473. [35] Y. C. Shu.(2000). Heterogeneous Thin Films of Martensitic Materials. Arch. Rational Mech. Anal.,153:30-39. [36] Y. C. Shu.(2002). Shape-Memory Micropumps. Materials Transactions.,43:1037-1044. [37] Y. C. Shu., Lin, M. P. & Wu. K. C.(2004). Micromagnetic Modeling of Magnetostrictive Materials under Intrinsic Stress. Mechanics of Materials. [38] Y. Wang and A. G. Khachaturyan.(1997). Three-Dimensional Field Model and Computer Modeling of Martensitic Transformations, Acta Mater.,45:759-773. [39] Y. M. Jin, A. Aretmev and A. G. Khachaturyan.(2001). Three Dimensional Phase Field Model of low Symmetry Martensitic Transformation in Polycrystal:Simulations of Martensite in AuCd Alloys. Acta Mater.,49:2309-2320. [40] Y. M. Jin, A. Aretmev and A. G. Khachaturyan.(2002). Three Dimensional Phase Field Model and Simulation if Cubic→tetragonal Martensitic transformation in polycrystal. Phil. Mag. A.,82:1249-1270. [41] Y. M. Jin and A. G. Khachaturyan.(2002). Phase field microelasticalty theory of dislocation dynamics in a polycrystal:model and three – dimensional simulations. Phil. Mag. Letters.,81:607-616. [42] 徐建輝.(2007).新式相場模擬法應用於麻田散鐵微結構之研究.台灣大學應用力學研究所碩士論文. [43] 顏睿亨.(2003).磁性薄膜磁力互動模型分析與數值模擬之研究.台灣大學應用力學研究所碩士論文. [44] 施威銘研究室.(2006).Linux Fedora Core 5 實務應用.旗標出版股份有限公司. [45] 張智星.(2000).MATLAB程式設計與應用.清蔚科技股份有限公司. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/30576 | - |
| dc.description.abstract | 本文(1)以開發平行架構從事形狀記憶合金微結構之數值模擬研究;(2)以發展快速傅立葉轉換計算鐵磁材料磁力耦合之數值模擬研究。
在形狀記憶合金中,本文以之前所發展之新式相場法為雛型,再利用MPI將整體改寫為平行版。所考量之問題為具有兩個方向之兄弟晶微結構材料,利用所開發之平行架構進行分析模擬,除得到正確的微結構分佈外,數值模擬效率亦大幅提昇。 在鐵磁材料中,本文以之前所發展之磁力互動模型為基本,再利用快速傅立葉轉換計算有界物體其應力引發之等效磁場,並配合九點高斯積分增加其準確度。所考量之問題為具大磁致伸縮應變之鐵磁薄膜,利用所開發之快速傅立葉轉換進行微磁域分析模擬,除得到正確的微磁域分佈外,所能劃分之網格數亦大幅提昇。 | zh_TW |
| dc.description.abstract | The goal of the present thesis has two folds. First, we develop an algorithm to simulate microstructure in shape-memory alloys with parallel computation. Second, we develop a fast algorithm (FFT) to compute magnetoelastic stress in ferromagnetic materials.
For shape-memory alloys, a new MPI numerical structure is implemented in the code which was developed based on the novel phase-field method. The material in the present consideration has two variants. The results provide not only an accurate distribution of martensitic variants, but also show a significant reduction in time needed for simulation. For ferromagnetic materials, a fast algorithm is developed to compute the stress-induced magnetic field in a finite body. It is based on the Fast Fourier Transform and 9-point Gaussian integration. The material in the present consideration has large magnetostriction. The results provide not only an accurate distribution of magnetic domains, but also show a significant increase in simulation scales. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-13T02:09:15Z (GMT). No. of bitstreams: 1 ntu-95-R94543041-1.pdf: 8220437 bytes, checksum: 6fa17bf6cccb24359e1ee98ce1120a35 (MD5) Previous issue date: 2006 | en |
| dc.description.tableofcontents | 摘要 1
Abstract 2 誌謝 3 目錄 4 圖目錄 8 表目錄 13 第1章 導論 14 1-1 研究動機 14 1-2 簡介MPI(Message-Passing Interface)平行計算軟體 17 1-3 簡介FFTW(Fast Fourier Transform in the West) 18 1-4 OOMMF(Object Oriented MicroMagnetic Framework) 19 1-5 文獻回顧 20 1-6 本文架構 22 第2章 理論架構 23 2-1 麻田散鐵材料 23 2-1-1 數學模型 23 2-1-2 能量極小原理 25 2-1-3 演化方程式 28 2-1-4 傅立葉轉換解彈性力學平衡問題 31 2-2 鐵磁材料 36 2-2-1 數學模型 36 2-2-2 能量極小原理 41 2-2-3 演化方程式 45 2-2-4 以邊界積分方程式解磁力耦合問題 47 2-2-5 平均磁致伸縮應變能、外應力勢能與平均應力 52 第3章 數值方法 53 3-1 麻田散鐵材料 53 3-1-1 數值積分法 53 3-1-2 能量的離散形式 55 3-1-3 平行架構 57 3-2 鐵磁材料 61 3-2-1 數值積分法 61 3-2-2 能量的離散形式 64 3-2-3 邊界元素法 71 3-2-4 褶積形式之應力 77 3-2-5 高斯積分法 78 3-2-6 快速傅立葉轉換解有限域褶積應力問題 81 第4章 數值模擬結果—麻田散鐵 83 4-1 麻田散鐵材料 83 4-1-1 單機版與平行版兩種兄弟晶、平均應變為零之模擬 83 4-1-2 單機版與平行版兩種兄弟晶、平均應變不為零之模擬 88 4-1-3 單機版與平行版之計算效率比較 93 4-2 鐵磁材料 95 4-2-1 高斯積分之比較 95 4-2-2 Terfenol-D不同尺寸之分析 104 4-2-3 Terfenol-D不同網格數之分析 107 4-2-4 之材料不同尺寸之分析 109 4-2-5 之材料不同網格數之分析 112 4-2-6 快速演算法之效率提昇 114 第5章 結論與未來展望 116 5-1 結論 116 5-2 未來展望 117 參考文獻 120 附錄A FFTW & FFTW_MPI之使用 126 附錄B 磁力耦合有限域褶積形式展開計算之說明 132 附錄C 邊界元素法之上下標詳細說明 136 附錄D 快速傅立葉轉換應用於有限域與無限域褶積問題 141 | |
| dc.language.iso | zh-TW | |
| dc.subject | 平行演算法 | zh_TW |
| dc.subject | 微結構 | zh_TW |
| dc.subject | 快速傅立葉轉換 | zh_TW |
| dc.subject | Parallel Programming | en |
| dc.subject | Fast Fourier Transform in West | en |
| dc.subject | Microstructure | en |
| dc.title | 平行架構與快速演算法應用於麻田散鐵與磁性材料微結構之研究 | zh_TW |
| dc.title | The Application of Parallel Computation and Fast Algorithm th The Study of Martensitic and Ferromagnetic Materials | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 95-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 陳正宗,陳瑞琳 | |
| dc.subject.keyword | 平行演算法,快速傅立葉轉換,微結構, | zh_TW |
| dc.subject.keyword | Parallel Programming,Fast Fourier Transform in West,Microstructure, | en |
| dc.relation.page | 125 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2007-06-29 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 應用力學研究所 | zh_TW |
| 顯示於系所單位: | 應用力學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-95-1.pdf 未授權公開取用 | 8.03 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
