Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 生物環境系統工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/30538
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor廖中明
dc.contributor.authorChing-Hung Yehen
dc.contributor.author葉景鴻zh_TW
dc.date.accessioned2021-06-13T02:07:32Z-
dc.date.available2009-07-11
dc.date.copyright2007-07-16
dc.date.issued2007
dc.date.submitted2007-06-29
dc.identifier.citationAbel PD, 1989. Water Pollution Biology. Ellis Horwood Limited, Chichester, UK.
Anderson RM, May RM, 1985. Age-related changes in the rate of disease transmission: implications for to design of vaccination programmes. Journal of Hygiene 94: 365-436.
Anderson RM, May RM, 1991. Infectious Diseases of Humans: Dynamics and Control. Oxford University Press, New York, USA.
Arkoosh MR, Casillas E, Huffman P, Clemons E, Evered J, Stein JE, Varanasi U, 1998. Increased susceptibility of juvenile chinook salmon from a contaminated estuary to Vibrio anguillarum. Transactions of the American Fisheries Society 127: 360-374.
Arkoosh MR, Clemons E, Huffman P, Kagley AN, 2001. Increased susceptibility of juvenile Chinook salmon to vibriosis after exposure to chlorinated and aromatic compounds found in contaminated urban estuaries. Journal of Aquatic Animal Health 13: 257-268.
Arkoosh MR, Clemons E, Myers M, Casillas E, 1994. Suppression of B-cell mediated immunity in juvenile chinook salmon (Oncorhynchus tshawytscha) after exposure to either a polycyclic aromatic hydrocarbon or to polychlorinated-biphenyls. Immunopharmacology and Immunotoxicology 16:293-314.
Baccam P, Beauchemin C, Macken CA, Hayden FG, Perelson AS, 2006. Kinetics of influenza A virus infection in humans. Journal of Virology 80: 7590-7599.
Barber MC, 2003. A review and comparison models for predicting dynamic chemical bioconcentration in fish. Environmental Toxicology and Chemistry 22: 1963-1992.
Bellissant E, Sebille V, Paintaud G, 1998. Methodological issues in pharmacokinetic-pharmacodynamic modeling. Clinical Pharmacokinetics 35: 151-166.
Beyers DW, Rice JA, Clements WH, Henry CJ, 1999. Estimating physiological cost of chemical exposure: integrating energetics and stress to quantify toxic effects in fish. Canadian Journal of Fisheries and Aquatic Sciences 56: 814-822.
Briggs CJ, Vredenburg VT, Knapp RA, Rachowicz LJ, 2005. Investigation the population-level effects of chytridiomycosis: An emerging infectious diseases of amphibians. Ecology 86: 3149-3159.
Blanchard JL, Frank KT, Simon JE, 2003. Effects of condition on fecundity and total egg production of eastern Scotian Shelf haddock (Melanogrammus aeglefinus). Canadian Journal of Fisheries and Aquatic Sciences 60: 321-332.
Bowen HJM, 1966. Trace Elements in Biochemistry. Academic Press, New York, USA.
Caswell H, 2001. Matrix Population Models: Construction, Analysis, and Interpretation, 2nd ed. Sinauer Associates, Sunderland, Massachusetts, USA.
Chen BC, Liao CM, 2004. Population models of farmed abalone Haliotis diversicolor supertexta exposed to waterborne zinc. Aquaculture 242: 251-269.
Chiang WF, Hung TC, Lee TL, 1980. Studies on the heavy metal contents of mollusks in the south-western coastal waters of Taiwan. Journal of Marine Science 26: 17-46.
Chien YH, Hsu WH, 2006.Effects of diets, their concentrations and clam size on filtration rate of hard clams (Meretrix lusoria). Journal of Shellfish Research 25: 15-22.
Chin TS, Chen HC, 1993a. Toxic effects of mercury on the hard clam, Meretrix lusoria, in various salinities. Comparative Biochemistry and Physiology. 105C: 501-507.
Chin TS, Chen HC, 1993b. Bioaccumulation and distribution of mercury in the hard clam, Meretrix lusoria (Bivalvia: Veneidae). Comparative Biochemistry and Physiology 106C: 131-139.
Comps M, Menu B, Breuil G, Bonami JR, 1991. Viral-infection associated with rotifer mortalities in mass-culture. Aquaculture 93: 1-7.
Chou HY, Chang SJ, Lee HY, Chiou YC, 1998. Preliminary evidence for the effect of heavy metal cations on the susceptibility of hard clam (Meretrix lusoria) to clam birnavirus infection. Fish Pathology 33: 213-219.
Chou HY, Li HJ, Lo CJ, 1994. Pathogenicity of a birnavirus to hard clam (Meretrix lusoria) and effect of temperature stress on its virulence. Fish Pathology 29: 171-175.
Chou HY, Peng TY, Chang SJ, Hsu YL, Wu JL, 1999. Effect of heavy metal stressors and salinity shock on the susceptibility of grouper (Epinephelus sp.) to infectious pancreatic necrosis virus. Virus Research 63: 121-129.
Congdon JD, Dunham AE, Hopkins WA, Rowe CL, Hinton TG, 2001. Resource allocation-based life histories: A conceptual basis for studies of ecological toxicology. Environmental Toxicology and Chemistry 20: 1698-1703.
Deguen S, Thomas G, Chau NP, 2000. Estimation of the contact rate in a seasonal SEIR model: application to chickenpox incidence in France. Statistics in Medicine 19: 1207-1216.
Dobson A, 2004. Population dynamics of pathogens with multiple host species. American Naturalist 164: S64-S78.
Ebert D, Lipsitch M, Mangin KL, 2000. The effect of parasites on host population density and extinction: Experimental epidemiology with daphnia and six microparasites. American Naturalist 156: 459-477.
FAO, 1970. Report of the seminars on methods of detection measurement and monitoring of pollutants in the marine environments. Fisheries Reports 99: supplement 1.
Fenton A, Pedersen, 2005. Community epidemiology framework for classifying disease threats. Emerging Infectious Diseases 11: 1815-1821.
Fenton A, Rands SA, 2006. The impact of parasite manipulation and predator foraging behavior on predator-prey communities. Ecology 87: 2832-2841.
Ferguson NM, Keeling MJ, Edmunds WH, Gain R, Grenfell BT, Anderson RM, Leach S, 2003. Planning for smallpox outbreaks. Nature 425: 681-685.
Gandon S, 2004. Evolution. Evolution 58: 455-469.
Gerber LR, McCallum H, Lafferty KD, Sabo JL, Dobson A, 2005. Exposing extinction risk analysis to pathogens: Is disease just another form of density dependence? Ecological Applications: 15: 1402-1414.
Harvell CD, Mitchell CE, Ward JR, Altizer S, Dobson AP, Ostfeld RS, Samuel MD, 2002. Review: Ecology – Climate warming and disease risks for terrestrial and marine biota. Science 296: 2158-2162.
Heinonen J, Kukkonen JVK, Holopainen IJ, 1999. The effects of parasites and temperature on the accumulation of xenobiotics in a freshwater clam. Ecological Application 9: 475-481.
Hetrick FM, Knittel MD, Fryer JL, 1979. Increased susceptibility of rainbow trout to infectious hematopoietic necrosis virus after exposure to copper. Applied and Environmental Microbiology 37: 198-201.
Holford NHG, Sheiner LB, 1982. Kinetics of pharmacologic response. Pharmacology and Therapeutics 16: 143-166.
Hall SR, Duffy MA, Caceres CE, 2005. Selective predation and productivity jointly drive complex behavior in host-parasite systems. American Naturalist 165: 70-81.
Hall SR, Tessier A, Duffy MA, Huebner M, Caceres CE, 2006. Warmer does not have to mean sicker: Temperature and predators can jointly drive timing of epidemics. Ecology 87: 1684-1695.
Hill AV, 1910. The possible effects of the aggregation of the molecules of haemoglobin on its dissociation curves. Journal of Physiology 4: 4-7.
Irukayama K, Kai F, Fusujiki F, Kondo T, 1962. Studies on the origin of the causative agent of Minamata disease. Journal of Kumamoto Medical 15: 57-68.
Jager T, Crommentuijn T, Van Gestel CAM, Kooijman SALM, 2004. Simultaneous modeling of multiple end points in life-cycle toxicity tests. Environmental Science and Technology 38: 2894-2900.
Jeng SS, Tyan YM, 1982. Growth of the hard clam Meretrix lusoria in Taiwan. Aquaculture 27: 19-28.
Jensen AL, 1997. Matrix population model with density-dependent recruitment for assessment of age-structured wildlife populations. Bulletin of Mathematical Biology 59: 255-262.
Kenakin T, 1997. Pharmacologic Analysis of Drug-Receptor Interactions. Lippincott-Raven Publishers, Philadelphia, USA.
Klok C, De Roos AM, 1996. Population level consequences of toxicological influences on individual growth and reproduction in Lumbricus rubellus (Lumbricidae, Oligochaeta). Ecotoxicology and Environmental Safety 33: 3131-3138.
Kooijman SALM, Bedaux JJM, 1996. The Analysis of Aquatic Toxicity Data. VU University Press, Amsterdam, The Netherlands.
Kou GH, Chen SN, Lo CF, 1989. Fish and shellfish viral disease research in Taiwan. Journal of Fisheries Society Taiwan 16: 303-312.
Kurland LT, Faro SN, Siedler H, 1960. Minamata disease: the outbreak of neurological disorders in Minamata, Japan and its relationship to the ingestion of seafood contaminated by mercury. World Neurology 1: 370-391.
Lafferty KD, Kuris AM, 1999. How environmental stress affects the impacts of parasites. Limnology and Oceanography 44: 925-931.
Langston WJ, Bebianno MJ, 1998. Metal Metabolism in Aquatic Environments. Chapman and Hall Ltd, London, UK.
LaPatra SE, 1998. Factors affecting pathogenicity of infectious hematopoietic necrosis virus (IHNV) for salmonid fish. Journal of Aquatic Animal Health 10: 121-131.
Lee JH, Peter FL, Koh CH, 2002. Prediction of time-dependent PAH toxicity in Hyalella azteca using a damage assessment model. Environmental Science and Technology 36: 3131-3138.
Legierse KCHM, Verhaar HJM, de Bruijn JHM, Herman JLM, 1999. Analysis of the time-dependent acute aquatic toxicity of organophosphorus pesticides: the critical target occupation model. Environmental Science and Technology 33: 917-925.
Lo CF, Hong YW, Huang SY, Wang CH, 1988. The characteristics of the virus isolated from the gill of clam, Meretrix lusoria. Fish Pathology 23: 147-154.
Loge FJ, Arkoosh MR, Ginn TR, Johnson LL, Collier TK, 2005. Impact of environmental stressors on the dynamics of disease transmission. Environmental Science and Technology 39: 7329-7336.
Liao, CM, Chiang KC, Tsai JW, 2006. Bioenergetics-based matrix population modeling enhances life-cycle toxicity assessment of tilapia Oreochromis mossambicus exposed to arsenic. Environmental Toxicology 21: 154-165.
Mackay D, Fraser A, 2000. Bioaccumulation of persistent organic chemicals: mechanisms and models. Environmental Pollution 110: 375-391.
Martin MH, Coughtrey PJ, 1982. Biological Monitoring of Heavy Metal Pollution. Applied Science Publishers, London, UK.
McCarty LS, Mackay D, 1993. Enhancing ecotoxicological modeling and assessment. Environmental Science and Technology 27: 1717-1728.
Meyers TR, 1979. A reo-like virus isolated from juvenile American oysters (Crassostrea virginica). Journal of General Virology 43: 203-212.
Michaelis L, Menten M, 1913. Die kinetic der invertinwirkung. Biochemische Zeitschrift 49: 333-369.
Murray AG, Peeler EJ, 2005. A framework for understanding the potential for emerging diseases in aquaculture. Preventive Veterinary Medicine 67: 223-235.
Nelder JA, 1961. The fitting of a generalization of the logistic curve. Biometrics 17: 89-110.
Nisbet RM, Muller EB, Lika K, Kooijman SALM, 2000. From molecules to ecosystem through dynamic energy budget models. Journal of Animal Ecology 69: 913-926.
Ogut H, LaPatra SE, Reno Pw, 2005. Effects of host density on furunculosis epidemics determined by the simple SIR model. Preventive Veterinary Medicine 71: 83-90.
Olafsson J, 1983. Mercury concentrations in the North Atlantic in relation to cadmium, aluminum and oceanographic parameters. In Trace Metal in Sea Water (Edited by Wong CS, Boyle E, Bruland KW, Burton JD, Goldberg ED). Plenum Press, New York, USA.
Oli MK, Venkataraman M, Klein Pa, Wendland LD, Brown MB, 2006. Population dynamics of infectious diseases: A discrete time model. Ecological Modelling 198: 183-194.
Packer C, Holt RD, Hudson PJ, Lafferty KD, Dobson AP, 2003. Keeping the herds healthy and alert: implications of predator control for infectious disease. Ecology Letters 6: 797-802.
Pearl R, The growth of populations. Quarterly Review of Biology 2: 532-548.
Perez-Urizar J, Granados-Soto V, Flores-Murrieta FJ, Castaneda-Hernandez G, 2000. Pharmacokinetic-pharmacodynamic modeling: Why? Archives of Medical Research 31: 539-545.
Pery ARR, Ducrot V, Mons R, Garric J, 2003. Modelling toxicity and mode of action of chemicals to analyse growth and emergence tests with the midge Chironomus riparius. Aquatic Toxicology 65: 281-292.
Pery ARR, Flammarion P, Vollat B, Bedaux JJM, Kooijman SALM, Garric J, 2002. Using a biology-based model (DEBtox) to analyze bioassays in ecotoxicology: opportunities and recommendations. Environmental Toxicology and Chemistry 21: 459-465.
Reinfelder JR, Fisher NS, Luoma SN, Nichols JW, Wang WX, 1998. Trace element trophic transfer in aquatic organisms: A critique of the kinetic model approach. Science of the Total Environment 219: 117-135.
Rice TM, Oris JT, Taylor DH, 2001. Toxicokinetics, available source, and route of entry of lead in fed and food-deprived bullfrog (Rana catesbeiana) larvae. Archives of Environmental Contamination and Toxicology 41: 450-457.
Richards FJ, 1959. A flexible growth function for empirical use. Journal of Experimental Botany 10: 290-300.
Saldien V, Vermeyen KM, Wuyts FL, 2003. Target-controlled infusioin of rocuronium in infants, children, and adults: A comparison of the pharmacokinetic and pharmacodynamic relationship. Anesthesia and Analgesia 97: 322-327.
Sibly RM, Barker D, Denham M, Hone J, Pagel M, 2005. On the regulation of populstions of mammals, birds, fish, and insects. Science 309: 607-610.
Sindermann CJ, 1990. Principal Diseases of Marine Fish and Shellfish. Academic Press, Inc., New York, USA.
Swinton J, 1998. Extinction times and phase transitions for spatially structured closed epidemics. Bulletin of Mathematical Biology 60: 215-230.
Tsoularis A, Wallace J, 2002. Analysis of logistic growth models. Mathematical Biosciences 179: 21-55.
Venitz J, 1995. Oharmacokinetic-pharmacodynamic modeling of reversible drug effects. In: Derendorf H, Hochhaus G, (eds) Handbook of pharmacokinetic/ pharmacodynamic correlation. CRC Press, Florida, USA.
Verhulst PF, 1838. Notice sur la loi que la population suit dans son accroissement. Correspondences Mathematigues et Physiques 10: 113-121.
Von Bertalanffy V, 1938. A quantitative theory of organic growth. Human Biology 10: 181-213.
Wedemeyer GA, McLeay DJ, Goodyear CP, 1984. Assessing the tolerance of fish and fish populations to environmental stress: the problems and methods of monitoring. In: Cairns VW, Hodson PV, Nriagu JO (eds). Contaminant effects on fisheries. John Wiley and Sons, New York, USA.
West GB, Brown JH, 2004. Life’s universal scaling laws. Physics Today 57: 36-42.
West GB, Brown JH, Enquist BJ, 2001. A general model for ontogenetic growth, Nature 413: 628-631.
Wood JM, 1974. Biological cycles for toxic elements in the environment. Science 183: 1049-1052.
丁雲源。1976。文蛤養殖。行政院農委會水產試驗所試驗報告 52: 1-17。
行政院農委會漁業署。2005。http://www.fa.gov.tw。
行政院環境保護署。2001。http://www.epa.gov.tw。
行政院環境保護署。2001。水汙染防治法:地面水體分類及水質標準http://w3.epa.gov.tw/epalaw/search/LordiDispFull.aspx?ltype=06&lname=0190。
江國瑩。2006。不同鹽度下文蛤及牡蠣對重金屬蓄積之研究。海洋大學環境生物與漁業研究所碩士碩文。86pp.
何雲達。2004。文蛤養殖。行政院農委會水產試驗所研究報告。http://www.water.tku.edu.tw/sub91/frm_research/act_news_show.asp?id=25。
周昱翰,黃麗月,王映文,周麗梅,劉富光。2001。不同餌料對文蛤養成之影響。行政院農委會水產試驗所研究報告。http://www.tfrin.gov.tw/。
孟慶顯,俞開康。1998。魚蝦蟹貝疾病診斷和防治。水產出版社,台灣。
秦宗顯。1983。文蛤Meretrix lusoria Röding受汞影響之急慢性毒性研究。台灣大學動物學研究所博士論文。158pp.
曾文陽。1976。台灣西南淺海養殖貝類大量死亡之研究。行政院農委會水產試驗所試驗報告 26: 1-35。
溫秋明。1994。大牡蠣和文蛤細胞培養系統之建立及其應用。台灣大學動物學研究所博士論文。204pp.
賴威光。1994。密度處理對文蛤 (Meretrix lusoria) 生長之影響。中山大學海洋生物研究所碩士論文。50pp.
蔡正偉。2005。以生物能量及生理為基礎之觀點探討砷毒性對吳郭魚之毒理動力/動態及作用模態。台灣大學生物環境系統工程研究所博士論文。150pp.
蔡佳芬,潘志寬,鄭秋真,周薰修。1990。台灣地區養殖類重金屬含量之調查。藥物食品檢驗局調查研究年報 8: 196-208。
劉秀平,廖國焱,巫文隆。1992。淡水與鹿港產文蛤生殖生態的比較研究。貝類學報 17: 69-77。
戴子堯。2005。文蛤。台南縣黑面琵鷺保育學會。http://mail.tnssh.tn.edu.tw/~bfsa/tc/p14/p14_09.htm。
謝明慧,陳弘成。1980。重金屬對潮間帶螺類之毒性研究。貝類學報 7: 115-125。
魏彰郁,林晏熙,劉嘉剛。1985。重金屬毒性對淡水蝦及蜆的半致死濃度。行政院農委會水產試驗所試驗報告 38: 75-81。
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/30538-
dc.description.abstract本研究主要目的為結合寄主–致病菌關係之非線性流行病學動態模式與生命階段矩陣族群模式以評估文蛤 (Meretrix lusoria) 族群暴露受汞緊迫之文蛤病毒之易感性。其中並以動態能量支出 (dynamic energy budget) 模式結合生物能量為基礎之成長模式以三種毒性作用模態 (mode of action, MOA) 描述汞毒性抑制下文蛤成長機率。再者應用損害評估模式 (damage assessment model) 為基礎之Hill模式探討內部濃度和死亡率之關係以評估存活機率。並以冪函數 (power function) 描述繁殖率與重量之間的關係,以評估汞緊迫下繁殖抑制效應。上述之成長、存活及繁殖率可評估自然和緊迫環境下之生命參數 (vital rate),進一步評估族群成長率和族群動態。本研究以疾病動態之易感–感染–死亡 (susceptible–infectious–mortality, SIM) 模式描述不同緊迫影響之疾病傳輸率 (transmission rate) 和致死率 (mortality rate),推估疾病成功感染之基本再生數 (basic reproductive number, R0)。本文將感染情形區分為感染疾病後暴露於汞緊迫環境和暴露於汞緊迫環境隨即感染疾病二者,以探討文蛤之易感性。本研究結果顯示,汞濃度小於10 μg L-1時文蛤族群成長率大於1,若暴露於汞濃度大於30 μg L-1時族群將會減少。由此可推估一年後族群數目減少一半時之效應濃度 (effect concentration causing 50 % reduction, ER50) 為12.07 μg L-1,此減少之效應濃度可預測且控制族群的收成量。本研究針對不同生命階段之疾病傳輸過程預測感染疾病後暴露於汞緊迫環境和暴露於汞緊迫環境隨即感染疾病下的二十天內族群分別減少60 % 及80 %。若疾病傳輸率分別減少為0.4及0.2倍時,將能有效的管理且控制疾病爆發。本研究提供一簡單且具理論基礎之模式以評估文蛤暴露於受汞緊迫之文蛤病毒之易感性,亦進一步建議養殖文蛤數目若小於400 ind m-2可有效防止疾病爆發。本模式可適用於其他養殖生物暴露於緊迫金屬之疾病傳輸,並提供養殖業者有效控制策略。zh_TW
dc.description.abstractThe purpose of this thesis is to assess the susceptibility of hard clam (Meretrix lusoria) populations exposed to mercury (Hg)-stressed birnavirus by integrating nonlinear epidemiological dynamics of host–pathogen relationships into a stage-structured matrix population model. Dynamic energy budget (DEBtox) theory links bioenergetics-based growth model to enhance toxicity assessments of Hg and describe the growth probability of toxicity inhibition distinguish from three modes of toxic action (MOA). For estimating survival probability, this study employs damage assessment model (DAM)-based Hill model to assess the relationship between internal burden concentration and mortality. Fecundity rate is related to weight-varied which is calculated from power function. Vital rate can be evaluated among growth, survival, and fecundity rate, population growth rate (λ) and population dynamics of hard clam exposed to Hg-stressed can be further estimated. Moreover, stressor-specific transmission rate, mortality rate from disease-induced susceptible-infectious-mortality (SIM) model are estimated to evaluate basic reproductive number (R0) which is defined as the average number of secondary cases generated by one primary infected case. Two kinds of disease challenge experiments of virus + Hg and Hg + virus are considered to assess the susceptibility of hard clam exposed to Hg-stressed birnavirus. The results show λ > 1 within 10 μg Hg L-1, however, hard clam populations will decreased when exposed to > 30 μg Hg L-1. The effect concentration causing 50 % reduction (ER50) is estimated to be 12.07 μg L-1 after a 1-year simulation, by which hard clam populations harvest controlling can be pre-analyzed. The results considering the processes of stage-specific disease transmission also indicate that clam populations will decreased to 60 % for virus + 5 μg L-1 and 80 % for 5 μg L-1+ virus within 20 days. On the other hand, when transmission rates reduced to 0.4 and 0.2 fold for virus + 5 μg L-1 and 5 μg L-1+ virus, respectively, the disease outbreak can be totally contained. Moreover, this study presents a simple and mechanistic-based model to effectively assess the susceptibility of hard clam exposed to Hg-stressed birnavirus. The results indicate that hard clam populations less than 400 ind m-2 can be allowed to control outbreak. It is confident that the model can be easily adapted for other aquaculture species to assess chemical-stressed pathogen.en
dc.description.provenanceMade available in DSpace on 2021-06-13T02:07:32Z (GMT). No. of bitstreams: 1
ntu-96-R94622046-1.pdf: 2192785 bytes, checksum: 1e679d802bce4a8ce855402d8bfc46e1 (MD5)
Previous issue date: 2007
en
dc.description.tableofcontents中文摘要 I
英文摘要 II
目錄 IV
表目錄 VII
圖目錄 VIII
符號說明 XII
壹、前言 1
貮、動機與目的 3
2.1 研究動機 3
2.2 研究目的 5
參、文獻回顧 6
3.1 文蛤 6
3.2 環境緊迫因子 9
3.2.1 汞 9
3.2.2 文蛤病毒 11
3.2.3 汞緊迫之文蛤病毒 13
3.3 生態毒理模式 15
3.3.1 毒理動態模式 15
3.3.2 動態能量支出模式 18
3.3.3 生物能量成長模式 21
3.3.4 族群模式 22
3.4 疾病傳輸模式 25
3.4.1易感–感染–復原模式 25
3.4.2 基本再生數 28
肆、材料與方法 30
4.1 實驗資料建構 32
4.1.1 自然環境條件之文蛤生長參數 32
4.1.2 生物毒性試驗 34
4.1.3 汞緊迫與文蛤病毒之暴露評估 36
4.2 生物能量為基礎之矩陣族群模式 38
4.2.1 矩陣模式評估文蛤生命參數 40
4.2.2 受汞緊迫之成長機率 42
4.2.3 受汞緊迫之存活機率 44
4.2.4 受汞緊迫之繁殖率 47
4.3 族群疾病傳輸動態模式 48
4.3.1受汙染緊迫之疾病傳輸動態模式 49
4.3.2 疾病傳輸之族群動態模式 52
4.4 統計方法與分析 55
伍、結果與討論 56
5.1 受汞緊迫之族群成長率 56
5.1.1 自然生長參數 56
5.1.2 成長機率 58
5.1.3 存活機率 64
5.1.4 單位繁殖率 70
5.1.5 族群成長率 72
5.2 族群疾病傳輸動態 75
5.2.1 疾病傳輸機制 75
5.2.2 汙染緊迫模式 79
5.2.3 疾病感染之存活機率 83
5.3 族群動態模擬與管理策略 85
5.3.1 受汞緊迫之族群動態 86
5.3.2 易感性評估 88
5.3.3 管理策略 90
陸、結論 96
柒、未來研究建議 98
參考文獻 100
dc.language.isozh-TW
dc.subject易感性zh_TW
dc.subject文蛤zh_TW
dc.subject汞zh_TW
dc.subject族群動態zh_TW
dc.subject矩陣族群模式zh_TW
dc.subject疾病傳輸zh_TW
dc.title以族群疾病傳輸動態模式描述文蛤暴露於受汞緊迫之文蛤病毒之易感性zh_TW
dc.titleA population disease transmission dynamics describing the susceptibility of hard clam Meretrix lusoria to Hg-stressed birnavirusen
dc.typeThesis
dc.date.schoolyear95-2
dc.description.degree碩士
dc.contributor.oralexamcommittee劉振宇,林明炤,陳柏青,蔡正偉
dc.subject.keyword文蛤,汞,族群動態,矩陣族群模式,疾病傳輸,易感性,zh_TW
dc.subject.keywordHard clam,Meretrix lusoria,Mercury,Population dynamic,Matrix population model,Disease tranmission,Susceptibility,en
dc.relation.page109
dc.rights.note有償授權
dc.date.accepted2007-07-03
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept生物環境系統工程學研究所zh_TW
顯示於系所單位:生物環境系統工程學系

文件中的檔案:
檔案 大小格式 
ntu-96-1.pdf
  未授權公開取用
2.14 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved