請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/30515完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 莊寧寧 | |
| dc.contributor.author | Han-Yi Fu | en |
| dc.contributor.author | 傅瀚儀 | zh_TW |
| dc.date.accessioned | 2021-06-13T02:06:04Z | - |
| dc.date.available | 2007-07-24 | |
| dc.date.copyright | 2007-07-24 | |
| dc.date.issued | 2007 | |
| dc.date.submitted | 2007-06-30 | |
| dc.identifier.citation | Anderson, R. G. W. (1998). The caveolae membrane system. Annual Review of Biochemistry 67, 199-225.
Booden, M. A., Baker, T. L., Solski, P. A., Der, C. J., Punke, S. G. and Buss, J. E. (1999). A non-farnesylated Ha-Ras protein can be palmitoylated and trigger potent differentiation and transformation. Journal of Biological Chemistry 274, 1423-1431. Bordier, C. (1981). Phase separation of integral membrane proteins in Triton X-114 solution. Journal of Biological Chemistry 256, 1604-1607. Bos, J. L. (1989). Ras oncogenes in human cancer: a review. Cancer Research 49, 4682-4689. Buss, J. E., Solski, P. A., Schaeffer, J. P., MacDonald, M. J. and Der, C. J. (1989). Activation of the cellular proto-oncogene product p21Ras by addition of a myristylation signal. Science 243, 1600-1603. Capon, D. J., Seeburg, P. H., McGrath, J. P., Hayflick, J. S., Edman, U., Levinson, A. D. and Goeddel, D. V. (1983). Activation of Ki-ras2 gene in human colon and lung carcinomas by two different point mutations. Nature 304, 507-513. Chen, C.-H., Wang, H.-C. and Chuang, N.-N. (2000). Interaction of shrimp ras protein with mammalian caveolin-1. Journal of Experimental Zoology 287, 432-439. Der, C. J., Finkel, T. and Cooper, G. M. (1986). Biological and biochemical properties of human rasH genes mutated at codon 61. Cell 44, 167-176. Engelman, J. A., Lee, R. J., Karnezis, A., Bearss, D. J., Webster, M., Siegel, P., Muller, W. J., Windle, J. J., Pestell, R. G. and Lisanti, M. P. (1998). Reciprocal regulation of Neu tyrosine kinase activity and caveolin-1 protein expression in vitro and in vivo. Journal of Biological Chemistry 273, 20448-20455. Fasano, O., Aldrich, T., Tamanoi, F., Taparowsky, E., Furth, M. and Wigler, M. (1984). Analysis of the transforming potential of the human H-ras gene by random mutagenesis. Proceedings of the National Academy of Sciences of the United States of America 81, 4008-4012. Fujiyama, A. and Tamanoi, F. (1986). Processing and fatty acid acylation of RAS1 and RAS2 proteins in Saccharomyces cerevisiae. Proceedings of the National Academy of Sciences of the United States of America 83, 1266-1270. Galbiati, F., Volonte, D., Engelman, J. A., Watanabe, G., Burk, R., Pestell, R. G. and Lisanti, M. P. (1998). Targeted downregulation of caveolin-1 is sufficient to drive cell transformation and hyperactivate the p42/44 MAP kinase cascade. EMBO Journal 17, 6633-6648. Gargalovic, P. and Dory, L. (2003). Cellular apoptosis is associated with increased caveolin-1 expression in macrophages. Journal of Lipid Research 44, 1622-1632. Gassmann, M. G. and Werner, S. (2000). Caveolin-1 and -2 expression is differentially regulated in cultured keratinocytes and within the regenerating epidermis of cutaneous wounds. Experimental Cell Research 258, 23-32. Gerhard, K. (2004). Signal transmission via ras proteins. In Biochemistry of Signal Transduction and Regulation (Third Edition), pp. 355-381. Gibbs, J. B., Marshall, M. S., Scolnick, E. M., Dixon, R. A. and Vogel, U. S. (1990). Modulation of guanine nucleotides bound to Ras in NIH3T3 cells by oncogenes, growth factors, and the GTPase activating protein (GAP). Journal of Biological Chemistry 265, 20437-20442. Gibbs, J. B., Sigal, I. S., Poe, M. and Scolnick, E. M. (1984). Intrinsic GTPase activity distinguishes normal and oncogenic ras p21 molecules. Proceedings of the National Academy of Sciences of the United States of America 81, 5704-5708. Glenney, J. R. (1992). The sequence of human caveolin reveals identity with VIP21, a component of transport vesicles. FEBS Letters 314, 45-48. Glenney, J. R., Jr. and Soppet, D. (1992). Sequence and expression of caveolin, a protein component of caveolae plasma membrane domains phosphorylated on tyrosine in rous sarcoma virus- transformed fibroblasts. Proceedings of the National Academy of Sciences of the United States of America 89, 10517-10521. Hall, A. (1990). The cellular functions of small GTP-binding proteins. Science 249, 635-640. Hancock, J. F. (2003). Ras proteins: different signals from different locations. Nature Reviews Molecular Cell Biology 4, 373-385. Hancock, J. F., Magee, A. I., Childs, J. E. and Marshall, C. J. (1989). All ras proteins are polyisoprenylated but only some are palmitoylated. Cell 57, 1167-1177. Hingorani, S. R. and Tuveson, D. A. (2003). Ras redux: rethinking how and where Ras acts. Current Opinion in Genetics and Development 13, 6-13. Huang, C.-F., Chen, C.-H. and Chuang, N.-N. (2001). Disrupting the transforming activity of shrimp ras(Q61K) by deleting the CAAX box at the C-terminus. Journal of Experimental Zoology 289, 441-448. Jackson, J. H., Cochrane, C. G., Bourne, J. R., Solski, P. A., Buss, J. E. and Der, C. J. (1990). Farnesol modification of Kirsten-Ras exon 4B protein is essential for transformation. Proceedings of the National Academy of Sciences of the United States of America 87, 3042-3046. Koleske, A. J., Baltimore, D. and Lisanti, M. P. (1995). Reduction of caveolin and caveolae in oncogenically transformed cells. Proceedings of the National Academy of Sciences of the United States of America 92, 1381-1385. Lee, H., Park, D. S., Wang, X. B., Scherer, P. E., Schwartz, P. E. and Lisanti, M. P. (2002). Src-induced phosphorylation of caveolin-2 on tyrosine 19. Journal of Biological Chemistry 277, 34556-34567. Lee, S. W., Reimer, C. L., Oh, P., Campbell, D. B. and Schnitzer, J. E. (1998). Tumor cell growth inhibition by caveolin re-expression in human breast cancer cells. Oncogene. 16, 1391-1397. Li, S., Couet, J. and Lisanti, M. P. (1996). Src tyrosine kinases, Galpha subunits, and H-ras share a common membrane-anchored scaffolding protein, caveolin. Journal of Biological Chemistry 271, 29182-29190. Li, S., Okamoto, T., Chun, M., Sargiacomo, M., Casanova, J. E., Hansen, S. H., Nishimoto, I. and Lisanti, M. P. (1995). Evidence for a regulated interaction between heterotrimeric G proteins and caveolin. Journal of Biological Chemistry 270, 15693-15701. Lin, D., Zhou, J., Zelenka, P. S. and Takemoto, D. J. (2003). Protein Kinase Cg Regulation of Gap Junction Activity through Caveolin-1-Containing Lipid Rafts. Investigative Ophthalmology and Visual Science 44, 5259-5268. Lowy, D. R. and Willumsen, B. M. (1993). Function and regulation of RAS. Annual Review of Biochemistry 62, 851-891. Martin, G. A., Yatani, A., Clark, R., Conroy, L., Polakis, P., Brown, A. M. and McCormick, F. (1992). GAP domains responsible for ras p21-dependent inhibition of muscarinic atrial K+ channel currents. Science 255, 192-194. Milburn, M. V., Tong, L., deVos, A. M., Brunger, A., Yamaizumi, Z., Nishimura, S. and Kim, S. H. (1990). Molecular switch for signal transduction: structural differences between active and inactive forms of protooncogenic ras proteins. Science. 247, 939-945. Monier, S., Parton, R. G., Vogel, F., Behlke, J., Henske, A. and Kurzchalia, T. V. (1995). VIP21-caveolin, a membrane protein constituent of the caveolar coat, oligomerizes in vivo and in vitro. Molecular Biology of the Cell 6, 911-927. Mora, R., Bonilha, V. L., Marmorstein, A., Scherer, P. E., Brown, D., Lisanti, M. P. and Rodriguez-Boulan, E. (1999). Caveolin-2 localizes to the golgi complex but redistributes to plasma membrane, caveolae, and rafts when co-expressed with caveolin-1. Journal of Biological Chemistry 274, 25708-25717. Nori, M., Vogel, U. S., Gibbs, J. B. and Weber, M. J. (1991). Inhibition of v-src-induced transformation by a GTPase-activating protein. Molecular Cell Biology 11, 2812-2818. Orlichenko, L., Huang, B., Krueger, E. and McNiven, M. A. (2006). Epithelial growth factor-induced phosphorylation of caveolin 1 at tyrosine 14 stimulates caveolae formation in epithelial cells. Journal of Biological Chemistry 281, 4570-4579. Pai, E. F., Krengel, U., Petsko, G. A., Goody, R. S., Kabsch, W. and Wittinghofer, A. (1990). Refined crystal structure of the triphosphate conformation of H-ras p21 at 1.35 A resolution: implications for the mechanism of GTP hydrolysis. EMBO Journal 9, 2351-2359. Parton, R. G., Hancock, J. F. and W.E. Balch, C. J. D. a. A. H. (2001). Caveolin and ras function. In Methods in Enzymology, vol. 333, pp. 172-183: Academic Press. Parton, R. G. and Simons, K. (2007). The multiple faces of caveolae. Nature Reviews Molecular Cell Biology 8, 185-194. Prior, I. A., Muncke, C., Parton, R. G. and Hancock, J. F. (2003). Direct visualization of ras proteins in spatially distinct cell surface microdomains. Journal of Cell Biology 160, 165-170. Pryde, J. G. and Phillips, J. H. (1986). Fractionation of membrane proteins by temperature-induced phase separation in Triton X-114. Application to subcellular fractions of the adrenal medulla. Biochemical Journal 233, 525-533. Razani, B., Woodman, S. E. and Lisanti, M. P. (2002). Caveolae: from cell biology to animal physiology. Pharmacological Reviews 54, 431-467. Rothberg, K. G., Heuser, J. E., Donzell, W. C., Ying, Y.-S., Glenney, J. R. and Anderson, R. G. W. (1992). Caveolin, a protein component of caveolae membrane coats. Cell 68, 673-682. Scheffzek, K., Ahmadian, M. R., Kabsch, W., Wiesmuller, L., Lautwein, A., Schmitz, F. and Wittinghofer, A. (1997). The Ras-RasGAP complex: structural basis for GTPase activation and its loss in oncogenic ras mutants. Science 277, 333-338. Scherer, P. E., Lewis, R. Y., Volonte, D., Engelman, J. A., Galbiati, F., Couet, J., Kohtz, D. S., van Donselaar, E., Peters, P. and Lisanti, M. P. (1997). Cell-type and tissue-specific expression of caveolin-2. Journal of Biological Chemistry 272, 29337-29346. Scherer, P. E., Okamoto, T., Chun, M., Nishimoto, I., Lodish, H. F. and Lisanti, M. P. (1996). Identification, sequence, and expression of caveolin-2 defines a caveolin gene family. Proceedings of the National Academy of Sciences of the United States of America 93, 131-135. Schlegel, A., Arvan, P. and Lisanti, M. P. (2001). Caveolin-1 binding to endoplasmic reticulum membranes and entry into the regulated secretory pathway are regulated by serine phosphorylation. Journal of Biological Chemistry 276, 4398-4408. Seeburg, P. H., Colby, W. W., Capon, D. J., Goeddel, D. V. and Levinson, A. D. (1984). Biological properties of human c-Ha-ras1 genes mutated at codon 12. Nature 312, 71-75. Song, K. S., Li, S., Okamoto, T., Quilliam, L. A., Sargiacomo, M. and Lisanti, M. P. (1996). Co-purification and direct interaction of ras with caveolin, an integral membrane protein of caveolae microdomains. Journal of Biological Chemistry 271, 9690-9697. Sprang, S. R. (1997). G protein mechanisms: insights from structural analysis. Annual Review of Biochemistry 66, 639-678. Takahashi, K., Mitsui, K. and Yamanaka, S. (2003). Role of ERas in promoting tumour-like properties in mouse embryonic stem cells. Nature 423, 541-545. Takahashi, K., Nakagawa, M., Young, S. G. and Yamanaka, S. (2005). Differential membrane localization of ERas and Rheb, two ras-related proteins involved in the phosphatidylinositol 3-kinase/mTOR pathway. Journal of Biological Chemistry 280, 32768-32774. Trahey, M., Wong, G., Halenbeck, R., Rubinfeld, B., Martin, G. A., Ladner, M., Long, C. M., Crosier, W. J., Watt, K., Koths, K. et al. (1988). Molecular cloning of two types of GAP complementary DNA from human placenta. Science 242, 1697-1700. Wang, X. B., Lee, H., Capozza, F., Marmon, S., Sotgia, F., Brooks, J. W., Campos-Gonzalez, R. and Lisanti, M. P. (2004). Tyrosine phosphorylation of caveolin-2 at residue 27: differences in the spatial and temporal behavior of phospho-cav-2 (pY19 and pY27). Biochemistry 43, 13694-13706. Willumsen, B. M., Christensen, A., Hubbert, N. L., Papageorge, A. G. and Lowy, D. R. (1984). The p21 ras C-terminus is required for transformation and membrane association. Nature 310, 583-586. Zhang, K., DeClue, J. E., Vass, W. C., Papageorge, A. G., McCormick, F. and Lowy, D. R. (1990). Suppression of c-ras transformation by GTPase-activating protein. Nature 346, 754-756. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/30515 | - |
| dc.description.abstract | E-Ras主要表現在未分化的胚胎幹細胞中,跟一般的Ras蛋白質序列相比,E-Ras蛋白質本身即具備致癌Ras的蛋白質突變胺基酸,可維持GTP-locked,並在N端有一段多餘的序列。E-Ras主要是以GTP結合的形式使細胞轉型。本研究建立了E-ras穩定轉染的BALB/3T3纖維母細胞株,並探討caveolin-1在E-ras轉染細胞中所扮演的功能。利用Triton X-114分萃膜蛋白後,發現caveolin-1只分布在疏水層,而在轉型細胞中其表現則較少;caveolin-2表現量則持平,並有些分佈到親水層;此外,有很多RasGAP集中在Triton X-114親水層。利用蔗糖梯度超高速離心法處理後,發現caveolae的密度在E-ras轉染的細胞中會增加。這種現象可以直接利用大腸桿菌表現的重組E-Ras及KB-Ras蛋白質於in vitro實驗中再現。因此,我們提出E-Ras和KB-Ras可直接經由細胞質傳送到caveolae中,並造成caveolae密度增加。 | zh_TW |
| dc.description.abstract | E-Ras is expressed in undifferentiated embryonic stem (ES) cells. E-Ras proteins have mutation sites responsible for trapping GTP as oncogenic Ras, plus an extra N-terminal sequences which is not found in conserved Ras protein sequences. E-Ras proteins are mainly GTP-bounded and easily lead to cellular transformation. We have established stable clones of BALB/3T3 cells transfected with E-ras and used this cell line to study the functional role of the caveolin-1 upon cells transfected with E-ras. Using Triton X-114 to fractionate membrane proteins, caveolin-1 was exclusively clustered in Triton X-114-B (hydrophobic phase), with decreased amounts in cells transformed with E-ras, whereas caveolin-2 exhibited no difference of amounts in both Triton X-114-H (hydrophilic phase) and Triton X-114-B. Furthermore, RasGAP, the GTPase activator protein occurred mainly in Triton X-114-H. The expression of RasGAP was significant in Triton X-114-H upon transformation with E-ras. Of interest, caveolae was founded with heavier density upon transformation with E-ras as revealed wtih sucrose gradient ultracentrifugation. This transition of density in caveolae could be reconstituted with recombinant E-Ras proteins. The finding was confirmed with recombinant KB-Ras(Q61K) proteins in cells without transformation. Therefore, E-Ras and KB-Ras(Q61K) may share a similar route from cytosol to caveolae. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-13T02:06:04Z (GMT). No. of bitstreams: 1 ntu-96-R94b41001-1.pdf: 1303941 bytes, checksum: ce283869c26e6a6c276718cfd768dcee (MD5) Previous issue date: 2007 | en |
| dc.description.tableofcontents | 口試委員會審定書 I
誌謝 II 中文摘要 III Abstract IV Table of contents VI Index of figures VIII Introduction 1 General properties of Ras protein 1 Tertiary structure and conserved nucleotide binding motif of Ras protein 1 C-terminus of Ras protein for membrane localization and transformation 3 Characteristics of E-Ras 5 Regulatory role of RasGAP 6 General properties of caveolins 7 Caveolins and cell transformation 8 Materials and Methods 10 Reagents 10 Cell culture 11 Generation of E-ras constructs 12 Transfection of E-ras 12 Identification of E-Ras protein expression by in vivo staining of tetracysteine tag 13 Anchorage-independent growth assay 14 Sucrose gradient ultracentrifugation 14 Immunfluorescence microscopy of caveolin-1 15 Membrane isolation 16 Phase separation of membrane pellet proteins with Triton X-114 16 Immunoprecipitaion of caveolin-1, PY27-caveolin-2 or RasGAP from Triton-X 114 phase fractions 17 Sodium dodecyl sulfate–polyacrylamide gel electrophoresis (SDS-PAGE) 18 Western immunoblotting analysis 18 Results 20 Expression of E-Ras proteins in BALB/3T3 cells transfected with E-ras 20 Enhanced anchorage-independent growth in cells transfected with E-ras 20 Downregulation of caveolin-1 and overexpression of RasGAP upon cells transfected with E-ras 21 Redistribution of caveolae to higher sucrose density in cells transfected with E-ras 22 Location of caveolin-2 in sucrose gradient in cells transfected with E-ras 22 Location and pattern of caveolin-1 in cells transfected with E-ras 23 Incorporation of Ras proteins into caveolae 23 Recruitment of caveolin-2 with RasGAP 24 Discussion 25 Transformation of cells transfected with E-ras 25 Different expression pattern of caveolin-1 and caveolin-2 upon cells transfected with E-ras 25 Redistribution of caveolae to heavier density upon cells transfected with E-ras 26 Incorporation of E-Ras to caveolae 27 Interaction with RasGAP and caveolin-2 28 References 30 | |
| dc.language.iso | en | |
| dc.subject | RasGAP | zh_TW |
| dc.subject | E-Ras | zh_TW |
| dc.subject | caveolin-1 | zh_TW |
| dc.subject | caveolin-2 | zh_TW |
| dc.subject | Triton X-114分萃 | zh_TW |
| dc.subject | 蔗糖梯度離心 | zh_TW |
| dc.subject | sucrose gradient ultracentrifugation | en |
| dc.subject | caveolin-2 | en |
| dc.subject | Triton X-114 separation | en |
| dc.subject | E-Ras | en |
| dc.subject | caveolin-1 | en |
| dc.subject | RasGAP | en |
| dc.title | RasGAP與Caveolins在E-ras轉染細胞中扮演的功能 | zh_TW |
| dc.title | Role of RasGAP and Caveolins in Cells Transfected with E-ras | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 95-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 柯逢春,黃娟娟,李心予,黃偉邦 | |
| dc.subject.keyword | E-Ras,RasGAP,caveolin-1,caveolin-2,Triton X-114分萃,蔗糖梯度離心, | zh_TW |
| dc.subject.keyword | E-Ras,RasGAP,caveolin-1,caveolin-2,Triton X-114 separation,sucrose gradient ultracentrifugation, | en |
| dc.relation.page | 36 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2007-07-03 | |
| dc.contributor.author-college | 生命科學院 | zh_TW |
| dc.contributor.author-dept | 動物學研究研究所 | zh_TW |
| 顯示於系所單位: | 動物學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-96-1.pdf 未授權公開取用 | 1.27 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
