請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/30505完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 鍾孝文 | |
| dc.contributor.author | Chun-Jung Juan | en |
| dc.contributor.author | 阮春榮 | zh_TW |
| dc.date.accessioned | 2021-06-13T02:05:41Z | - |
| dc.date.available | 2012-07-16 | |
| dc.date.copyright | 2007-07-16 | |
| dc.date.issued | 2007 | |
| dc.date.submitted | 2007-07-02 | |
| dc.identifier.citation | Chapter 1
Reference 1. Standring S. Smooth muscle and the cardiovascular and lymphatic systems. In:Gray's anatomy: The anatomical basis of clinical practice. 39th ed, 2005; 137-156. 2. Boulpaep E. Arteries and Veins. In: Boron W, Boulpaep E, eds. Medical physiology, 2003; 447462. 3. Faraci FM, Sobey CG. Role of potassium channels in regulation of cerebral vascular tone. J Cereb Blood Flow Metab 1998; 18:1047-1063. 4. Knot HJ, Nelson MT. Regulation of arterial diameter and wall [Ca2+] in cerebral arteries of rat by membrane potential and intravascular pressure. J Physiol 1998; 508 ( Pt 1):199-209. 5. Nelson MT, Cheng H, Rubart M, et al. Relaxation of arterial smooth muscle by calcium sparks. Science 1995; 270:588-637. 6. Rosenblum WI. ATP-sensitive potassium channels in the cerebral circulation. Stroke 2003; 34:1547-1552. 7. Santa N, Kitazono T, Ago T, et al. ATP-sensitive potassium channels mediate dilatation of basilar artery in response to intracellular acidification in vivo. Stroke 2003; 34:1276-1280. 8. Faraci FM, Breese KR, Heistad DD. Cerebral vasodilation during hypercapnia. Role of glibenclamide-sensitive potassium channels and nitric oxide. Stroke 1994; 25:1679-1683. 9. Knot HJ, Nelson MT. Regulation of membrane potential and diameter by voltage-dependent K+ channels in rabbit myogenic cerebral arteries. J Physiol 1995; 269:H348-H355. 10. Gebremedhin D, Lange AR, Lowry TF, et al. Production of 20-HETE and its role in autoregulation of cerebral blood flow. Circ Res 2000; 87:60-65. 11. Harder DR, Roman RJ, Gebremedhin D, Birks EK, Lange AR. A common pathway for regulation of nutritive blood flow to the brain: arterial muscle membrane potential and cytochrome P450 metabolites. Acta Physiol Scand 1998; 164:527-532. 12. Gao E, Young WL, Pile-Spellman J, Ornstein E, Ma Q. Mathematical considerations for modeling cerebral blood flow autoregulation to systemic arterial pressure. Am J Physiol 1998; 274:H1023-1031. 13. Davis MJ, Hill MA. Signaling mechanisms underlying the vascular myogenic response. Physiol Rev 1999; 79:387-423. 14. Lindauer U, Vogt J, Schuh-Hofer S, Dreier JP, Dirnagl U. Cerebrovascular vasodilation to extraluminal acidosis occurs via combined activation of ATP-sensitive and Ca2+-activated potassium channels. J Cereb Blood Flow Metab 2003; 23:1227-1238. 15. Powers WJ. Cerebral hemodynamics in ischemic cerebrovascular disease. Ann Neurol 1991; 29:231-240. 16. Powers WJ, Press GA, Grubb RL, Jr., Gado M, Raichle ME. The effect of hemodynamically significant carotid artery disease on the hemodynamic status of the cerebral circulation. Ann Intern Med 1987; 106:27-34. 17. Nadel E. Metabolism and nutrition. In: Boron WFB, E.L., ed. medical physiology. 1st ed. ed. Philadelphia, Pennsylvania: Saunders, 2003; 1211-1230. 18. Boron WF. Acid-base physiology. In: Boron WFB, E.L., ed. Medical physiology. Philadelphia, Pennsylvania: Saunders, 2003; 633-653. 19. Boron WF. Transport of oxygen and carbon dioxide in the blood. In: Boron WFB, E.L., ed. Medical physiology. Philadelphia, Pennsylvania: Saunders, 2003; 654-668. 20. Kellog R. Laws of physics pertaining to gas exchange. In: Bethesda, ed. Handbook of Physiology, Section 3: The Respiratory System: American physiological society, 1985; 13-31. 21. Wang W, Pizzonia JH, Richerson GB. Chemosensitivity of rat medullary raphe neurones in primary tissue culture. J Physiol 1998; 511 ( Pt 2):433-450. 22. Kastrup A, Li TQ, Takahashi A, Glover GH, Moseley ME. Functional magnetic resonance imaging of regional cerebral blood oxygenation changes during breath holding. Stroke 1998; 29:2641-2645. 23. Li TQ, Moseley ME, Glover G. A FAIR study of motor cortex activation under normo- and hypercapnia induced by breath challenge. Neuroimage 1999; 10:562-569. 24. Rostrup E, Knudsen GM, Law I, Holm S, Larsson HB, Paulson OB. The relationship between cerebral blood flow and volume in humans. Neuroimage 2005; 24:1-11. 25. Taki K, Hirahara K, Tomita S, Totoki T. Acetazolamide-induced increase in blood flow to rabbit organs is confirmed using colored microspheres. Heart Vessels 1998; 13:63-67. 26. Magosso E, Ursino M. A mathematical model of CO2 effect on cardiovascular regulation. Am J Physiol Heart Circ Physiol 2001; 281:H2036-2052. 27. Kiely DG, Cargill RI, Lipworth BJ. Effects of hypercapnia on hemodynamic, inotropic, lusitropic, and electrophysiologic indices in humans. Chest 1996; 109:1215-1221. 28. Cullen DJ, Eger EI, 2nd. Cardiovascular effects of carbon dioxide in man. Anesthesiology 1974; 41:345-349. 29. Price HL. Effects of carbon dioxide on the cardiovascular system. Anesthesiology 1960; 21:652-663. 30. Lioy F, Hanna BD, Polosa C. Cardiovascular control by medullary surface chemoreceptors. J Auton Nerv Syst 1981; 3:1-7. 31. Djurberg HG, Seed RF, Evans DA, et al. Lack of effect of CO2 on cerebral arterial diameter in man. J Clin Anesth 1998; 10:646-651. 32. Boulpaep E. Integrated control of the cardiovascular system. In: Boron W, Boulpaep E, eds. Medical physiology, 2003; 574-590. 33. Ito H, Kanno I, Ibaraki M, Hatazawa J, Miura S. Changes in human cerebral blood flow and cerebral blood volume during hypercapnia and hypocapnia measured by positron emission tomography. J Cereb Blood Flow Metab 2003; 23:665-670. 34. Ito H, Ibaraki M, Kanno I, Fukuda H, Miura S. Changes in the arterial fraction of human cerebral blood volume during hypercapnia and hypocapnia measured by positron emission tomography. J Cereb Blood Flow Metab 2005; 25:852-857. 35. Segal SS. Special circulations. In: Boron WFB, E.L., ed. Medical physiology. Philadelphia, Pennsylvania: Saunders, 2003; 559-573. 36. Reivich M. Arterial Pco2 And Cerebral Hemodynamics. Am J Physiol 1964; 206:25-35. 37. Kety S S, CF. The effects of altered arterial tensions of carbon dioxide and oxygen on cerebral blood flow and cerebral oxygen consumption of normal young men. J Clin Invest 1948; 27:484-492. 38. Sicard KM, Duong TQ. Effects of hypoxia, hyperoxia, and hypercapnia on baseline and stimulus-evoked BOLD, CBF, and CMRO2 in spontaneously breathing animals. Neuroimage 2005; 25:850-858. 39. Novack P, Shenkin HA, Bortin L, Goluboff B, Soffe AM. The effects of carbon dioxide inhalation upon the cerebral blood flow and cerebral oxygen consumption in vascular disease. J Clin Invest 1953; 32:696-702. 40. Kim SG, Rostrup E, Larsson HB, Ogawa S, Paulson OB. Determination of relative CMRO2 from CBF and BOLD changes: significant increase of oxygen consumption rate during visual stimulation. Magn Reson Med 1999; 41:1152-1161. 41. Valdueza JM, Draganski B, Hoffmann O, Dirnagl U, Einhaupl KM. Analysis of CO2 vasomotor reactivity and vessel diameter changes by simultaneous venous and arterial Doppler recordings. Stroke 1999; 30:81-86. 42. Eicke BM, Buss E, Bahr RR, Hajak G, Paulus W. Influence of acetazolamide and CO2 on extracranial flow volume and intracranial blood flow velocity. Stroke 1999; 30:76-80. 43. Schreiber SJ, Gottschalk S, Weih M, Villringer A, Valdueza JM. Assessment of blood flow velocity and diameter of the middle cerebral artery during the acetazolamide provocation test by use of transcranial Doppler sonography and MR imaging. AJNR Am J Neuroradiol 2000; 21:1207-1211. 44. Standring S. Cranial meninges. In:Gray's anatomy: The anatomical basis of clinical practice. 39th ed, 2005; 275-286. 45. Savoiardo M, Minati L, Farina L, et al. Spontaneous intracranial hypotension with deep brain swelling. Brain 2007. 46. Mokri B. The Monro-Kellie hypothesis: applications in CSF volume depletion. Neurology 2001; 56:1746-1748. 47. Kessler C, Junge HM, Walker ML, Busack R, Albrecht DM, von Ackeren K. Reduced cerebral vasomotor reactivity as an indicator of postoperative confusion. Anaesthesia 1997; 52:433-437. 48. Fu JH, Lu CZ, Hong Z, Dong Q, Ding D, Wong KS. Relationship between cerebral vasomotor reactivity and white matter lesions in elderly subjects without large artery occlusive disease. J Neuroimaging 2006; 16:120-125. 49. Park CW, Sturzenegger M, Douville CM, Aaslid R, Newell DW. Autoregulatory response and CO2 reactivity of the basilar artery. Stroke 2003; 34:34-39. 50. Gur AY, Bornstein NM. Cerebral vasomotor reactivity of the posterior circulation in patients with carotid occlusive disease. Eur J Neurol 2003; 10:75-78. 51. de Boorder MJ, Hendrikse J, van der Grond J. Phase-contrast magnetic resonance imaging measurements of cerebral autoregulation with a breath-hold challenge: a feasibility study. Stroke 2004; 35:1350-1354. 52. Nighoghossian N, Berthezene Y, Meyer R, et al. Assessment of cerebrovascular reactivity by dynamic susceptibility contrast-enhanced MR imaging. J Neurol Sci 1997; 149:171-176. 53. Barbier EL, Silva AC, Kim SG, Koretsky AP. Perfusion imaging using dynamic arterial spin labeling (DASL). Magn Reson Med 2001; 45:1021-1029. 54. Lu H, Golay X, Pekar JJ, Van Zijl PC. Functional magnetic resonance imaging based on changes in vascular space occupancy. Magn Reson Med 2003; 50:263-274. 55. Juan CJ, Liu YJ, Chung HW, et al. Investigating the Relation between steady-state hBOLD and fBOLD signals in fMRI studies. In:IInternational Society of Magnetic Resonance in Medicine. Seattle, Washington, U.S.A., 2006; 118 #541. 56. Muller-Delp JM. Aging-induced adaptations of microvascular reactivity. Microcirculation 2006; 13:301-314. 57. Rogers RL, Meyer JS, Mortel KF, Mahurin RK, Thornby J. Age-related reductions in cerebral vasomotor reactivity and the law of initial value: a 4-year prospective longitudinal study. J Cereb Blood Flow Metab 1985; 5:79-85. 58. Barutcu I, Esen AM, Degirmenci B, et al. Acute cigarette smoking-induced hemodynamic alterations in the common carotid artery--a transcranial Doppler study. Circ J 2004; 68:1127-1131. 59. Sierra C, de la Sierra A, Chamorro A, Larrousse M, Domenech M, Coca A. Cerebral hemodynamics and silent cerebral white matter lesions in middle-aged essential hypertensive patients. Blood Press 2004; 13:304-309. 60. Bakker SL, de Leeuw FE, de Groot JC, Hofman A, Koudstaal PJ, Breteler MM. Cerebral vasomotor reactivity and cerebral white matter lesions in the elderly. Neurology 1999; 52:578-583. 61. Pantoni L. Pathophysiology of age-related cerebral white matter changes. Cerebrovasc Dis 2002; 13 Suppl 2:7-10. 62. Sterzer P, Meintzschel F, Rosler A, Lanfermann H, Steinmetz H, Sitzer M. Pravastatin improves cerebral vasomotor reactivity in patients with subcortical small-vessel disease. Stroke 2001; 32:2817-2820. 63. Ohtani R, Tomimoto H, Kawasaki T, Yagi H, Akiguchi I, Shibasaki H. Cerebral vasomotor reactivity to postural change is impaired in patients with cerebrovascular white matter lesions. J Neurol 2003; 250:412-417. 64. Judd BW, Meyer JS, Rogers RL, et al. Cognitive performance correlates with cerebrovascular impairments in multi-infarct dementia. J Am Geriatr Soc 1986; 34:355-360. 65. Gur AY, Bornstein NM. TCD and the Diamox test for testing vasomotor reactivity: clinical significance. Neurol Neurochir Pol 2001; 35 Suppl 3:51-56. 66. Rutgers DR, Donders RC, Vriens EM, Kappelle LJ, van der Grond J. A comparison of cerebral hemodynamic parameters between transient monocular blindness patients, transient ischemic attack patients and control subjects. Cerebrovasc Dis 2000; 10:307-314. 67. Ringelstein EB, Sievers C, Ecker S, Schneider PA, Otis SM. Noninvasive assessment of CO2-induced cerebral vasomotor response in normal individuals and patients with internal carotid artery occlusions. Stroke 1988; 19:963-969. 68. Rossini PM, Altamura C, Ferretti A, et al. Does cerebrovascular disease affect the coupling between neuronal activity and local haemodynamics? Brain 2004; 127:99-110. 69. Zbornikova V. Long term follow-up of unilateral occlusion of the internal carotid artery including repeated tests of vasomotor reactivity by transcranial Doppler. Neurol Res 2006; 28:220-224. 70. Gur AY, Bornstein NM. Cerebral vasomotor reactivity of bilateral severe carotid stenosis: is stroke unavoidable? Eur J Neurol 2006; 13:183-186. 71. Gurevich T, Gur AY, Bornstein NM, Giladi N, Korczyn AD. Cerebral vasomotor reactivity in Parkinson's disease, multiple system atrophy and pure autonomic failure. J Neurol Sci 2006; 243:57-60. 72. Gregorio F, Ambrosi F, Carle F, et al. Microalbuminuria, brain vasomotor reactivity, carotid and kidney arterial flow in Type 2 diabetes mellitus. Diabetes Nutr Metab 2004; 17:323-330. 73. Pfefferkorn T, von Stuckrad-Barre S, Herzog J, Gasser T, Hamann GF, Dichgans M. Reduced cerebrovascular CO(2) reactivity in CADASIL: A transcranial Doppler sonography study. Stroke 2001; 32:17-21. 74. Diehl RR, Henkes H, Nahser HC, Kuhne D, Berlit P. Blood flow velocity and vasomotor reactivity in patients with arteriovenous malformations. A transcranial Doppler study. Stroke 1994; 25:1574-1580. 75. RR D, P B. Dopplerfunktionstests: Berlin, Heidelberg: Springer-Verlag, 1996. Chapter 2 Reference 1. Segal SS. Special circulations. In: Boron WFB, E.L., ed. Medical physiology. Philadelphia, Pennsylvania: Saunders, 2003; 559-573. 2. Marshall RS, Rundek T, Sproule DM, Fitzsimmons BF, Schwartz S, Lazar RM. Monitoring of cerebral vasodilatory capacity with transcranial Doppler carbon dioxide inhalation in patients with severe carotid artery disease. Stroke 2003; 34:945-949. 3. Kazumata K, Tanaka N, Ishikawa T, Kuroda S, Houkin K, Mitsumori K. Dissociation of vasoreactivity to acetazolamide and hypercapnia. Comparative study in patients with chronic occlusive major cerebral artery disease. Stroke 1996; 27:2052-2058. 4. Corfield DR, Murphy K, Josephs O, Adams L, Turner R. Does hypercapnia-induced cerebral vasodilation modulate the hemodynamic response to neural activation? Neuroimage 2001; 13:1207-1211. 5. Hoge RD, Atkinson J, Gill B, Crelier GR, Marrett S, Pike GB. Investigation of BOLD signal dependence on cerebral blood flow and oxygen consumption: the deoxyhemoglobin dilution model. Magn Reson Med 1999; 42:849-863. 6. Li TQ, Moseley ME, Glover G. A FAIR study of motor cortex activation under normo- and hypercapnia induced by breath challenge. Neuroimage 1999; 10:562-569. 7. Bandettini PA, Wong EC. A hypercapnia-based normalization method for improved spatial localization of human brain activation with fMRI. NMR Biomed 1997; 10:197-203. 8. Cohen ER, Ugurbil K, Kim SG. Effect of basal conditions on the magnitude and dynamics of the blood oxygenation level-dependent fMRI response. J Cereb Blood Flow Metab 2002; 22:1042-1053. 9. Kemna LJ, Posse S, Tellmann L, Schmitz T, Herzog H. Interdependence of regional and global cerebral blood flow during visual stimulation: an O-15-butanol positron emission tomography study. J Cereb Blood Flow Metab 2001; 21:664-670. 10. Rostrup E, Knudsen GM, Law I, Holm S, Larsson HB, Paulson OB. The relationship between cerebral blood flow and volume in humans. Neuroimage 2005; 24:1-11. 11. Sicard KM, Duong TQ. Effects of hypoxia, hyperoxia, and hypercapnia on baseline and stimulus-evoked BOLD, CBF, and CMRO2 in spontaneously breathing animals. Neuroimage 2005; 25:850-858. 12. Ogawa S, Lee TM, Kay AR, Tank DW. Brain magnetic resonance imaging with contrast dependent on blood oxygenation. Proc Natl Acad Sci U S A 1990; 87:9868-9872. 13. Brevard ME, Duong TQ, King JA, Ferris CF. Changes in MRI signal intensity during hypercapnic challenge under conscious and anesthetized conditions. Magn Reson Imaging 2003; 21:995-1001. 14. Dutka MV, Scanley BE, Does MD, Gore JC. Changes in CBF-BOLD coupling detected by MRI during and after repeated transient hypercapnia in rat. Magn Reson Med 2002; 48:262-270. 15. Kastrup A, Li TQ, Takahashi A, Glover GH, Moseley ME. Functional magnetic resonance imaging of regional cerebral blood oxygenation changes during breath holding. Stroke 1998; 29:2641-2645. 16. Kety S S, CF. The effects of altered arterial tensions of carbon dioxide and oxygen on cerebral blood flow and cerebral oxygen consumption of normal young men. J Clin Invest 1948; 27:484-492. 17. Takano Y, Sakamoto O, Kiyofuji C, Ito K. A comparison of the end-tidal CO2 measured by portable capnometer and the arterial PCO2 in spontaneously breathing patients. Respir Med 2003; 97:476-481. 18. Novack P, Shenkin HA, Bortin L, Goluboff B, Soffe AM. The effects of carbon dioxide inhalation upon the cerebral blood flow and cerebral oxygen consumption in vascular disease. J Clin Invest 1953; 32:696-702. 19. Kim SG, Rostrup E, Larsson HB, Ogawa S, Paulson OB. Determination of relative CMRO2 from CBF and BOLD changes: significant increase of oxygen consumption rate during visual stimulation. Magn Reson Med 1999; 41:1152-1161. 20. Sunaert S. Presurgical planning for tumor resectioning. J Magn Reson Imaging 2006; 23:887-905. 21. Maselli R, Paciocco G. Asthma: pathophysiology of the bronchial obstruction. Allergy 2000; 55 Suppl 61:49-51. 22. Park JH, Koh Y, Lim CM, et al. Is hypercapnea a predictor of better survival in the patients who underwent mechanical ventilation for chronic obstructive pulmonary disease (COPD)? Korean J Intern Med 2006; 21:1-9. 23. Ray P, Birolleau S, Lefort Y, et al. Acute respiratory failure in the elderly: etiology, emergency diagnosis and prognosis. Crit Care 2006; 10:R82. 24. Boron WF. Acid-base physiology. In: Boron WFB, E.L., ed. Medical physiology. Philadelphia, Pennsylvania: Saunders, 2003; 633-653. 25. Barton CW, Wang ES. Correlation of end-tidal CO2 measurements to arterial PaCO2 in nonintubated patients. Ann Emerg Med 1994; 23:560-563. 26. Djurberg HG, Seed RF, Evans DA, et al. Lack of effect of CO2 on cerebral arterial diameter in man. J Clin Anesth 1998; 10:646-651. 27. Schreiber SJ, Gottschalk S, Weih M, Villringer A, Valdueza JM. Assessment of blood flow velocity and diameter of the middle cerebral artery during the acetazolamide provocation test by use of transcranial Doppler sonography and MR imaging. AJNR Am J Neuroradiol 2000; 21:1207-1211. 28. Eicke BM, Buss E, Bahr RR, Hajak G, Paulus W. Influence of acetazolamide and CO2 on extracranial flow volume and intracranial blood flow velocity. Stroke 1999; 30:76-80. 29. Valdueza JM, Draganski B, Hoffmann O, Dirnagl U, Einhaupl KM. Analysis of CO2 vasomotor reactivity and vessel diameter changes by simultaneous venous and arterial Doppler recordings. Stroke 1999; 30:81-86. 30. Standring S. Cranial meninges. In:Gray's anatomy: The anatomical basis of clinical practice. 39th ed, 2005; 275-286. 31. Mokri B. The Monro-Kellie hypothesis: applications in CSF volume depletion. Neurology 2001; 56:1746-1748. 32. de Boorder MJ, Hendrikse J, van der Grond J. Phase-contrast magnetic resonance imaging measurements of cerebral autoregulation with a breath-hold challenge: a feasibility study. Stroke 2004; 35:1350-1354. 33. Gur AY, Bornstein NM. Cerebral vasomotor reactivity of bilateral severe carotid stenosis: is stroke unavoidable? Eur J Neurol 2006; 13:183-186. 34. Gur AY, Bornstein NM. Cerebral vasomotor reactivity of the posterior circulation in patients with carotid occlusive disease. Eur J Neurol 2003; 10:75-78. 35. Kessler C, Junge HM, Walker ML, Busack R, Albrecht DM, von Ackeren K. Reduced cerebral vasomotor reactivity as an indicator of postoperative confusion. Anaesthesia 1997; 52:433-437. 36. Fu JH, Lu CZ, Hong Z, Dong Q, Ding D, Wong KS. Relationship between cerebral vasomotor reactivity and white matter lesions in elderly subjects without large artery occlusive disease. J Neuroimaging 2006; 16:120-125. 37. Park CW, Sturzenegger M, Douville CM, Aaslid R, Newell DW. Autoregulatory response and CO2 reactivity of the basilar artery. Stroke 2003; 34:34-39. 38. Bakker CJ, Kouwenhoven M, Hartkamp MJ, Hoogeveen RM, Mali WP. Accuracy and precision of time-averaged flow as measured by nontriggered 2D phase-contrast MR angiography, a phantom evaluation. Magn Reson Imaging 1995; 13:959-965. 39. Bakker CJ, Hartkamp MJ, Mali WP. Measuring blood flow by nontriggered 2D phase-contrast MR angiography. Magn Reson Imaging 1996; 14:609-614. 40. Seppenwoolde JH, Hendrikse J, Streefkerk HJN, Hillen B, Bakker CJG. Demonstration of Direct and Complete Collateral Compensation During Carotid Artery Compression by MR Flow Monitoring. In:ISMRM Seattle, Washington, USA, 2006; 1552. 41. Juan CJ, Liu YJ, Chung HW, et al. Investigating the Relation between steady-state hBOLD and fBOLD signals in fMRI studies. In:ISMRM. Seattle, Washington, USA, 2006; 541. 42. Bernstein M, King K, Zhou X. Angiographic pulse sequence. In:Handbook of MRI pulse sequences, 2004; 648-701. 43. Weber MA, Gunther M, Lichy MP, et al. Comparison of arterial spin-labeling techniques and dynamic susceptibility-weighted contrast-enhanced MRI in perfusion imaging of normal brain tissue. Invest Radiol 2003; 38:712-718. 44. Kwong KK, Belliveau JW, Chesler DA, et al. Dynamic magnetic resonance imaging of human brain activity during primary sensory stimulation. Proc Natl Acad Sci U S A 1992; 89:5675-5679. 45. Kwong KK, Chesler DA, Weisskoff RM, et al. MR perfusion studies with T1-weighted echo planar imaging. Magn Reson Med 1995; 34:878-887. 46. Zhang Y, Song HK, Wang J, Techawiboonwong A, Wehrli FW. Spatially-confined arterial spin-labeling with FAIR. J Magn Reson Imaging 2005; 22:119-124. 47. Williams DS, Detre JA, Leigh JS, Koretsky AP. Magnetic resonance imaging of perfusion using spin inversion of arterial water. Proc Natl Acad Sci U S A 1992; 89:212-216. 48. Luh WM, Wong EC, Bandettini PA, Ward BD, Hyde JS. Comparison of simultaneously measured perfusion and BOLD signal increases during brain activation with T(1)-based tissue identification. Magn Reson Med 2000; 44:137-143. 49. Yang Y, Gu H, Stein EA. Simultaneous MRI acquisition of blood volume, blood flow, and blood oxygenation information during brain activation. Magn Reson Med 2004; 52:1407-1417. 50. Lu H, Golay X, Pekar JJ, Van Zijl PC. Functional magnetic resonance imaging based on changes in vascular space occupancy. Magn Reson Med 2003; 50:263-274. 51. Gu H, Stein EA, Yang Y. Nonlinear responses of cerebral blood volume, blood flow and blood oxygenation signals during visual stimulation. Magn Reson Imaging 2005; 23:921-928. Chapter 3 Reference 1. Gur AY, Bornstein NM. Cerebral vasomotor reactivity of bilateral severe carotid stenosis: is stroke unavoidable? Eur J Neurol 2006; 13:183-186. 2. Gur AY, Bornstein NM. Cerebral vasomotor reactivity of the posterior circulation in patients with carotid occlusive disease. Eur J Neurol 2003; 10:75-78. 3. Kessler C, Junge HM, Walker ML, Busack R, Albrecht DM, von Ackeren K. Reduced cerebral vasomotor reactivity as an indicator of postoperative confusion. Anaesthesia 1997; 52:433-437. 4. Fu JH, Lu CZ, Hong Z, Dong Q, Ding D, Wong KS. Relationship between cerebral vasomotor reactivity and white matter lesions in elderly subjects without large artery occlusive disease. J Neuroimaging 2006; 16:120-125. 5. Park CW, Sturzenegger M, Douville CM, Aaslid R, Newell DW. Autoregulatory response and CO2 reactivity of the basilar artery. Stroke 2003; 34:34-39. 6. Bakker CJ, Kouwenhoven M, Hartkamp MJ, Hoogeveen RM, Mali WP. Accuracy and precision of time-averaged flow as measured by nontriggered 2D phase-contrast MR angiography, a phantom evaluation. Magn Reson Imaging 1995; 13:959-965. 7. Bakker CJ, Hartkamp MJ, Mali WP. Measuring blood flow by nontriggered 2D phase-contrast MR angiography. Magn Reson Imaging 1996; 14:609-614. 8. de Boorder MJ, Hendrikse J, van der Grond J. Phase-contrast magnetic resonance imaging measurements of cerebral autoregulation with a breath-hold challenge: a feasibility study. Stroke 2004; 35:1350-1354. 9. Seppenwoolde JH, Hendrikse J, Streefkerk HJN, Hillen B, Bakker CJG. Demonstration of Direct and Complete Collateral Compensation During Carotid Artery Compression by MR Flow Monitoring. In:ISMRM Seattle, Washington, USA, 2006; 1552. 10. Bernstein M, King K, Zhou X. Angiographic pulse sequence. In:Handbook of MRI pulse sequences, 2004; 648-701. 11. Zhou J, Lim TK, Chong V, Huang J. Segmentation and visualization of nasopharyngeal carcinoma using MRI. Comput Biol Med 2003; 33:407-424. 12. Zhou J, Chong V, Lim T, Huang J. MRI Tumor Segmentation for Nasopharyngeal Carcinoma Using Knowledge-based Fuzzy Clustering. Int. J. of Information Technology 2002; 2:36-45. 13. Bland JM, Altman DG. Statistical methods for assessing agreement between two methods of clinical measurement. Lancet 1986; 1:307-310. 14. Bland JM, Altman DG. Measuring agreement in method comparison studies. Stat Methods Med Res 1999; 8:135-160. 15. Spilt A, Box FM, van der Geest RJ, et al. Reproducibility of total cerebral blood flow measurements using phase contrast magnetic resonance imaging. J Magn Reson Imaging 2002; 16:1-5. 16. buijs PC, Krabbe-Hartkamp MJ, Bakker CJ, et al. Effect of age on cerebral blood flow: measurement with ungated two-dimensional phase-contrast MR angiography in 250 adults. Radiology 1998; 209:667-674. 17. Liu YJ, Juan CJ, Chen CY, et al. Are the local blood-oxygenation-level-dependent (BOLD) signals caused by neural stimulation response dependent on global BOLD signal induced by hypercapnia in teh functional MR imaging experiment? Experiments of long-duration hypercapnia and multilevel carbon dioxide concentration. AJNR Am J Neuroradiol 2007; 28:1-6. 18. Standring S. Vascular supply of the brain. In:Gray's anatomy. 39th ed, 2005; 295-305. Chapter 4 Reference 1. Ogawa S, Lee TM, Kay AR, Tank DW. Brain magnetic resonance imaging with contrast dependent on blood oxygenation. Proc Natl Acad Sci U S A 1990; 87:9868-9872. 2. Beneventi H, Barndon R, Ersland L, Hugdahl K. An fMRI study of working memory for schematic facial expressions. Scand J Psychol 2007; 48:81-86. 3. Kircher TT, Liddle PF, Brammer MJ, Williams SC, Murray RM, McGuire PK. Reversed lateralization of temporal activation during speech production in thought disordered patients with schizophrenia. Psychol Med 2002; 32:439-449. 4. Rutten GJ, Ramsey NF, van Rijen PC, Noordmans HJ, van Veelen CW. Development of a functional magnetic resonance imaging protocol for intraoperative localization of critical temporoparietal language areas. Ann Neurol 2002; 51:350-360. 5. Bruhn H, Fransson P, Frahm J. Modulation of cerebral blood oxygenation by indomethacin: MRI at rest and functional brain activation. J Magn Reson Imaging 2001; 13:325-334. 6. Rostrup E, Knudsen GM, Law I, Holm S, Larsson HB, Paulson OB. The relationship between cerebral blood flow and volume in humans. Neuroimage 2005; 24:1-11. 7. Hoge RD, Atkinson J, Gill B, Crelier GR, Marrett S, Pike GB. Investigation of BOLD signal dependence on cerebral blood flow and oxygen consumption: the deoxyhemoglobin dilution model. Magn Reson Med 1999; 42:849-863. 8. Standring S. Smooth muscle and the cardiovascular and lymphatic systems. In:Gray's anatomy: The anatomical basis of clinical practice. 39th ed, 2005; 137-156. 9. Oja JM, Gillen J, Kauppinen RA, Kraut M, van Zijl PC. Venous blood effects in spin-echo fMRI of human brain. Magn Reson Med 1999; 42:617-626. 10. Gati JS, Menon RS, Ugurbil K, Rutt BK. Experimental determination of the BOLD field strength dependence in vessels and tissue. Magn Reson Med 1997; 38:296-302. 11. Weber MA, Gunther M, Lichy MP, et al. Comparison of arterial spin-labeling techniques and dynamic susceptibility-weighted contrast-enhanced MRI in perfusion imaging of normal brain tissue. Invest Radiol 2003; 38:712-718. 12. Kwong KK, Belliveau JW, Chesler DA, et al. Dynamic magnetic resonance imaging of human brain activity during primary sensory stimulation. Proc Natl Acad Sci U S A 1992; 89:5675-5679. 13. Kwong KK, Chesler DA, Weisskoff RM, et al. MR perfusion studies with T1-weighted echo planar imaging. Magn Reson Med 1995; 34:878-887. 14. Zhang Y, Song HK, Wang J, Techawiboonwong A, Wehrli FW. Spatially-confined arterial spin-labeling with FAIR. J Magn Reson Imaging 2005; 22:119-124. 15. Williams DS, Detre JA, Leigh JS, Koretsky AP. Magnetic resonance imaging of perfusion using spin inversion of arterial water. Proc Natl Acad Sci U S A 1992; 89:212-216. 16. Luh WM, Wong EC, Bandettini PA, Ward BD, Hyde JS. Comparison of simultaneously measured perfusion and BOLD signal increases during brain activation with T(1)-based tissue identification. Magn Reson Med 2000; 44:137-143. 17. Yang Y, Gu H, Stein EA. Simultaneous MRI acquisition of blood volume, blood flow, and blood oxygenation information during brain activation. Magn Reson Med 2004; 52:1407-1417. 18. Kim SG. Quantification of relative cerebral blood flow change by flow-sensitive alternating inversion recovery (FAIR) technique: application to functional mapping. Magn Reson Med 1995; 34:293-301. 19. Herscovitch P, Raichle ME. What is the correct value for the brain--blood partition coefficient for water? J Cereb Blood Flow Metab 1985; 5:65-69. 20. Lu H, Golay X, Pekar JJ, Van Zijl PC. Functional magnetic resonance imaging based on changes in vascular space occupancy. Magn Reson Med 2003; 50:263-274. 21. Gu H, Stein EA, Yang Y. Nonlinear responses of cerebral blood volume, blood flow and blood oxygenation signals during visual stimulation. Magn Reson Imaging 2005; 23:921-928. 22. Feng CM, Narayana S, Lancaster JL, et al. CBF changes during brain activation: fMRI vs. PET. Neuroimage 2004; 22:443-446. 23. Fox PT, Raichle ME, Mintun MA, Dence C. Nonoxidative glucose consumption during focal physiologic neural activity. Science 1988; 241:462-464. 24. Gowland P, Stevenson V. T1: the Longitudinal Relaxation Time. In: Tofts P, ed. Quantitative MRI of the Brain Wiley, 2003; 111-141. 25. Bandettini PA, Jesmanowicz A, Wong EC, Hyde JS. Processing strategies for time-course data sets in functional MRI of the human brain. Magn Reson Med 1993; 30:161-173. 26. Lu H, Clingman C, Golay X, van Zijl PC. Determining the longitudinal relaxation time (T1) of blood at 3.0 Tesla. Magn Reson Med 2004; 52:679-682. 27. Wansapura JP, Holland SK, Dunn RS, Ball WS, Jr. NMR relaxation times in the human brain at 3.0 tesla. J Magn Reson Imaging 1999; 9:531-538. 28. Guo JY, Kim SE, Parker DL, Jeong EK, Zhang L, Roemer RB. Improved accuracy and consistency in T1 measurement of flowing blood by using inversion recovery GE-EPI. Med Phys 2005; 32:1083-1093. 29. Lin C, Bernsterin M, Huston J, S F. Measurements of T1 Relaxation times at 3.0T: Implications for clinical MRA. Proc Intl Soc Mag Reson Med 2001; 9:1391. 30. Kim SG, Bandettini PA. Principles of Functional MRI. In: Faro SH, Mohamed FB, eds. Functional MRI: Basic Principles and Clinical Applications: Springer 2006; 3-23. 31. Kim SG, Rostrup E, Larsson HB, Ogawa S, Paulson OB. Determination of relative CMRO2 from CBF and BOLD changes: significant increase of oxygen consumption rate during visual stimulation. Magn Reson Med 1999; 41:1152-1161. 32. Schepers J, Van Osch MJ, Nicolay K. Effect of vascular crushing on FAIR perfusion kinetics, using a BIR-4 pulse in a magnetization prepared FLASH sequence. Magn Reson Med 2003; 50:608-613. 33. Wong EC, Buxton RB, Frank LR. Quantitative imaging of perfusion using a single subtraction (QUIPSS and QUIPSS II). Magn Reson Med 1998; 39:702-708. 34. An H, Lin W. Impact of intravascular signal on quantitative measures of cerebral oxygen extraction and blood volume under normo- and hypercapnic conditions using an asymmetric spin echo approach. Magn Reson Med 2003; 50:708-716. 35. Liu YJ, Juan CJ, Chen CY, et al. Are the local blood-oxygenation-level-dependent (BOLD) signals caused by neural stimulation response dependent on global BOLD signal induced by hypercapnia i | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/30505 | - |
| dc.description.abstract | 神經活動牽涉到能源的需求與能源的供應。當神經活化時,所需的能源包括葡萄糖及氧氣會經由大腦微循環調控所增加的腦血流所供應。然而,除了神經活活之外,大腦微循環還受到神經活化之外許多因素的調控,其中包括二氧化碳。因此經由神經活化所造成的大腦微循環調控很可能會受到外加二氧化碳的影響及遮蔽。在本本論文中,我們主要探討吸入之二氧化碳對於大腦主要血管以及大腦微循環調控以及對於視覺刺激之功能性磁振造影研究的影響。
此外,我們也特別研發並提出一個混合的磁振造影波序。該磁振造影波序的優點在於可以在一次的實驗中,同步並且準確的測量大腦血流體積、大腦血流量、以及大腦血流含氧程度。實驗的結果與先前功能性磁振造影研究、正子攝影研究、以及生理學對於大腦微循環調控研究結果相符合。 | zh_TW |
| dc.description.abstract | The neural activity involves energy demand and energy supply. During neural activation, the energy source glucose and oxygen are supplied by increase cerebral blood flow via a regulation of the cerebral microcirculatory units. In addition to neural activation, the cerebral microcirculation is regulated by many other factors including CO2. It is very likely that the neural activation related cerebral microcirculatory regulation is overwhelmed by the external CO2 perturbation. In this thesis, we explore the effect of inhaled CO2 on cerebral vascular and microcirculatory regulations and on the visual fMRI study.
Specially, we propose a hybrid pulse sequence that allows accurate measurement of cerebral blood volume, cerebral blood flow and cerebral blood oxygenation simultaneously. Experimental results are consistent with prior fMRI and PET studies and the basic understanding of cerebral microcirculatory regulation on physiology. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-13T02:05:41Z (GMT). No. of bitstreams: 1 ntu-96-D92921024-1.pdf: 2427299 bytes, checksum: 09b793612296e7d3ac21b7064b1864fe (MD5) Previous issue date: 2007 | en |
| dc.description.tableofcontents | Table of contents:
論文致謝 中文摘要 Abstract Chapter 1 A physiological review of the cerebral hemodynamic regulation 1-1 1.1 Regulation of cerebral vascular tone ………………………….. 1-2 1.2 Autoregulation of cerebral circulation …………………………. 1-8 1.3 Effect of CO2 on cardiac and cerebrovascular hemodynamics 1-10 1.4 Effect of neural activity on cerebrovascular hemodynamics…. 1-16 1.5 Cerebral vasomotor reactivity ………………………………….. 1-17 Reference …………………………………………………………………… 1-20 Chapter 2 A study investigating the relationship between fBOLD and hBOLD signals in the fMRI experiment 2-1 2.1 Background and purpose ………………………………………. 2-2 2.2 Materials and methods …………………………………………. 2-4 2.3 Results …………………………………………………………… 2-10 2.4 Discussion ……………………………………………………….. 2-16 2.5 Conclusion ……………………………………………………….. 2-23 2.6 Publication ……………………………………………………….. 2-24 Reference …………………………………………………………………… 2-25 Chapter 3 A study investigating the cerebral arterial and venous vasomotor reactivity using phase-contrast magnetic resonance imaging technique 3-1 3.1 Background and purpose ………………………………………. 3-2 3.2 Materials and methods …………………………………………. 3-4 3.3 Results …………………………………………………………… 3-15 3.4 Discussion ……………………………………………………….. 3-28 3.5 Conclusion ……………………………………………………….. 3-33 3.6 Publication ……………………………………………………….. 3-34 Reference …………………………………………………………………… 3-35 Chapter 4 A study investigating cerebral vasomotor reactivity and fMRI experiment using CO2 challenge and a triple function mapping MR sequence 4-1 4.1 Background and purpose ………………………………………. 4-2 4.2 Sequence development 4-11 4.3 Studies …………………………………………. 4-17 4.3.1 Measurement of T1 relaxation times of gray matter, white matter and blood 4-20 4.3.2 Visual fMRI studies 4-23 4.3.3 Bipolar crasher gradients fMRI studies 4-26 4.3.4 Hypercapnic studies 4-36 4.4 Discussion……………………………………………………… 4-44 4.5 Conclusion ……………………………………………………….. 4-52 4.6 Publication ……………………………………………………….. 4-53 Reference …………………………………………………………………… 4-54 | |
| dc.language.iso | en | |
| dc.subject | 高血碳酸 | zh_TW |
| dc.subject | 血管運動反應度(VMR) | zh_TW |
| dc.subject | 磁振造影(MRI) | zh_TW |
| dc.subject | 大腦血流量(CBF) | zh_TW |
| dc.subject | 大腦血流體積(CBV) | zh_TW |
| dc.subject | 大腦血流含氧程度(CBO) | zh_TW |
| dc.subject | 功能性磁振造影(fMRI) | zh_TW |
| dc.subject | cerebral blood flow (CBF) | en |
| dc.subject | magnetic resonance imaging (MRI) | en |
| dc.subject | vasomotor reactivity (VMR) | en |
| dc.subject | hypercapnia | en |
| dc.subject | functional MRI (fMRI) | en |
| dc.subject | cerebral blood volume (CBV) | en |
| dc.subject | cerebral blood oxygenation (CBO) | en |
| dc.title | 吸入二氧化碳對於功能性磁振造影、腦血管反應度、大腦血流量、大腦血流體積以及大腦血流含氧程度測量的影響 | zh_TW |
| dc.title | Impact of Inhaled CO2 on fMRI Experiments and Measurements of Cerebral Vasomotor Reactivity, Cerebral Blood Flow, Cerebral Blood Volume and Cerebral Blood Oxygenation | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 95-2 | |
| dc.description.degree | 博士 | |
| dc.contributor.oralexamcommittee | 葉子成,高怡宣,劉鶴齡,許元昱,黃騰毅,劉益瑞,林益如 | |
| dc.subject.keyword | 大腦血流量(CBF),大腦血流體積(CBV),大腦血流含氧程度(CBO),功能性磁振造影(fMRI),高血碳酸,磁振造影(MRI),血管運動反應度(VMR), | zh_TW |
| dc.subject.keyword | cerebral blood flow (CBF),cerebral blood oxygenation (CBO),cerebral blood volume (CBV),functional MRI (fMRI),hypercapnia,magnetic resonance imaging (MRI),vasomotor reactivity (VMR), | en |
| dc.relation.page | 146 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2007-07-03 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 電機工程學研究所 | zh_TW |
| 顯示於系所單位: | 電機工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-96-1.pdf 未授權公開取用 | 2.37 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
