Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
  • 幫助
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 海洋研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/30481
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor戴昌鳳(Chang-Feng Dai)
dc.contributor.authorShang-Ru Yeohen
dc.contributor.author楊尚儒zh_TW
dc.date.accessioned2021-06-13T02:04:56Z-
dc.date.available2007-07-16
dc.date.copyright2007-07-16
dc.date.issued2007
dc.date.submitted2007-07-02
dc.identifier.citationAdjeroud M, Tsuchiya M (1999) Genetic variation and clonal structure in the scleractinian coral Pocillopora damicornis in the Ryukyu Archipelago, southern Japan. Mar Biol 134:753-760
Ayre DJ (1985) Localized adaptation of clones of the sea anemone Actinia tenebrosa. Evolution 39:1250-1260
Ayre DJ, Dufty S (1994) Evidence for restricted gene flow in the viviparous coral Seriatopora hystrix on Australia's Great Barrier Reef. Evolution 48:1183-1201
Ayre DJ, Resing JM (1986) Sexual and asexual production of planulae in reef corals. Mar Biol 90:187-190
Ayre DJ, Hughes TP (2000) Genotypic diversity and gene flow in brooding and spawning corals along the Great Barrier Reef, Australia. Evolution 54:1590-1605
Ayre DJ, Hughes TP, Standish RJ (1997) Genetic differentiation, reproductive mode, and gene flow in the brooding coral Pocillopora damicornis along the Great Barrier Reef, Australia. Mar Ecol Prog Ser 159:175-187
Ayre DJ, Miller K (2004) Where do clonal coral larvae go? Adult genotypic diversity conflicts with reproductive effort in the brooding coral Pocillopora damicornis. Mar Ecol Prog Ser 277:95-105
Babcock RC, Bull GD, Harrison PL, Heywood AJ, Oliver JK, Wallace CC, Willis BL (1986) Synchronous spawning of 105 scleractinian coral species on the Great Barrier Reef. Mar Biol 90:379-394
Balloux F, Amos W, Coulson T (2004) Does heterozygosity estimate inbreeding in real populations? Mol Ecol 13:3021-3031
Barki Y, Gateno D, Graur D, Rinkevich B (2002) Soft-coral natural chimerism: a window in ontogeny allows the creation of entities comprised of incongruous parts. Mar Ecol Prog Ser 231:91-99
Beckwitt R (1982) Electrophoretic evidence for self fertilization in 2 species of spirorbid polychaetes. Bull South Calif Acad Sci 81:61-68
Bell G (1982) The Masterpiece of Nature: The Evolution and Genetics of Sexuality. Univ. of California Press, Berkeley
Benzie JAH, Haskell A, Lehman H (1995) Variation in the genetic composition of coral (Pocillopora damicornis and Acropora palifera) populations from different reef habitats. Mar Biol 121:731-739
Bierne N, Launey S, Naciri-Graven Y, Bonhomme F (1998) Early effect of inbreeding as revealed by microsatellite analyses on Ostrea edulis larvae. Genetics 148:1893-1906
Birky CW (1996) Heterozygosity, heteromorphy, and phylogenetic trees in asexual eukaryotes. Genetics 144:427–437
Black R, Johnson MS (1979) Asexual viviparity and population genetics of Actinia tenebrosa. Mar Biol 53:27-31
Bradshaw AD (1972) Some of the evolutionary consequences of being a plant. In: Dobzhansky T, Heiht MK, Steeve WC (eds), Evolutionary Biology, pp 25-47, Plenum Press: New York.
Brazeau DA, Gleason DF, Morgan ME (1998) Self-fertilization in brooding hermaphroditic Caribbean corals: evidence from molecular markers. J Exp Mar Biol Ecol 231:225-238
Britten HB (1996) Meta-analysis of the association between multilocus heterozygosity and fitness. Evolution 50:2158–2164
Carlon DB (1999) The evolution of mating systems in tropical reef corals. Trends Ecol Evol 14:491-495
Coffroth MA, Lasker HR, Diamond ME, Bruenn JA, Bermingham E (1992) DNA fingerprints of a gorgonian coral: a method for detecting clonal structure in a vegetative species. Mar Biol 114:317-325
Cohen CS (1990) Outcrossing in field populations of two species of self-fertile ascidians. J Exp Mar Biol Ecol 140:147-158
Cohen CS (1996) The effects of contrasting modes of fertilization on levels of inbreeding in the marine invertebrate genus Corella. Evolution 50:1896-1907
Connell JH (1973) Population ecology of reef-building corals. In: Jones OA, Endean R (eds), Biology and geology of coral reefs II, pp. 205-246.Academic Press, New York.
Cook RE (1979) Asexual reproduction: a further consideration. Am Nat 113:769-772
Coulson T, Albon S, Slate J, Pemberton J (1999) Microsatellite loci reveal sex-dependent responses to inbreeding and outbreeding in red deer calves. Evolution 53:1951-1960
Dai CF, Gang C, Inaba M, Iwao K, Iwase F, Kamuma S, Kajiwara K, Kimura T, Kotera Y, Nakano Y, Nojima S, Nomura K, Oki K, Sakai K, Shibuno T, Yamano H, Yoshida M (2002) Status of coral reefs in east and north Asia: China, Japan, Korea and Taiwan. In: Wilkinson C (ed), Status of Coral Reefs of the World: 2002, pp. 153-162, Australian Institute of Marine Science, Townsville, Australia
David P (1998) Heterozygosity-fitness correlations: new perspectives on old problems. Heredity 80:531–537
David P, Delay B, Berthou P, Jarne P (1995) Alternative models for allozyme-associated heterosis in the marine bivalve Spisula o?alis. Genetics 139:1719-1726
Douhovnikoff V and Dodd RS (2003) Intra-clonal variation and a similarity threshold for identification of clones: application to Salix exigua using AFLP molecular markers. T AG (spell out!) 106:1307-1315
Diah Permata W, Kinzie III RA, Hidaka M (2000) Histological studies on the origin of planulae of the coral Pocillopora damicornis. Mar Ecol Prog Ser 200:191-200
Ellstrand NC, Roose ML (1987) Patterns of genotypic diversity in clonal plant species. Am J Bot 74:123-131
Fautin DG (1997) Cnidarian reproduction: assumptions and their implications. Proc 6th Int Cong Coelenterate Biol, Netherlands, pp 151-162
Fautin DG (2002) Reproduction of Cnidaria. Can J Zool 80:1735-1754
Fuchs Y, Douek J, Rinkevich B, and Ben-Shlomo R (2006) Gene diversity and the mode of reproduction in the brooded larvae of the coral Heteroxenia fuscescens. J Heredity 97:493-498
Gaffney PM (1990) Enzyme Heterozygosity, Growth Rate, and Viability in Mytilus edulis: Another Look. Evolution 44:204-210
Gleason DF, Brazeau DA, Munfus D (2001) Can self-fertilizing coral species be used to enhance restoration of Caribbean reefs? Bull Mar Sci 69:933-943
Glynn PW, Gassman NJ, Eakin CM, Cortes J, Smith DB, Guzman HM (1991) Reef coral reproduction in the eastern Pacific: Costa Rica, Panama, and Galapagos Islands (Ecuador). Mar Biol 109:355-368
Gregorius HR (2005) Testing for clonal propagation. Heredity 94:173-179
Grosberg RK (1988) The evolution of allorecognition specificity in clonal invertebrates. Q Rev Biol 63:377-412
Guo SW, Thompson EA (1992) Performing the exact test of Hardy-Weinberg proportions for multiple alleles. Biometrics 48:361-372
Hamrick JL, Godt MT (1990) Allozyme diversity in plant species. In: Brown AHD, Clegg MT, Kabler AL, Weir BS (eds), Plant Population Genetics, pp. 43-63, Breeding and Genetic Resources. Sinauer, Sunderland, Mass.
Harriott VJ (1983) Reproductive seasonality, settlement, and post-settlement mortality of Pocillopora damicornis (Linnaeus), at Lizard Island, Great Barrier Reef. Coral Reefs 2:151-157
Harrison PL, Wallace CC (1990) Reproduction, dispersal, and recruitment of scleractinian corals. In: Dubinsky Z (ed), Coral reefs, Ecosystems of the world 25, p. 133-207. Elsvier, Amsterdam
H?mmerli A, Reusch TBH (2003) Inbreeding depression influences genet size distribution in a marine angiosperm. Mol Ecol 12:619-629
Hidaka M (1985) Tissue compatibility between colonies and between newly settled larvae of Pocillopora damicornis. Coral Reefs 4:111-116
Hidaka M, Yurugi K, Sunagawa S, Kinzie RA (1997) Contact reactions between young colonies of the coral Pocillopora damicornis. Coral Reefs 16:13-20
Highsmith RC (1982) Reproduction by fragmentation in corals. Mar Ecol Prog Ser 7:207-226
Hughes RN (1989) A functional biology of clonal animals. Chapman & Hall, London and New York.
Hughes TP, Ayre DJ, Connell JH (1992) The evolutionary ecology of corals. Trends Ecol Evol 7:292-295
Hunt A, Ayre DJ (1989) Population structure in the sexually reproducing sea anemone Oulactis muscosa. Mar Biol 102:537-544
Hyman L (1940) The invertebrates I. Protozoa through Ctenophora. 726 p. McGraw Hill, New York.
Jones AG (2001) GERUD1.0: a computer program for the reconstruction of parental genotypes from progeny arrays using multilocus DNA data. Mol Ecol Notes 1:215-218
Judson OP, Normark BB (1996) Ancient asexual scandals. Trends Ecol Evol 11:41-46
Kojis BL, Quinn NJ (1981) Aspects of sexual reproduction and larval development in the shallow water hermatypic coral, Goniastrea australensis. Bull Mar Sci 31:558-573
Kramarsky-Winter E, Fine M, Loya Y (1997) Coral polyp expulsion. Nature 387:137
Lancaster L, Nelson M, Meyer D, Single R, Thomson G (2003) PyPop: a software framework for population genomics: analyzing large-scale multi-locus genotype data. Pacific Symposium on Biocomputing 8:514-525
Lasker HR (1984) Asexual reproduction, fragmentation, and skeletal morphology of a plexaurid gorgonian. Mar Ecol Prog Ser 19:261-268
Lasker HR (1990) Clonal propagation and population dynamics of a gorgonian coral. Ecology 71:1578-1589
Lasker HR, Coffroth MA (1999) Responses of clonal reef taxa to environmental change. Am Zool 39:92-103
Levin DA, Kerster HW (1971) Neighbourhood structure in plants under diverse reproductive methods. Am Nat 105:345-354
Li YC, Korol AB, Fahima T, Beiles A, Nevo A (2002) Microsatellites: genomic districution, putative functions and mutational mechanisms: a review. Mol Ecol 11:2453-2465
Lin KH (2005) Timing of larval release by five coral species in southern Taiwan: seasonality, lunar and diurnal periodicity. M.S. thesis, National Sun Yat-Sen University, Taiwan
Loxdale HD, Lushai G (2003) Rapid changes in clonal lines: the death of a ‘sacred cow’. Biol J Linn Soc 79:3-16
Magalon H, Samadi S, Richard M, Adjeroud M, Veuille M (2004) Development of coral and zooxanthella-specific microsatellites in three species of Pocillopora (Cnidaria, Scleractinia) from French Polynesia. Mol Ecol Notes 4:206-208
Magalon H, Adjeroud M, Veuille M (2005) Patterns of genetic variation do not correlate with geographical distance in the reef-building coral Pocillopora meandrina in the South Pacific. Mol Ecol 14:1861-1868
Magda D, Warembourg FR, Lafont F (1993) Patterns of resource partitioning and allocation to reproduction in a perennial legume with clonal growth: Lathyrus sylvestris L. Acta Ecologica 14:681-691
Mark Welch DB, Meselson M (2000) Evidence for the evolution of bdelloid rotifers without sexual reproduction or genetic exchange. Science 288:1211-1215
Maynard Smith J (1978) The evolution of sex. Cambridge University Press, Cambridge.
Meirmans PG, Van Tienderen PH (2004) GENOTYPE and GENODIVE: two programs for the analysis of genetic diversity of asexual organisms. Mol Ecol Notes 4:792-794
Miller KJ, Ayre DJ (2004) The role of sexual and asexual reproduction in structuring high latitude populations of the reef coral Pocillopora damicornis. Heredity 92:557-568
Nakamura RR (1980) Plant kin selection. Evol Theory 5:117
Orive ME (2001) Somatic mutations in organisms with complex life histories. T P B (more details) 59:235-249
Ottaway JR, Kirby DC (1975) Genetic relationships between brooding and brooded Actinia tenebrosa. Nature 255:221-223
Otto SP, Hastings IM (1998) Mutation and selection within the individual. Genetica 102/103:507-524
Parks JC, Werth CR (1993) A study of spatial features of clones in a population of bracken fern, Pteridium aquilinum (Dennstaedtiaceae). Am J Bot 80:537-544
Pineda-Krch M, Lehtil? K (2004) Target review: Costs and benefits of genetic heterogeneity within organisms. J Evol Biol 17:1167-1177
Prugnolle F, Choisy M, Th?ron A, Durand P, De Mee?s T (2004) Sex-specific correlation between heterozygosity and clone size in the trematode Schistosma mansoni. Mol Ecol 13:2859-2864
Pudovkin AI, Zaykin DV, Hedgecock D (1996) On the potential for estimating the effective number of breeders from heterozygote-excess in progeny. Genetics 144:383-387
Rasmussen DI (1979) Sibling Clusters and Genotypic Frequencies. Am Nat 113:948-951
Raymond M, Rousset F (1995) An exact test for population differentiation. Evolution 49:1280-1283
Raymundo LJ, Maypa AP (2004) Getting bigger faster: mediation of size-specific mortality via fusion in juvenile coral transplants. Ecol Appl 14:281-295
Reeve HK (1989) The evolution of conspecific acceptance thresholds. Am Nat 133:407–435
Reusch TBH, Stam WT, Olsen JL (2000) A microsatellite-based estimation of clonal diversity and population subdivision in Zostera marina, a marine flowering plant. Mol Ecol 9:127-140
Richmond RH (1985) Variations in the population biology of Pocillopora damicornis. Proc 5th Int Coral Reef Cong, Tahiti 6, 101-106
Ridgway T, Hoegh-Guldberg O, Ayre DJ (2001) Panmixia in Pocillopora verrucosa from South Africa. Mar Biol 139:175-181
Rinkevich B (2000) A critical approach to the definition of Darwinian units of selection. Biol Bull 199:231-240
Rinkevich B, Shapira (1999) Multi-partner urochordate chimeras outperform two-partner chimerical entities. Oikos 87:315-320
Rosen BR, JL Taylor (1969) Reef coral from Aldabra: new mode of reproduction. Science 166:119-121
Ryland JS, Bishop JDD (1993) Internal fertilisation in hermaphroditic colonial invertebrates. Oceanogr Mar Biol Ann Rev 31:445-477
Santelices B (1999) How many kinds of individuals are there? Trends Ecol Evol 14:152-155
Sammarco PW (1982) Polyp bail-outs: an escape response to environmental-stress and a new method of reproduction in corals. Mar Ecol Prog Ser 10:57-65
Sebens KP, Thorne BL (1985) Coexistence of clones, clonal diversity, and the effects of disturbance. In: Jackson JBC, Buss LW, Cook RE (eds), Population biology and evolution of clonal organisms. pp 357-398,Yale University Press, New Haven, Connecticut
Sherman CDH, Ayre DJ, Miller KJ (2006) Asexual reproduction does not produce clonal populations of the brooding coral Pocillopora damicornis on the Great Barrier Reef, Australia. Coral Reefs 25:7-18
Shlesinger Y, Loya Y (1985) Coral community reproductive patterns: Red Sea versus the Great Barrier Reef. Science 228:1333-1335
Sommerfeldt AD, Bishop JDD, Wood CA (2003) Chimerism following fusion in a clonal ascidian (Urochordata). Biol J Linn Soc 79:183-192
Stagger C … (manuscript submitted to Mol Ecol Notes)
Stenberg P, Lundmark M, Saura A (2003) MLGsim: a program for detecting clones using a simulation approach. Mol Ecol Notes 3:329–331
Stoddart JA (1983) Asexual reproduction of planulae in the coral Pocillopora damicornis. Mar Biol 76:279-284
Stoddart JA (1984) Genetic structure within populations of the coral Pocillopora damicornis. Mar Biol 81:19-30
Stoddart JA, Black R (1985) Cycles of gametogenesis and planulation in the coral Pocillopora damicornis. Mar Ecol Prog Ser 23:153-164
Stoddart JA, Babcock RC, Heyward AJ (1988) Self-fertilization and maternal enzymes in the planulae of the coral Goniastrea favulus. Mar Biol 99:489-494
Stoner DS, Rinkevich B, Weissman IL (1999) Heritable germ and somatic cell lineage competitions in chimeric colonial protochordates. Proc Natl Acad Sci USA 96:9148-9153
Storz JF, Bhat HR, Kunz TH (2001) Genetic consequences of polygyny and social structure in an Indian fruit bat, Cynoptera sphinx. I. Inbreeding, outbreeding, and population subdivision. Evolution 55:1215-1223
Teng DHF, Hsu F, Peterson I, Cardon KE, Caponigro G, Kamb A (2001) Template selection during manipulation of complex mixtures by PCR. Biotechniques 30:868-872
Tunnicliffe V (1981) Breakage and propagation of the stony coral Acropora cervicornis. Proc Natl Acad Sci USA 78:2427-2431
Veron JEN (1993) Corals of Australia and the Indo-Pacific. University of Hawaii Press, Honolulu.
Walsh PS, Metzger DA, Higuchi R (1991) Chelex 100 as a medium for simple extraction of DNA for PCR-based typing from forensic material. Biotechniques 10:506-513
Wagner A, Blackstone N, Cartwright P, Dick M, Misof B, Snow P, Wagner GP, Bartels J, Murtha M, Pendleton J (1994) Surveys of gene families using polymerase chain reaction: PCR selection and PCR drift. Syst Biol 43:250-261
Ward S (1992) Evidence for broadcast spawning as well as brooding in the scleractinian coral Pocillopora damicornis. Mar Biol 112:641-646
Watson MA (1984) Developmental constraints: effects on population growth and patterns of resource allocation in a clonal plant. Am Nat 123:411-426
Weir BS, Cockerham CC (1984) Estimating F-statistics for the analysis of population-structure. Evolution 38:1358-1370
Whitaker K (2006) Genetic evidence for mixed modes of reproduction in the coral Pocillopora damicornis and its effect on population structure. Mar Ecol Prog Ser 306:115-124
Williams GC (1975) Sex and Evolution. Princeton University Press, Princeton, New Jersey
Willis BL, Ayre DJ (1985) Asexual reproduction and genetic determination of growth form in the coral Pavona cactus: biochemical genetic and immunogenetic evidence. Oecologia 65:516-525
Wulff JL (1985) Dispersal and survival of fragments of coral reef sponges. Proc 5th Int Coral Reef Symp, Tahiti 5:119-124
Wulff JL (1991) Asexual fragmentation, genotype success, and population dynamics of erect branching sponges. J Exp Mar Biol Ecol 149:227-247
Youssoufian H, Pyeritz RE (2002) Mechanisms and consequences of somatic mosaicism in humans. Nature Rev Genet 3:748-758
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/30481-
dc.description.abstract本論文探討一種廣泛分佈的孵育型珊瑚-細枝鹿角珊瑚 (Pocillopora damicornis) 在精細尺度上的無性繁殖系遺傳結構。本研究共利用七組微隨體基因標誌 (microsatellite markers),其中四組 (PD1、PD2、PD3、PD5)在本實驗中獨立發展而得,分析採自台灣南部南灣海域後壁湖地區的三個獨立鹿角珊瑚族群。為了測試此種珊瑚可能的精子散佈距離,其中二個族群 (HB1和HB2) 採用窮盡式採集法– 我們採集了樣區內的每一個珊瑚個體,包括一個位置中心的珊瑚母群體 (mother colony) (n = 41 x 2);第三個族群 (HBc)則因地理環境和珊瑚群體密度較低,僅隨機採集了25株珊瑚群體當作比較族群。除此之外,我們也從兩個獨立的珊瑚母群體各隨機取樣100隻幼生來作基因型分析。從200隻幼生的多基因座基因型 (multilocus genotypes)分析中,發現有高比例的無性繁殖系基因型 (82.5%),顯示此地區的鹿角珊瑚以無性生殖為主要繁殖策略;其中,僅有12隻基因型相異的幼生 (n = 35) 可成功追溯其父源珊瑚體 (father colony)。在珊瑚群體的層級上,也發現有高比例的無性繁殖系多基因座基因型 (74.8%),而且無性繁殖系基因型之間存在著遺傳變異 (intracolonial genotypic variations)。為了客觀定義出此變異的界線,以便於與有性生殖造成的遺傳變異做區隔,我們先用基因型距離矩陣 (genotypic distance matrix) 將所有珊瑚群體歸類成10個無性繁殖系群 (clonal lineage, C1-C10),再從基因型頻率推算出各無性繁殖系群為有性生殖產物的機率 (Psex),最後將此機率和電腦模擬出的機率下限 (critical-Psex) 做比較,以統計學的觀點驗證某無性繁殖系群是否僅為隨機產生;C1為此地區最大的無性繁殖系群,佔了所有樣本的53%。最後,不論在幼生層級或是群體層級,我們發現這三個族群都有異型合子過量 (heterozygosity excess) 的現象,這種現象在固著型海洋無脊椎動物 (sessile marine invertebrates) 中很少見,可能的原因包括:高度的無性生殖、異型合子優勢 (heterosis)、以及生殖上的自體不相容 (self-incompatibility)。zh_TW
dc.description.abstractThe thesis described a research conducted on the fine-scale clonal genetic structure of a brooded coral, Pocillopora damicornis, which is widely distributed throughout the world’s coral reefs. Seven simple tandem repeat (STR) loci, or microsatellites, were utilized to characterize coral colonies sampled in the HoBihoo area, Nanwan Bay, southern Taiwan; among them, four microsatellite loci (PD1, PD2, PD3, and PD5) were independently developed by us in this study. In order to elucidate the potential sperm dispersal distance of this coral species, two populations (HB1 and HB2) were sampled exhaustively, i.e. all observed coral colonies were sampled within a demarcated area that was centered by a mother colony (n=41x2). A third population (HBc) was sampled randomly for index comparisons only (n=25) due to its distinct geographic environment and lower colony density. Besides, we also randomly collected and genotyped 100 larvae from each mother colony during planulations. A high proportion of the 200 larvae genotyped multilocusly were found to be clonal (82.5%), indicating asexual reproduction was the main reproductive strategy for P. damicornis within this area; among these larvae, only 12 genotypically distinct ones (total n=35) could be successfully traced down to their father colony. At the colony-level, a high proportion of the clonal genotypes was also found (74.8%); what is more, intracolonial genotypic variations from the identified clonal genotypes were observed as well. In order to objectively define the line drawn between genotypic variations caused by sexual recombinations and somatic mutations (the assumptive cause of intracolonial genotypic variations), 10 clonal lineages were tentatively grouped (C1-C10) with a threshold value inferred from the genotypic distance matrix. Then the probability that a given clonal lineage thus defined was only the coincidental product by chance alone (Psex) was calculated from the observed allele frequencies for each clonal lineage. At last, we compared these probabilities with the statistical boundaries set at the 5% level (critical-Psex) obtained from computer simulations. In this way, we could therefore verify these clonal lineages with a statistical viewpoint; C1 dominated the area of study by 53% in number and was the biggest clonal lineage. Last but not least, heterozygosity excess, a phenomenon rarely seen in sessile marine invertebrates, was observed at both the colony- and larva-level. Possible interpretations included widespread asexual reproductions, selection for heterozygotes (heterosis), and reproductive self-incompatibility.en
dc.description.provenanceMade available in DSpace on 2021-06-13T02:04:56Z (GMT). No. of bitstreams: 1
ntu-96-R93241211-1.pdf: 695641 bytes, checksum: d62f4e38eea8ee9cb8027c5e67719629 (MD5)
Previous issue date: 2007
en
dc.description.tableofcontents口試委員會審定書………………………………………………………………………... i
Acknowledgement………...……………………………………………………………….. ii
中文摘要…………………………………………………………………………………... iii
英文摘要…………………………………………………………………………………... iv
Prologue…………………………………………………………………………................. 1
Chapter 1
1.1. Introduction…………………………………………………………………………… 2
1.2. Materials and methods……………………………………………………................... 4
1.2.1. Sampling scheme………………………………………………………………. 4
1.2.2. DNA extraction and PCR………………………………………………………. 5
1.2.3. Data analysis……………………………………………………………………. 6
1.3. Results………………………………………………………………………………… 7
1.3.1. Marker applicability…………………………………………………................. 7
1.3.2. Characterizations of adult colonies and larvae………………………………...... 8
1.3.3. Paternal assignments…………………………………………………................. 8
1.4. Discussions……………………………………………………………………………. 9
1.4.1. Mixed mode of reproduction……………………………………………..……... 9
1.4.2. Sexually derived larvae…………………………………………………………. 10
Chapter 2
2.1. Introduction…………………………………………………………………………… 14
2.2. Materials and methods………………………………………………………………… 16
2.2.1. Sampling scheme……………………………………………………….............. 16
2.2.2. Genotype characterizations……………………………………………...……… 17
2.2.3. Data analysis…………………………………………………………….............. 17
2.2.4. Tentative grouping of clonal lineages…………………………………..………. 18
2.2.5. Verification with probabilities……………………………………………...…… 19
2.2.6. Tests based on the grouping…………………………………………………….. 19
2.3. Results………………………………………………………………………………… 20
2.3.1. Colony assignments…………………………………………………….………. 20
2.3.2. Linkage disequilibrium…………………………………………….……………. 23
2.3.3. Heterozygosity excess……………………………………………………...…… 23
2.4. Discussions……………………………………………………………………….…… 23
2.4.1. Clonal identity…………………………………………………………………... 23
2.4.2. Intracolonial genotypic variations………………………………………………. 25
2.4.3. Heterozygosity excess and self-incompatibility………………………………… 27
3. References………………………………………………………………………………. 30
4.1. Tables & Figures (Chapter 1)………………………….……………………………… 35
Table 1.1………………………………………………………..……………………… 35
Table 1.2……….………………………………………………………………….…… 36
Table 1.3…………………………………………………………………………..…… 37
Table 1.4………..……………………………………………………………………… 38
Table 1.5…………………………………………………………………………..…… 39
Fig 1.1………………………………………………………………………………….. 40
4.2. Table & Figures (Chapter 2)………………………………………………………...... 41
Table 2.1……………………………………………………………………………….. 41
Table 2.2………………………………………………………………………….……. 42
Table 2.3……………………………………………………………………………….. 43
Table 2.4……………………………………………………………………………….. 44
Table 2.5……………………………………………………………………………….. 45
Table 2.6……………………………………………………………………………….. 46
Fig 2.1………………………………………………………………………………….. 47
5. Appendix………………………………………………………………………………... 48
5.1. All samples in HB1……………………………………………………………….. 48
5.2. All samples in HB2……………………………………………………….………. 52
5.3. All samples in HBc……………………………………………………...……….... 56
dc.language.isoen
dc.title以微隨體基因標誌檢驗台灣南部細枝鹿角珊瑚的有性生殖幼生、群體內基因型變異、以及異型合子過量現象zh_TW
dc.titleSexually derived larvae, intracolonial genotypic variations, and heterozygosity excess of a brooded coral (Pocillopora damicornis) in Taiwan revealed by microsatellite markersen
dc.typeThesis
dc.date.schoolyear95-2
dc.description.degree碩士
dc.contributor.oralexamcommittee陳昭倫(Chao-Lun Chen),于宏燦(Hon-Tsen Yu),丘臺生(Tai-Sheng Chiu)
dc.subject.keyword鹿角珊瑚,珊瑚礁,微隨體,異型合子過量,群體內基因型變異,有性生殖幼生,zh_TW
dc.subject.keywordPocillopora damicornis,coral reef,microsatellite,heterozygosity excess,intracolonial genotypic variations,sexually derived larvae,en
dc.relation.page55
dc.rights.note有償授權
dc.date.accepted2007-07-03
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept海洋研究所zh_TW
顯示於系所單位:海洋研究所

文件中的檔案:
檔案 大小格式 
ntu-96-1.pdf
  目前未授權公開取用
679.34 kBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved