Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 大氣科學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/30452
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor許晃雄
dc.contributor.authorChia-Chung Hsuen
dc.contributor.author徐家鍾zh_TW
dc.date.accessioned2021-06-13T02:04:09Z-
dc.date.available2011-08-17
dc.date.copyright2011-08-17
dc.date.issued2011
dc.date.submitted2011-08-02
dc.identifier.citation王嬿蘭,2009:熱帶氣旋對大尺度環流的影響。國立台灣大學大氣科學研究所碩士論文
洪靜慧,2007:西北太平洋地區熱帶氣旋活動對氣候變異度的影響。國立台灣大學大氣科學研究所碩士論文
紀博敏,2004:從位渦診斷的觀點探討納莉颱風(2001)的特殊路徑因子。國立台灣大學大氣科學研究所碩士論文
羅安凱,2005:西北太平洋夏季季內振盪之多重尺度特性。國立台灣大學大氣科學研究所碩士論文
Camargo, S. J., and A. H. Sobel, 2005: Western North Pacific tropical cyclone intensity and ENSO. J. Climate, 18, 2996–3006.
Charney, J. G., 1955: The use of primitive equations of motion in numerical prediction. Tellus, 7, 22–26.
Davis, C. A., and K. A. Emanuel, 1991: Potential vorticity diagnostics of cyclogenesis. Mon. Wea. Rev., 119, 1925–1953.
Gill, A., 1980: Some simple solutions for heat-induced tropical circulation. Quart. J. Roy. Meteor. Soc., 106, 447–462.
Gray, W. M., 1968: Global view of the origin of tropical disturbances and storms. Mon. Wea. Rev., 96, 669–700.
——, 1979: Hurricanes: Their formation, structure and likely role in the tropical circulation. Meteorology over the Tropical Oceans, D. B. Shaw, Ed., Royal Meteorological Society, 155–218.
——, 1998: The formation of tropical cyclones. Meteor. Atmos. Phys., 67, 37–69.
Holland, G. J., 1995: Scale interaction in the western Pacific monsoon. Meteor. Atmos. Sci., 56, 57–79.
Hoskins, B. J., M. E. McIntyre, and A. W. Robertson, 1985: On the use and significance of isentropic potential vorticity maps. Quart. J. Roy. Meteor. Soc., 111, 877–946.
Hsu, H. H., C. H. Hung, A. K. Lo, C. C. Wu, and C. H. Hung, 2008: Influence of tropical cyclones on the estimation of climate variability in the tropical western North Pacific. J. Climate, 21, 2960–2975.
Hsu, H. H., C. H. Hung, A. K. Lo, C. C. Wu, C. H. Hung, and W. S. Kau, 2008: Coupling of the Intraseasonal Oscillation with the Tropical Cyclone in the Western North Pacific during the 2004 Typhoon Season. To appear in “Recent Progress in Atmospheric Sciences: Applications to the Asia-Pacific Region”, World Scientific.
Hsu, Pang-Chi, Tim Li, 2011: Interactions between Boreal Summer Intraseasonal Oscillations and Synoptic-Scale Disturbances over the Western North Pacific. Part I: Energetics Diagnosis*. J. Climate, 24, 927–941.
Kim J. H., Ho C. H., and Sui C. H., 2005: Circulation features associated with the record-breaking typhoon landfall on Japan in 2004. Geophys Res Lett , 32, L14713.
Kuo, H.-C., J.-H. Chen, R. T. Williams, and C.-P. Chang, 2001: Rossby waves in zonally opposing mean flow: Behavior in the Northwest Pacific summer monsoon. J. Atmos. Sci., 58, 1035–1050.
Kurihara, Y., M. A. Bender, and R. J. Ross, 1993: An initialization scheme of hurricane models by vortex specification. Mon. Wea. Rev., 121, 2030–2045.
Lau, K.-H., and N.-C. Lau, 1992: The energetics and propagation dynamics of tropical summertime synoptic-scale disturbances. Mon. Wea. Rev., 120, 2523–2539.
Liebmann, B., H. H. Hendon, and J. D. Glick, 1994: The relationship between tropical cyclones of the western Pacific and Indian Oceans and the Madden-Julian oscillation. J. Meteor. Soc. Japan, 72, 401–411.
Lorenz, E. N., 1955: Available potential energy and the maintenance of the general circulation. Tellus, 7, 157–167.
Madden, R. A., and P. R. Julian (1971), Detection of a 40–50 day oscillation in the zonal wind in the tropical Pacific. J. Atmos. Sci., 28, 702–708.
Madden, R. A., and P. R. Julian (1972), Description of global-scale circulation cells in the tropics with a 40–50 day period. J. Atmos. Sci., 29, 1109–1123.
Maloney, E. D., and D. L. Hartmann, 2000: Modulation of eastern 2688 JOURNAL OF CLIMATE VOLUME 19 North Pacific hurricanes by the Madden–Julian oscillation. J. Climate, 13, 1451–1460.
——, and ——, 2001a: The Madden–Julian oscillation, barotropic dynamics, and North Pacific tropical cyclone formation. Part I: Observations. J. Atmos. Sci., 58, 2545–2558.
——, and M. J. Dickinson, 2003: The intraseasonal oscillation and the energetics of summertime tropical western North Pacific synoptic-scale disturbances. Journal of the Atmospheric Sciences, 60, 2153-2168.
Matthews, A. J., and G. N. Kiladis, 1999: The tropical–extratropical interaction between high-frequency transients and the Madden–Julian oscillation. Mon. Wea. Rev., 127, 661–677.
McBride, J. L., 1995: Tropical cyclone formation. Global Perspectives on Tropical Cyclones, WMO/TD No. 693, Rep. TCP-38, World Meteorological Organization, 63–105.
Nakazawa, T.,2006: Madden–Julian Oscillation activity and typhoon landfall on Japan in 2004. SOLA, 2, 136–139.
Nieto Ferreira, R., W. H. Schubert, and J. J. Hack (1996), Dynamical aspects of twin tropical cyclones associated with the Madden-Julian Oscillation, J. Atmos. Sci., 53, 929–945.
Ramage, C. S., 1974: The typhoons of October 1970 in the South China Sea: Intensification, decay, and ocean interaction. J. Appl. Meteor., 13, 739–751.
Ritchie, Elizabeth A., Greg J. Holland, 1999: Large-Scale Patterns Associated with Tropical Cyclogenesis in the Western Pacific. Mon. Wea. Rev., 127, 2027–2043.
Saunders, M. A., R. E. Chandler, C. J. Merchant, and F. P. Roberts, 2000: Atlantic hurricanes and NW Pacific typhoons: ENSO spatial impacts on occurrence and landfall. Geophys. Res. Lett., 27, 1147–1150.
Simmons A., S. Uppala, D. Dee, and S. Kobayashi, 2006: ERA-Interim: New ECMWF reanalysis products from 1989 onwards. ECMWF Newsletter No.110 , 25-35.
Sobel, A. H., and C. S. Bretherton, 1999: Development of synopticscale disturbances over the summertime tropical northwest Pacific. J. Atmos. Sci., 56, 3106–3127.
Wu, C.-C., and K. A. Emanuel, 1995a: Potential vorticity diagnostics of hurricane movement. Part I: A case study of Hurricane Bob (1991). Mon. Wea. Rev., 123, 69–92.
——, and ——, 1995b: Potential vorticity diagnostics of hurricane movement. Part II: Tropical storm Ana (1991) and Hurricane Andrew (1992). Mon. Wea. Rev., 123, 93–109.
Wu, C.-C., and Y. Kurihara, 1996: A numerical study of the feedback mechanisms of hurricane-environment interaction on hurricane movement from the potential vorticity perspective. J. Atmos. Sci., 53, 2264-2282.
——, T.-H. Yen, Y.-H. Kuo, and W. Wang, 2002:Rainfall simulation associated with Typhoon Herb (1996) near Taiwan. Part I: The topographic effect. Wea. and Forecasting, 17, 1001-1015.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/30452-
dc.description.abstract此研究針對2004年6-10月,以濾除颱風和位渦反演的方法,得到原始的大氣環流場和濾除颱風後的背景環流場,分析濾除颱風前後氣候變異量上的差異,了解颱風與大尺度環流之間能量轉換的關係。此外,針對季內振盪活躍期與非活躍期,討論大尺度環流與颱風擾動間的交互作用。
在西北太平洋,低層850百帕颱風路徑頻繁的地區,濾除颱風前後改變的渦度變異量約80%、渦流動能達60%以上,可見颱風擾動影響顯著。而高層風速大,相形之下颱風擾動不明顯,颱風貢獻的渦度變異量僅約20%、渦流動能約10%,皆隨高度增加而減小。天氣尺度下正壓能量轉換的分布情形,在低層,颱風生成初始時提供正的能量轉換,颱風從平均流中獲得能量,其中以−u'v'(∂v/∂x)和u'v'(∂u/∂y)貢獻為主,特別是在20°N以南貢獻皆為正。因為在此濾除颱風前後,動量通量在台灣與菲律賓以東的海面上正值明顯減弱,且背景風場變化為∂v/∂x<0、∂u/∂y<0,因而貢獻正的能量轉換。在高層,颱風生命期末端時提供負的能量轉換,颱風失去能量至平均流中。正壓能量轉換各項貢獻中,−u'v'(∂u/∂y)和−u'v'(∂v/∂x)的貢獻較零散,多呈現相位相反,互相抵銷的情形,而−u'^2(∂u/∂x)和−v'^2(∂v/∂y)颱風貢獻量值大小差異顯著,以這兩項的加成貢獻為主。
在季內尺度,在10°N-20°N和120°E-150°E間正渦度存在60天週期的變化,濾除颱風後渦度有明顯的減小。由波譜分析的結果可知在週期60天時渦度變異度最大,濾除颱風後量值僅為原本的四分之一,可知颱風的擾動會增大西北太平洋地區季內振盪的擾動。在季內振盪活躍時,颱風貢獻在120°E-150°E間有明顯的正的能量轉換,而南海和副高為負的能量轉換;非活躍期時,颱風貢獻僅侷限於日本以南和台灣以東間,呈正負交替的配置。然而,不管在活躍或非活躍期,颱風貢獻的能量轉換皆以−u'v'(∂u/∂y)和−u'^2(∂u/∂x)兩項貢獻為主,以−u'v'(∂u/∂y)相對重要。
zh_TW
dc.description.abstractThis study applies typhoon-filtering technique to remove TC disturbance field from the large-scale field, and then use PV inversion to derive the three-dimensional circulation associated with the TC vortex. The period from June to August 2004 was chosen for study because of the active intraseasonal oscillation and its strong clustering effect on TC. A comparison between the original and TC-removed fields yields an estimation of TC contribution to the large-scale circulation variability and to the energy conversion between eddy and mean flow. Similar approach was also applied during the different phases of intraseasonal oscillation.
TC is a vortex with its strong circulation, especially along the TC tracks. In the Western North Pacific (WNP), the TCs contribute about 80% of total vorticity variance and account for 60% of eddy kinetic energy at 850 hPa. However, the contribution of TCs decreases with height and accounts for 20% and 10% of the total vorticity variance and eddy kinetic energy, respectively, in the upper troposphere. The barotropic energy conversion associated with the eddy–mean flow interaction is closely related to the TC activity in the WNP. In synoptic-scale, TCs help convert energy from mean flow to eddy in the lower troposphere in the beginning of its lifetime. u'v'(∂u/∂y) and −u'v'(∂v/∂x) are the dominant terms, both positive to the south of 20∘N. This is because the momentum flux difference between the original and TC-removed field is positive in the east of the Taiwan and Philippines, and the background circulation is characterized by ∂v/∂x<0 and ∂u/∂y<0. In the upper troposphere, TCs help convert energy from eddy to mean flow in the latter part of the lifetime. The −u'v'(∂u/∂y) and −u'v'(∂v/∂x) are small and are in reversed phase. The energy conversion term is thus dominated by −u'^2(∂u/∂x) and −v'^2(∂v/∂y) term.
In 2004, large-scale circulation is characterized by intrseasonal oscillation with a period around 60 days period between 10°N-20°N and 120°E-150°E in the original field. Removing TCs significantly reduces the intraseasonal variance. Results of the spectral analysis in the original time series, one spectral peak (exceeding 95% confidence level) are found near 60 days, but drops substantially after the removal of TCs. TCs significantly enlarge the fluctuation of the intraseasonal oscillation. During the ISO active phase, the positive barotropic energy conversion in 120°E-150°E and negative barotropic energy conversion near the South China Sea and subtropical high occurred. During the ISO suppress phase, with alternating positive and negative barotropic energy conversion are limited in the region between south of Japan and east of Taiwan. In both situation, the conversion term is dominated by −u'v'(∂u/∂y) and −u'^2(∂u/∂x) term, especially −u'v'(∂u/∂y) term.
en
dc.description.provenanceMade available in DSpace on 2021-06-13T02:04:09Z (GMT). No. of bitstreams: 1
ntu-100-R98229013-1.pdf: 7265961 bytes, checksum: e71e224318ee1f03ec4ecf9cb2d78038 (MD5)
Previous issue date: 2011
en
dc.description.tableofcontents口試委員審定書 i
誌謝 ii
中文摘要 iii
英文摘要 iv
目錄 vi
圖表說明 viii
第一章 前言 1
1.1熱帶氣旋與大尺度環流之間的交互作用 1
1.2研究動機 4
第二章 研究資料與方法 6
2.1使用資料 6
2.2資料處理 6
2.2.1濾除熱帶氣旋的方法 6
2.2.2位渦反演 8
2.2.3位渦反演的結果 10
2.3能量診斷方程 11
第三章 颱風對大尺度環流的貢獻 13
3.1渦度變異度 13
3.2能量轉換 14
3.2.1整體渦流動能與能量轉換 14
3.2.2天氣尺度的能量轉換 16
3.3季內振盪下颱風和大尺度環流之間的交互作用 20
3.3.1季內振盪與颱風的關係 20
3.3.2季內振盪不同活躍度颱風對環流的影響 21
第四章 結論與討論 24
4.1結論 24
4.2討論 26
參考文獻 28
附錄 32
dc.language.isozh-TW
dc.title利用位渦反演的方法探討熱帶氣旋活動對大尺度環流的影響zh_TW
dc.titleUse the Method of PV Inversion to discus Effect of TC on Large-scale Circulationen
dc.typeThesis
dc.date.schoolyear99-2
dc.description.degree碩士
dc.contributor.oralexamcommittee吳俊傑,鄒治華
dc.subject.keyword位渦反演,正壓能量轉換,渦流動能,zh_TW
dc.subject.keywordPV inversion,barotropic energy conversion,eddy kinetic energy,en
dc.relation.page72
dc.rights.note有償授權
dc.date.accepted2011-08-02
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept大氣科學研究所zh_TW
顯示於系所單位:大氣科學系

文件中的檔案:
檔案 大小格式 
ntu-100-1.pdf
  目前未授權公開取用
7.1 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved