Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 醫學檢驗暨生物技術學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/30411
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor方偉宏
dc.contributor.authorYu-Lun Linen
dc.contributor.author林郁倫zh_TW
dc.date.accessioned2021-06-13T02:03:11Z-
dc.date.available2008-08-08
dc.date.copyright2007-08-08
dc.date.issued2007
dc.date.submitted2007-07-06
dc.identifier.citation一、
Biade, S., Sobol, R.W., Wilson, S.H., and Matsumoto, Y. (1998) Impairment of proliferating cell nuclear antigen-dependent apurinic/apyrimidinic site repair on linear DNA. J Biol Chem 273: 898-902.
Bubb, V.J., Curtis, L.J., Cunningham, C., Dunlop, M.G., Carothers, A.D., Morris, R.G., White, S., Bird, C.C., and Wyllie, A.H. (1996) Microsatellite instability and the role of hMSH2 in sporadic colorectalcancer. Oncogene 12: 2641-2649.
Collini, M., Caccia, M., Chirico, G., Barone, F., Dogliotti, E., and Mazzei, F. (2005) Two-photon fluorescence cross-correlation spectroscopy as a potential tool for high-throughput screening of DNA repair activity. Nucleic Acids Res 33: e165.
Constantin, N., Dzantiev, L., Kadyrov, F.A., and Modrich, P. (2005) Human mismatch repair: reconstitution of a nick-directed bidirectional reaction. J Biol Chem 280: 39752-39761.
Drake, T.J., and Tan, W. (2004) Molecular beacon DNA probes and their bioanalytical applications. Appl Spectrosc 58: 269A-280A.
Duncan, B.K., and Miller, J.H. (1980) Mutagenic deamination of cytosine residues in DNA. Nature 287: 560-561.
Errol C.F, Graham C.W., Wolfram S. (1995) DNA REPAIR AND MUTAGENESIS.
Fang, W., Wu, J.Y., and Su, M.J. (1997) Methyl-directed repair of mismatched small heterologous sequences in cell extracts from Escherichia coli. J Biol Chem 272: 22714-22720.
Gros, L., Saparbaev, M.K., and Laval, J. (2002) Enzymology of the repair of free radicals-induced DNA damage. Oncogene 21: 8905-8925.
Ha, T. (2001) Single-molecule fluorescence resonance energy transfer. Methods 25: 78-86.
Hardeland, U., Bentele, M., Jiricny, J., and Schar, P. (2003) The versatile thymine DNA-glycosylase: a comparative characterization of the human, Drosophila and fission yeast orthologs. Nucleic Acids Res 31: 2261-2271.
Hoeijmakers, J.H. (2001) Genome maintenance mechanisms for preventing cancer. Nature 411: 366-374.
Hu, W., Feng, Z., and Tang, M.S. (2004) Nickel (II) enhances benzo[a]pyrene diol epoxide-induced mutagenesis through inhibition of nucleotide excision repair in human cells: a possible mechanism for nickel (II)-induced carcinogenesis. Carcinogenesis 25: 455-462.
Itoh, T., O'Shea, C., and Linn, S. (2003) Impaired regulation of tumor suppressor p53 caused by mutations in the xeroderma pigmentosum DDB2 gene: mutual regulatory interactions between p48(DDB2) and p53. Mol Cell Biol 23: 7540-7553.
Kreklau, E.L., Limp-Foster, M., Liu, N., Xu, Y., Kelley, M.R., and Erickson, L.C. (2001) A novel fluorometric oligonucleotide assay to measure O(6)-methylguanine DNA methyltransferase, methylpurine DNA glycosylase, 8-oxoguanine DNA glycosylase and abasic endonuclease activities: DNA repair status in human breast carcinoma cells overexpressing methylpurine DNA glycosylase. Nucleic Acids Res 29: 2558-2566.
Lindahl, T., Ljungquist, S., Siegert, W., Nyberg, B., and Sperens, B. (1977) DNA N-glycosidases: properties of uracil-DNA glycosidase from Escherichia coli. J Biol Chem 252: 3286-3294.
Lindahl, T. (1993) Instability and decay of the primary structure of DNA. Nature 362: 709-715.
Lindahl, T., and Wood, R.D. (1999) Quality control by DNA repair. Science 286: 1897-1905.
Memisoglu, A., and Samson, L. (2000) Base excision repair in yeast and mammals. Mutat Res 451: 39-51.
Mitchell, P. (2001) Turning the spotlight on cellular imaging. Nat Biotechnol 19: 1013-1017.
Moe, A., Ringvoll, J., Nordstrand, L.M., Eide, L., Bjoras, M., Seeberg, E., Rognes, T., and Klungland, A. (2003) Incision at hypoxanthine residues in DNA by a mammalian homologue of the Escherichia coli antimutator enzyme endonuclease V. Nucleic Acids Res 31: 3893-3900.
Nitin, N., Santangelo, P.J., Kim, G., Nie, S., and Bao, G. (2004) Peptide-linked molecular beacons for efficient delivery and rapid mRNA detection in living cells. Nucleic Acids Res 32: e58.
Sokol, D.L., Zhang, X., Lu, P., and Gewirtz, A.M. (1998) Real time detection of DNA.RNA hybridization in living cells. Proc Natl Acad Sci U S A 95: 11538-11543.
Tan, W., Wang, K., and Drake, T.J. (2004) Molecular beacons. Curr Opin Chem Biol 8: 547-553.
Tang, Z., Wang, K., Tan, W., Li, J., Liu, L., Guo, Q., Meng, X., Ma, C., and Huang, S. (2003) Real-time monitoring of nucleic acid ligation in homogenous solutions using molecular beacons. Nucleic Acids Res 31: e148.
Tang, Z., Wang, K., Tan, W., Ma, C., Li, J., Liu, L., Guo, Q., and Meng, X. (2005) Real-time investigation of nucleic acids phosphorylation process using molecular beacons. Nucleic Acids Res 33: e97.
Tchou, J., Kasai, H., Shibutani, S., Chung, M.H., Laval, J., Grollman, A.P., and Nishimura, S. (1991) 8-oxoguanine (8-hydroxyguanine) DNA glycosylase and its substrate specificity. Proc Natl Acad Sci U S A 88: 4690-4694.
Tsourkas, A., Behlke, M.A., and Bao, G. (2002) Hybridization of 2'-O-methyl and 2'-deoxy molecular beacons to RNA and DNA targets. Nucleic Acids Res 30: 5168-5174.
Tyagi, S., and Kramer, F.R. (1996) Molecular beacons: probes that fluoresce upon hybridization. Nat Biotechnol 14: 303-308.
Tyagi, S., Bratu, D.P., and Kramer, F.R. (1998) Multicolor molecular beacons for allele discrimination. Nat Biotechnol 16: 49-53.
Vanecko, S., and Laskowski, M., Sr. (1961) Studies of the specificity of deoxyribonuclease I. III. Hydrolysis of chains carrying a monoesterified phosphate on carbon 5'. J Biol Chem 236: 3312-3316.
Vet, J.A., Van der Rijt, B.J., and Blom, H.J. (2002) Molecular beacons: colorful analysis of nucleic acids. Expert Rev Mol Diagn 2: 77-86.
Vidal, A.E., Boiteux, S., Hickson, I.D., and Radicella, J.P. (2001) XRCC1 coordinates the initial and late stages of DNA abasic site repair through protein-protein interactions. Embo J 20: 6530-6539.
Yamaizumi, M., and Sugano, T. (1994) U.v.-induced nuclear accumulation of p53 is evoked through DNA damage of actively transcribed genes independent of the cell cycle. Oncogene 9: 2775-2784.
Yao, M., and Kow, Y.W. (1996) Cleavage of insertion/deletion mismatches, flap and pseudo-Y DNA structures by deoxyinosine 3'-endonuclease from Escherichia coli. J Biol Chem 271: 30672-30676.
秦維燦, (2005) 大腸桿菌中大型核酸環修復路徑之分析, 國立台灣大學碩士論文

二、
Constantin, N., Dzantiev, L., Kadyrov, F.A., and Modrich, P. (2005) Human mismatch repair: reconstitution of a nick-directed bidirectional reaction. J Biol Chem 280: 39752-39761.
Dally, H., and Hartwig, A. (1997) Induction and repair inhibition of oxidative DNA damage by nickel(II) and cadmium(II) in mammalian cells. Carcinogenesis 18: 1021-1026.
Deng, W.P., and Nickoloff, J.A. (1994) Mismatch repair of heteroduplex DNA intermediates of extrachromosomal recombination in mammalian cells. Mol Cell Biol 14: 400-406.
Denissenko, M.F., Pao, A., Tang, M., and Pfeifer, G.P. (1996) Preferential formation of benzo[a]pyrene adducts at lung cancer mutational hotspots in P53. Science 274: 430-432.
Drake, T.J., and Tan, W. (2004) Molecular beacon DNA probes and their bioanalytical applications. Appl Spectrosc 58: 269A-280A.
Fang, W.H., and Modrich, P. (1993) Human strand-specific mismatch repair occurs by a bidirectional mechanism similar to that of the bacterial reaction. J Biol Chem 268: 11838-11844.
Feng, Z., Hu, W., Hu, Y., and Tang, M.S. (2006) Acrolein is a major cigarette-related lung cancer agent: Preferential binding at p53 mutational hotspots and inhibition of DNA repair. Proc Natl Acad Sci U S A 103: 15404-15409.
Genschel, J., Littman, S.J., Drummond, J.T., and Modrich, P. (1998) Isolation of MutSbeta from human cells and comparison of the mismatch repair specificities of MutSbeta and MutSalpha. J Biol Chem 273: 19895-19901.
Harfe, B.D., and Jinks-Robertson, S. (2000) DNA mismatch repair and genetic instability. Annu Rev Genet 34: 359-399.
Hartwig, A. (1995) Current aspects in metal genotoxicity. Biometals 8: 3-11.
Hartwig, A. (2001) Role of magnesium in genomic stability. Mutat Res 475: 113-121.
Hoeijmakers, J.H. (2001) Genome maintenance mechanisms for preventing cancer. Nature 411: 366-374.
Holmes, J., Jr., Clark, S., and Modrich, P. (1990) Strand-specific mismatch correction in nuclear extracts of human and Drosophila melanogaster cell lines. Proc Natl Acad Sci U S A 87: 5837-5841.
Hu, W., Feng, Z., and Tang, M.S. (2004) Nickel (II) enhances benzo[a]pyrene diol epoxide-induced mutagenesis through inhibition of nucleotide excision repair in human cells: a possible mechanism for nickel (II)-induced carcinogenesis. Carcinogenesis 25: 455-462.
Jiricny, J. (2000) Mediating mismatch repair. Nat Genet 24: 6-8.
Lu, A.L., Clark, S., and Modrich, P. (1983) Methyl-directed repair of DNA base-pair mismatches in vitro. Proc Natl Acad Sci U S A 80: 4639-4643.
Modrich, P., and Lahue, R. (1996) Mismatch repair in replication fidelity, genetic recombination, and cancer biology. Annu Rev Biochem 65: 101-133.
Modrich, P. (1997) Strand-specific mismatch repair in mammalian cells. J Biol Chem 272: 24727-24730.
Palombo, F., Gallinari, P., Iaccarino, I., Lettieri, T., Hughes, M., D'Arrigo, A., Truong, O., Hsuan, J.J., and Jiricny, J. (1995) GTBP, a 160-kilodalton protein essential for mismatch-binding activity in human cells. Science 268: 1912-1914.
Raschle, M., Marra, G., Nystrom-Lahti, M., Schar, P., and Jiricny, J. (1999) Identification of hMutLbeta, a heterodimer of hMLH1 and hPMS1. J Biol Chem 274: 32368-32375.
Sia, E.A., Kokoska, R.J., Dominska, M., Greenwell, P., and Petes, T.D. (1997) Microsatellite instability in yeast: dependence on repeat unit size and DNA mismatch repair genes. Mol Cell Biol 17: 2851-2858.
Sirover, M.A., and Loeb, L.A. (1976) Infidelity of DNA synthesis in vitro: screening for potential metal mutagens or carcinogens. Science 194: 1434-1436.
Thomas, D.C., Roberts, J.D., and Kunkel, T.A. (1991) Heteroduplex repair in extracts of human HeLa cells. J Biol Chem 266: 3744-3751.
劉懿瑩, (2006) 重金屬抑制大腸桿菌核酸配對錯誤修復系統之分析, 國立台灣大學碩士論文
徐悅芳, (2007) 重金屬抑制人類核酸配對錯誤修復系統之分析, 國立台灣大學碩士論文
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/30411-
dc.description.abstract一
當DNA遭受一些自發性反應或是外源性攻擊,導致特定的DNA 損傷,如產生uracil及hypoxanthine等,就會由鹼基移除修復系統(base excision repair)來進行修復以維持生物體的穩定性。先由特定的核酸醣解酶(DNA glycosylase)辨認及移除受到破壞的鹼基,因此核酸醣解酶是開啟鹼基移除修復系統的關鍵酵素,所以發展出一個快速評估鹼基移除修復系統中核酸醣解酶活性的方法是有其重要性的。
分子信號(molecular beacon)是近年來發展出有用的分析工具,這是一段5’端有fluorophore、3’端有quencher的單股DNA,單獨存在下會形成stem-and-loop的結構,這時給予fluorophore激發光,因為stem結構的關係,fluorophore跟quencher距離接近,使得fluorophore的能量會被quencher吸收,這時分子信號不會發出螢光;如果分子信號stem的結構被破壞,fluorophore在激發後就會發出螢光信號。我們分別設計其中含有尿嘧啶(uracil)以及inosine的分子信號,以測定尿嘧啶-核酸醣解酶(uracil-DNA glycosylase)以及次黃嘌呤-核酸醣解酶(hypoxanthine-DNA glycosylase)的活性。結果發現以純化的酵素進行反應,皆可得到良好的活性與螢光強度線性關係,然而進一步以細胞萃取液進行實驗,則發現有核酸酶(nuclease)活性的干擾。我們另行設計利用螢光共振能量轉移(fluorescence resonance energy transfer;FRET)的原理來設計出一個cFRET探針和cFRET-I5探針,希望藉此探針的設計髮夾結構以避免細胞萃取液中核酸酶的干擾,結果純化的酵素可以得到良好的線性關係,細胞萃取液則依舊有核酸酶干擾結果。
這是一種有用而簡單的測定工具,有待解決的問題是要能找出避免細胞萃取液中核酸酶干擾的方法,以期方便的測定核酸醣解酶的活性。

二
核酸配對錯誤修復系統(Mismatch repair;MMR)廣泛存在於生物之中,對於維持生物基因體的穩定扮演了重要的角色,其中研究最為透徹的是大腸桿菌的核酸配對錯誤修復,參與的蛋白包括了MutS、MutL和MutH,大腸桿菌核酸配對錯誤修復蛋白的同源物也陸續在真核生物的酵母菌與更高等的哺乳動物中被發現,如hMutSα、hMutSβ、hMutLα
。鎳是存在於香菸中的微量金屬,近年來有學者發現鎳是DNA修復反應的抑制劑,長期抽煙的人會容易因為香菸中化合物攻擊DNA而引起突變,進而引起肺癌,而鎳會抑制核苷酸移除修復系統(nucleotide excision repair;NER),所以使得體內的DNA損傷無法修復;過去實驗室已經證實大腸桿菌的核酸配對錯誤修復系統會受到鎳等重金屬的抑制,並且推測出鎳的抑制反應是抑制在修復反應的上游nicking的步驟;另外,也證實了人類的核酸配對錯誤修復系統也會受到鎳的抑制,然而還沒研究證實會抑制在核酸配對錯誤修復反應的哪個步驟。所以為了進一步探討鎳抑制人類核酸配對錯誤修復系統的路徑,我們利用了鹼性瓊脂凝膠分析修復反應的中間產物。結果得知,鎳抑制修復反應的核酸移除(excision)之前的步驟,而且也觀察到鎳會抑制核酸聚合酶的活性,目前的研究結果提供了探討鎳抑制機轉的方向,未來可更進一步的針對專一蛋白或步驟進行分析,藉以更明瞭鎳抑制人類核酸配對錯誤的機制。
zh_TW
dc.description.abstract1.
The base excision repair (BER) pathway plays a key role in protecting the genome from DNA damage. In BER, DNA glycosylases are the critical enzymes that recognize and remove damaged and/or mispaired bases from DNA. Current methods to measure enzyme activities are mostly indirect and time-consuming. Thus, it is very helpful to develop a direct and rapid method to assay DNA glycosylases. Here we introduce a method based on molecular beacon (MB) DNA probe. MBs are hairpin-shaped nucleic acid probes labelled with a 5’-fluorophore and a 3’-quencher in which the fluorophore is held in close proximity to the quencher. Following removal of the modified base of the MB, the fluorophore is separated from the quencher and fluorescence can be detected as a function of time. Two modified beacons containing of uracil and hypoxanthine have been used to validate the assay on purified proteins with success. However, while applying the assay to cell extracts, the results were interfered by non-specific nuclease activities. Then we design a cFRET probe based on fluorescence resonance energy transfer (FRET) which might be reflectory non-specific nuclease digestion in cell extracts. However, we demonstrated the purified protein successfully and cell extracts still cleaved cFRET probes non-specifically. We hope we can discover an approach to escape interference of nuclease in cell extracts and we can monitor DNA glycosylase activities in real-time.
In conclusion, molecular beacons and FRET probes are promising tools for monitoring DNA glycosylase activities in real-time. However, a stable measure need to be developed to avoid the interference of non-specific nuclease activities in cell extracts.
2、
Mismatch repair (MMR) stabilizes the genome by correction of DNA biosynthetic errors, by ensuring the fidelity of genetic recombination, and in mammalian cells by participation in the cellular response to some classes of DNA damage. Escherichia coli mismatch repair has been reconstituted using purified components. Analysis of nuclear extracts of human cells has indicated a similar excision repair mechanism for nick-directed mismatch correction in higher cells, and several reconstituted systems that rely on purified human proteins have been described, such as hMutSα、hMutSβ、hMutLα. Recently, scientists discovered that nickel (II) could be inhibitors of DNA repair. Nickel can greatly enhance the mutagenicity and genotoxicity of compounds in cigarette by inhibiting the nucleotide excision repair pathway in human cells. We have confirmed that nickel could inhibit MMR of E. coli and human and presumed that nickel inhibited repair before MutH incision of the MMR in E. coli. However, there is no evidence of mechanism of nickel inhibiting MMR in human cells. To investigate the inhibitory patch of nickel, we analyzed intermediates of limiting repair reaction by denaturing gel electrophoresis. We found that nickel inhibited repair before excision and nickel could inhibit the activity of DNA ligase. These results provide us a way to demonstrate the inhibitory mechanism. We can focus on the specific protein or the specific step of MMR to clarify the mechanism of nickel inhibiting human MMR.
en
dc.description.provenanceMade available in DSpace on 2021-06-13T02:03:11Z (GMT). No. of bitstreams: 1
ntu-96-R94424015-1.pdf: 1358420 bytes, checksum: 81fbc2348ec1208c24a8a41d609732ab (MD5)
Previous issue date: 2007
en
dc.description.tableofcontents一、分子信號及FRET技術應用於核酸醣解酶之測定評估
總目次 I
圖目次 III
表目次 IV
中文摘要 1
英文摘要 2
縮寫表 3
前言 5
材料與方法 12
一、細胞株 12
二、人類細胞株之細胞萃取物製備 12
三、分子信號 13
四、分子信號最大螢光強度之測定 14
五、分子信號與純化蛋白之分析 14
六、分子信號與人類細胞萃取液之分析 15
七、非專一性核酸與分子信號的競爭反應 15
八、cFRET探針的製備 16
九、cFRET探針最大螢光強度之測定 17
十、cFRET探針與純化蛋白之分析 17
十一、cFRET探針與人類細胞萃取液之分析 17
結果 19
一、分子信號最大螢光強度 19
二、分子信號跟純化蛋白 19
三、分子信號跟人類細胞萃取液 21
四、非專一性核酸的競爭現象 21
五、cFRET探針最大螢光強度 22
六、cFRET探針跟純化蛋白 22
七、cFRET探針跟人類細胞萃取液 23
八、人類細胞萃取液之效價分析 23
討論 25
附圖 29
附表 42
參考文獻 45

圖目次
圖一、鹼基移除修復系統的過程 29
圖二、鹼基的脫氨作用 30
圖三、分子信號的基本原理 31
圖四、cFRET探針的製備過程與作用原理 32
圖五、分子信號之最大螢光強度 33
圖六、分子信號與endo V 34
圖七、分子信號與不同濃度的endo V 35
圖八、分子信號與UDG 36
圖九、分子信號與人類細胞萃取液 37
圖十、非專一性核酸之競爭反應 38
圖十一、cFRET探針之最大螢光強度 39
圖十二、cFRET探針與endo V 40
圖十三、人類細胞萃取液之效價分析 41

表目次
表一、目前所知的核酸醣解酶及其作用的對象和產物 42
表二、本實驗中所使用分子信號的序列 43
表三、用來合成cFRET探針的各個寡核苷酸的序列 44

二、鎳金屬抑制人類細胞核酸配對錯誤修復機制之分析
總目次 V
圖目次 VII
表目次 VIII
中文摘要 50
英文摘要 51
縮寫表 52
前言 53
材料與方法 57
一、菌株 57
二、人類細胞株之繼代培養 57
三、人類細胞核萃取液之製備 58
四、M13mp18系列雙股核酸之製備 59
五、M13mp18系列單股核酸之製備 61
六、具斷股異雙股核酸之建構 62
七、試管中修復反應 63
八、探針標定之方法 64
九、抑制修復反應步驟之分析 64
十、南方墨點分析 65
結果 66
一、具斷股異雙股核酸之選擇 66
二、試管中異雙股核酸之修復反應分析 66
三、鎳抑制修復步驟之分析 67
討論 69
附圖 71
附表 76
參考文獻 77
圖目次
一、具斷股異雙股核酸製備流程 71
二、含鹼基配對錯誤之異雙股核酸 72
三、試管中修復反應之情況 73
四、試管中修復反應之分析 74
五、鎳抑制核酸配對錯誤修復步驟之分析 75

表目次
一、M13LR突變噬菌體之差異與比較 76
dc.language.isozh-TW
dc.subject分子信號zh_TW
dc.subject測定方法zh_TW
dc.subject尿嘧啶zh_TW
dc.subject核酸醣解zh_TW
dc.subjectFRETen
dc.subjecturacilen
dc.subjectDNA glycosylaseen
dc.subjectMBen
dc.title一、分子信號及FRET技術應用於核酸醣解酶之測定評估;二、鎳金屬抑制人類細胞核酸配對錯誤修復機制之分析zh_TW
dc.title1. Evaluation of Molecular Beacons and FRET Technologies in DNA Glycosylase Assays;2. Mechanism Analysis of Nickel Inhibiting Human DNA Mismatch Repairen
dc.typeThesis
dc.date.schoolyear95-2
dc.description.degree碩士
dc.contributor.oralexamcommittee許濤,高照村,蔡芷季
dc.subject.keyword分子信號,核酸醣解,尿嘧啶,測定方法,zh_TW
dc.subject.keywordMB,FRET,DNA glycosylase,uracil,en
dc.relation.page79
dc.rights.note有償授權
dc.date.accepted2007-07-06
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept醫學檢驗暨生物技術學研究所zh_TW
顯示於系所單位:醫學檢驗暨生物技術學系

文件中的檔案:
檔案 大小格式 
ntu-96-1.pdf
  未授權公開取用
1.33 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved