請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/30407
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 蔣本基(Pen-Chi Chiang) | |
dc.contributor.author | Wen-Hung Chou | en |
dc.contributor.author | 周彣鴻 | zh_TW |
dc.date.accessioned | 2021-06-13T02:03:06Z | - |
dc.date.available | 2016-08-23 | |
dc.date.copyright | 2011-08-23 | |
dc.date.issued | 2011 | |
dc.date.submitted | 2011-08-21 | |
dc.identifier.citation | Alborzfar, M., Jonsson, G., Gren, G., 1998. Removal of natural organic matter from two types of humic ground waters by nanofiltration. Water Res. 32, 2983-2994
Bellona, C., Drewes, J.E., Xu, P., Amy, G., 2004. Factors affecting the rejection of organic solutes during NF/RO treatment--a literature review. Water Res. 38, 2795-2809. Bowen, W.R., Calvo, J.I., Herndez, A., 1995. Steps of membrane blocking in flux decline during protein microfiltration. J. Membr. Sci. 101, 153-165. Bowen, W.R., Mohammad, A.W., Hilal, N., 1997. Characterisation of nanofiltration membranes for predictive purposes - use of salts, uncharged solutes and atomic force microscopy. J. Membr. Sci. 126, 91-105. Bowen, W.R., Doneva, T.A., 2000. Atomic force microscopy studies of nanofiltration membranes: surface morphology, pore size distribution and adhesion. Desalination 129, 163-172. Braeken, L., Bettens, B., Boussu, K., Meeren P.V., Cocquyt, J., Vermant, J., vander Bruggen, B., B.V., 2006. Transport mechanisms of dissolved organic compounds in aqueous solution during nanofiltration. J. Membr. Sci. 279, 311–319. Carlsson, C., Johansson, A.K., Alvan, G., Bergman K., Kuhler, T., 2006. Are pharmaceuticals potent environmental pollutants? Part I: Environmental risk assessments of selected active pharmaceutical ingredients. Sci. Total Environ. 364, 67 – 87. Contreras, A.E., Kim, A., Li, Q., 2009. Combined fouling of nanofiltration membranes: Mechanisms and effect of organic matter. J. Membr. Sci. 327, 87-95. Comerton, A.M., Andrews, R.C., Bagley, D.M., Yang, P., 2007. Membrane adsorption of endocrine disrupting compounds and pharmaceutically active compounds. J. Membr. Sci. 303, 267–277. Edward, A.M., Hyung, H., Do, T.A., Huang, C.H., Kim, J.H., 2007. Adsorption, desorption, and steady-state removal of 17-estradiol bynanofiltration membranes. J. Membr. Sci. 319, 38-43 Garba, Y., Taha, S., Gondrexon, N., Cabon, J., Dorange, G., 2000. Mechanisms involved in cadmium salts transport through a nanofiltration membrane: characterization and distribution. J. Membr. Sci. 168, 135-141. Heberer, T., 2002. Tracking persistent pharmaceutical residues from municipal sewage to drinking water. J. Hydrol. 266, 175-189. Hermia, J., 1982. Constant pressure blocking filtration lawa-application to power-law non-newtonian fluids. Trans. Inst. Chem. Eng. J. 60, 183-187. Hong, S., Elimelech, M., 1997. Chemical and physical aspects of natural organic matter (NOM) fouling of nanofiltration membranes. J. Membr. Sci. 132, 159-181. Jarusutthirak, C., Mattaraj, S., Jiraratananon, R., 2007. Factors affecting nanofiltration performances in natural organic matter rejection and flux decline. Sep. Purif. Technol. 58, 68-75. Jacangelo, J.G., Trussell, R.R., Watson, M., 1997. Role of membrane technology in drinking water treatment in the United States. Desalination 113, 119-127. Kim, Y., Choi, K., Jung, J., Park, S., Kim, P.G., Park, J., 2007. Aquatic toxicity of acetaminophen, carbamazepine, cimetidine, diltiazem and six major sulfonamides, and their potential ecological risks in Korea. Environ. International 33, 370-375. Kimura, K., Amy, G., Drewes, J., Watanabe, Y., 2003a. Adsorption of hydrophobic compounds onto NF/RO membranes: an artifact leading to overestimation of rejection. J. Membr. Sci. 221, 89-101. Kimura, K., Amy, G., Drewes, J.E., Heberer, T., Kim, T.U., Watanabe, Y., 2003b. Rejection of organic micropollutants (disinfection by-products, endocrine disrupting compounds, and pharmaceutically active compounds) by NF/RO membranes. J. Membr. Sci. 227, 113-121. Lee, S., Elimelech, M., 2007. Salt cleaning of organic-fouled reverseosmosis membranes. Water Res. 41, 1134-1142. Lin, A.Y.C., Yu, T.H., Lin, C.F., 2008. Pharmaceutical contamination in residential, industrial, and agricultural waste streams: Risk to aqueous environments in Taiwan. Chemosphere 74, 131-141. Listiarini, K., Sun, D.D., Leckie J.O., 2009. Organic fouling of nanofiltration membranes: Evaluating the effects of humic acid, calcium, alum coagulant and their combinations on the specific cake resistance. J. Membr. Sci. 332, 56-62. Madaeni, S.S., 1999. The application of membrane technology for water disinfection. Water Res. 33, 301-308. Mozia, S., Tomaszewska, M., Morawski, A.W., Studies on the effect of humic acids and phenol on adsorption-ultrafiltration process performance. Water Res. 39, 501-509. Murthy, Z.V.P., Gupta, S.K., 1997. Estimation of mass transfer coefficient using a combined nonlinear membrane transport and film theory model. Desalination 109, 39-49. Nghiem, L.D., Coleman, P.J., 2008. NF/RO filtration of the hydrophobic ionogenic compound triclosan: Transport mechanisms and the influence of membrane fouling. Sep. Purif. Technol. 62, 709-716. Nghiem, L.D., Hawkes, S., 2007. Effects of membrane fouling on the nanofiltration of pharmaceutically active compounds (PhACs): Mechanisms and role of membrane pore size. Sep. Purif. Technol. 57, 176-184. Nghiem, L.D., Hawkes, S., 2009. Effects of membrane fouling on the nanofiltration of trace organic contaminants. Desalination 236, 273-281. Nghiem, L.D., Schafer, A.I., Elimelech, M., 2005. Pharmaceutical Retention Mechanisms by Nanofiltration Membranes. Environ. Sci. Technol. 39, 7698-7705. Nghiem, L.D., Vogel, D., Khan, S., 2008. Characterising humic acid fouling of nanofiltration membranes using bisphenol A as a molecular indicator. Water Res. 42, 4049-4058. Nobel R.D., Terry, P.A., 2004. Principles of chemical separations with environmental applications. Cambridge University Press. Pontalier, P.Y., Ismail, A., Ghoul, M., 1997. Mechanisms for the selective rejection of solutes in nanofiltration membranes. Sep. Purif. Technol. 12, 175-181. Radjenovic, J., Petrovic, M., Ventura, F., Barcel, D., 2008. Rejection of pharmaceuticals in nanofiltration and reverse osmosis membrane drinking water treatment. Water Res. 42, 3601-3610. Robert R.C., Taylor, J.S., Robert, C., 1999. Surface water treatment using nanofiltration-pilot testing results and design considerations. Desalination 125, 97-112. Spigler, K.S., Kedom, O.K., 1966. Thermodynamics of hyperfiltration (reverseosmosis): criteria for efficient membranes. Desalination 1, 311-326. Vander Bruggen, B., Manttari, B., Nystrom, M., 2008. Drawbacks of applying nanofiltration and how to avoid them: A review. Sep. Purif. Technol. 63, 251-263. Van Paassen, J.A.M., Kruithof, J.C., Bakker, S.M., Kegel, F.S., 1998. Integrated multi-objective membrane systems for surface water treatment: pre-treatment of nanofiltration by riverbank filtration and conventional ground water treatment. Desalination 118, 239-248. Verliefde, A.R.D., Cornelissen, E.R., Heijman, S.G.J., Petrinic, I., Luxbacher, T., Amy, G.L., Van der Bruggen, B., van Dijk, J.C., 2009. Influence of membrane fouling by (pretreated) surface water on rejection of pharmaceutically active compounds (PhACs) by nanofiltration membranes. J. Membr. Sci. 330, 90-103. Vrijenhoek, E.M., Hong, S., Elimelech, M., 2001. Influence of membrane surface properties on initial rate of colloidal fouling of reverse osmosis and nanofiltation membranes. J. Membr. Sci. 188, 115-128. Pronk, W., Palmquist, H., Biebow, M., Boller, M., 2006. Nanofiltration for the separation of pharmaceuticals from nutrients in source-separated urine. Water Res. 40, 1405-1412. Witte, J.P., 1997. Surface water potabilisation by means of a novel nanofiltration element. Desalination 108, 153-157. Xu, P., Drewes, J.E., Kim, T.U., Bellona, C., Amy, G., 2006. Effect of membrane fouling on transport of organic contaminants in NF/RO membrane applications. J. Membr. Sci. 279, 165-175. Yangali-Quintanilla, V., Sadmani, A., McConville, M., Kennedy, M., Amy, G., 2009. Rejection of pharmaceutically active compounds and endocrine disrupting compounds by clean and fouled nanofiltration membranes. Water Res. 43, 2349-2362. Yoon, S. H., Lee, C.H., Kim, K.J., Fane, A.G., 1998. Effect of calcium ion on the fouling of nanofilter by humic acid in drinking water production. Water Res. 32, 2180-2186. Yoon, Y., Amy, G., Cho, J., Her, N., 2005. Effects of retained natural organic matter (NOM) on NOM rejection and membrane flux decline with nanofiltration and ultrafiltration. Desalination 173, 209-221. Yoon, Y., Westerhoff, P., Snyder, S.A., Wert, E.C., 2006. Nanofiltration and ultrafiltration of endocrine disrupting compounds, pharmaceuticals and personal care products. J. Membr. Sci. 270, 88-100. Yoon, Y., Westerhoff, P., Snyder, S.A., Wert, E.C., Yoon, J., 2007. Removal of endocrine disrupting compounds and pharmaceuticals by nanofiltration and ultrafiltration membranes. Desalination 202, 16-23. Zazouli, M.A., Susanto, H., Nasseri, S., Ulbricht, M., 2009. Influences of solution chemistry and polymeric natural organic matter on the removal of aquatic pharmaceutical residuals by nanofiltration. Water Res. 43, 3270-3280. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/30407 | - |
dc.description.abstract | 本研究利用奈米薄膜處理程序針對三個目標污染物(Carbamazepine、Naproxenc和Sulfamethoxazole)進行研究,評估其處理效果並決定去除機制。本實驗採取掃流式過濾方式,以減緩通量衰減的速率。利用HPLC進行水樣分析,並使用SEM及AFM分析薄膜表面物化特性改變。
本實驗針對不同pH值及不同積垢物質研究其目標汙染物對於去除率及通量衰減的影響,並分析其溶液與薄膜特性的改變。奈米薄膜的去除機制包含篩除、靜電斥力及吸附,研究結果顯示在不同pH值之下,奈米薄膜處理程序對於三個目標污染物皆有良好的去除率。研究並發現,在pH值較高的情況下,去除率較佳。本研究藉由加入腐植酸跟鈣離子模擬水中天然有機物及金屬離子在過濾程序中的積垢行為;研究結果發現,積垢薄膜去除率較乾淨薄膜低。 在積垢的過程中,因為積垢物質的分子大小比薄膜孔洞大很多,標準阻塞(standard blocking)並不是主要的積垢機制。薄膜積垢主要是由其他的機制所組成的,包含孔洞阻塞(pore blocking)和濾餅生成機制(cake layer formation)。 本次研究中探討薄膜在吸附實驗中的吸附機制,結果顯示薄膜的吸附能力在0.02 到 0.33 μg/cm2之間,乾淨薄膜相較於積垢薄膜有較佳的吸附能力,此結果與文獻所示並不一致。推測因本研究的吸附實驗過程為批次實驗,而在其他的文獻中,吸附能力則是利用過濾過程序所得結果計算出來的,因此,數據處理方法不同,導致乾淨薄膜與積垢薄膜吸附能力趨勢與文獻結果不同。 本實驗利用模式探討不同去除機制的去除率,研究中將實驗數據帶入模式,整合並發展出一個不同的方法來預測積垢後的薄膜孔洞大小,最後利用所得參數與結果來討論機制的去除率。 | zh_TW |
dc.description.abstract | In this study, three target compounds were used to evaluate the performance of a nanofilter in removing these compounds and to determine the removal mechanisms in the filtration experiment. Nanofiltration membrane was tested under cross-flow module in this research. The concentrations of effluent and membrane properties were characterized using HPLC, SEM, and AFM.
This research investigated the effects of solute and membrane characteristics on the rejection and flux decline at various pH values and foulants. The rejection mechanisms of nanofiltration include size exclusion, electrostatic exclusion and adsorption. The fouling membrane was induced by adding the humic acid and calcium to act as natural organic matter and ion to foul the membrane. The filtration processes of the three compounds all have high rejection by the nanofiltration. But in the fouling membrane filtration process, the rejection efficiency of the fouled membrane was not as good as that of the clean membrane. Standard blocking was not the main fouling mechanism for the membranes, which indicated that the molecular size of foulant in the feed solution might larger than that of the membrane pore. Membrane fouling could be brought by the different fouling mechanisms, i.e., pore blocking and cake layer formation. Results from this study revealed that the adsorption capacity of the target compounds ranged from 0.02 to 0.33 μg/cm2. The clean membrane showed a better adsorption capacity than the fouling membrane. The adsorption mechanisms of the nanofiltration process were investigated in this study. The estimated adsorption capacity of the study disagreed with those reported in the literature due in part to the different methods used in conducting the adsorption experiments. The adsorption experiments this study were conducted in batch, whereas other researchers studied the adsorption during filtration runs. The procedure to discuss the rejection and fouling mechanism was studied. In this study develop a procedure including integrating the experimental data and predicted model. The procedure develops a different way to predict the pore size of the clean and the fouled membrane by the experimental design and the model. | en |
dc.description.provenance | Made available in DSpace on 2021-06-13T02:03:06Z (GMT). No. of bitstreams: 1 ntu-100-R98541122-1.pdf: 1769651 bytes, checksum: ceacfbe537b491bf0c5e270857e7bad5 (MD5) Previous issue date: 2011 | en |
dc.description.tableofcontents | 致謝 I
Abstract II 摘要 IV Contents VI List of Figures IX List of Tables XIII Chapter 1 Introduction 1-1 1-1 Background 1-1 1-2 Objectives 1-3 Chapter 2 Literature Review 2-1 2-1 Pharmaceutical and personal care products in enviroment 2-1 2-2 PPCP removal by nanofiltration membrane 2-3 2-2-1 PPCP filtration by nanofiltration membrane 2-4 2-2-2 PPCP adsorption by nanofiltration membrane 2-7 2-3 Parameters affecting the performance of nanofiltration process 2-11 2-3-1 Characteristics of nanofiltration membrane 2-11 2-3-2 Operation conditions 2-11 2-3-3 Characteristics of feed solute 2-14 2-4 Membrane fouling 2-16 2-4-1 Type of membrane fouling 2-16 2-4-2 Mechanism of membrane fouling 2-17 2-4-3 Predicting model of membrane fouling 2-19 2-5 Rejection Mechanisms 2-22 2-5-1 Rejection mechanisms of nanofiltration membrane 2-22 2-5-2 Transport mechanisms of nanofiltration membrane 2-22 2-5-3 Nanofiltration predicting model 2-23 Chapter 3 Materials and Methods 3-1 3-1 Experimental planning 3-1 3-1-1 Research Flowchart 3-1 3-1-2 Experiment design 3-2 3-2 Materials 3-4 3-2-1 Membrane 3-4 3-2-2 Target Compounds 3-5 3-2-3 Chemical reagents 3-7 3-3 Experimental methods 3-8 3-3-1 Filtration test 3-8 3-3-2 Adsorption test 3-6 3-4 Analytical Methods 3-11 3-4-1 Pharmaceutical analysis 3-11 3-4-2 Membrane characterization 3-11 Chapter 4 Results and Discussion 4-1 4-1 Characteristics of clean and fouled membranes 4-1 4-1-1 SEM image 4-3 4-1-2 AFM image 4-5 4-1-3 Contact angle 4-7 4-1-4 Zeta potential 4-8 4-2 Influence of fouling on rejection 4-10 4-2-1 Effect of pH 4-10 4-2-2 Effect of foulant 4-14 4-2-3 Mechanism of fouling 4-19 4-3 Determination of adsorption capacity 4-23 4-3-1 Adsorption capacity under various fouling conditions 4-23 4-3-2 Validation of adsorption capacity 4-26 4-4 Identification of the change of rejection mechanisms by fouling 4-30 4-4-1 Determination of the rejection mechanisms for fouled membranes 4-30 4-4-2 Determination of the contribution of size exclusion SHP model 4-31 4-4-3 Determination of the pore size of the fouled membranes 4-36 4-4-4 Model validation 4-40 Chapter 5 Conclusions and Recommendations 5-1 5-1 Conclusions 5-1 5-2 Recommendations 5-3 References Appendix | |
dc.language.iso | en | |
dc.title | 利用乾淨及積垢奈米薄膜去除Carbamazepine、Naproxen與Sulfamethoxazole機制之研究 | zh_TW |
dc.title | Determination of the Fouling and Rejection Mechanisms for the Removal of Carbamazepine, Naproxen and Sulfamethoxazole by Clean and Fouled Nanomembranes | en |
dc.type | Thesis | |
dc.date.schoolyear | 99-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 張怡怡(E-E Chang),黃金寶(Chin-Pao Huang),曾迪華(Dyi-Hwa Tseng),顧 洋(Young Ku) | |
dc.subject.keyword | 奈米過濾,吸附,去除機制, | zh_TW |
dc.subject.keyword | Nanofiltration,Pharmaceutical,Retention Mechanism,Adsorption, | en |
dc.relation.page | 101 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2011-08-21 | |
dc.contributor.author-college | 工學院 | zh_TW |
dc.contributor.author-dept | 環境工程學研究所 | zh_TW |
顯示於系所單位: | 環境工程學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-100-1.pdf 目前未授權公開取用 | 1.73 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。