請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/30391完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 林俊彬 | |
| dc.contributor.author | Chung-Yi Lee | en |
| dc.contributor.author | 李鍾怡 | zh_TW |
| dc.date.accessioned | 2021-06-13T02:02:47Z | - |
| dc.date.available | 2010-11-01 | |
| dc.date.copyright | 2007-07-12 | |
| dc.date.issued | 2007 | |
| dc.date.submitted | 2007-07-06 | |
| dc.identifier.citation | ASTM D-412–98a (2002). Standard test methods for vulcanized rubber and thermoplastic elastomers. Tension.
Augsburger RA, Peters DD (1990). Radiographic evaluation of extruded obturation materials. J Endod 16:492-7. Barkhordar RA, Goodis HE, Watanabe L, Koumdjian J (1990). Evaluation of temperature rise on the outer surface of teeth during root canal obturation techniques. Quint Int 21:585-588. Blum JY, Parahy E, Machtou P (1997). Warm Vertical Compaction Sequences in Relation to Gutta-Percha Temperature. J Endod 23:307-11. Bordenave L, Baquey C, Bareille R, Lefebvre F, Lauroua C, Guerin V, et al. (1993). Endothelial cell compatibility testing of three different Pellethanes. J Biomed Mater Res 27:1367-81. Boretos JW, Pierce WS (1967). Segmented polyurethane: a new elastomer for biomedical applications. Science 158:1481-2. Bruil A, Oosterom HA, Steneker I, Beugeling T, van Aken WG, Feijen J (1993). Poly(ethyleneimine) modified filters for the removal of leukocytes from blood. J Biomed Mater Res 27:1253-68. Carter JM, Sorensen SE, Johnson RR, Teitelbaum RL (1983). Punch shear testing of extracted vital and endodontically treated teeth. J Biomech 16:841-8. Combe EC, Cohen BD, Cummings K (2001). Alpha- and beta-forms of gutta-percha in products for root canal filling. Int Endod J 34:447-51. Cullagh JJPM, Setchell DJ, Gulabivala K, Hussey DL, Biagioni P, Lamey PJ, et al. (2000). A comparison of thermocouple and infrared thermographic analysis oftemperature rise on the root surface during the continuous wave of condensation technique. Int Endod J 33:326-32.Eldeniz AU, Erdemir A, Belli S (2005). Shear bond strength of three resin based sealers to dentin with and without the smear layer. J Endod 31:293-6. Fowler CS, Swartz ML, Moore BK, Rhodes BF (1992). Influence of selected variables on adhesion testing. Dent Mater 8:265-9. Friedman CM, Sandrik JL, Heuer MA, Rapp GW (1975). Composition and mechanical properties of Gutta-percha endodontic points. J Dent Res 54: 921-5. Gesi A, Raffaelli O, Goracci C, Pashley DH, Tay FR, Ferrari M (2005). Interfacial strength of Resilon and gutta-percha to intraradicular dentin. J Endod 31:809-813. Glickman GN, Gutmann JL (1992). Contemporary perspectives on canal obturation. Dent Clin North Am 36:327-341. Goracci C, Tavares AU, Fabianelli A, Monticelli F (2004). The adhesion between fiber posts and root canal walls: comparison between microtensile and push-out bond strength measurements. Eur J Oral Sci 112:353-61. Gogos C, Economides N, Stavrianos C, Kolokouris I (2004). Adhesion of a new methacrylate resin-based sealer to human dentin. J Endod 30:238-40. Gulabivala K, Leung SF (1994). Review of a new root canal obturation technique. Dent Update 21:73-83. Gutmann JL, Witherspoon DE (1998). Obturation of the cleaned and shaped root canal system. In: Pathways of the pulp. 7th ed. Chapter 9. Cohen S, Burns RC, editors. St. Louis: Mosby, pp. 258-71. Himel VT, McSpadden JT, Goodis HE (2006). Instruments, materials and device. In: Pathways of the pulp. 9th ed. Chapter 8. Cohen S, Burns RC, editors. St. Louis: Mosby, pp. 262-71. Huang B, Marios Y (1992). Cellular reaction to the Vascugraft® polyester urethanevascular prosthesis: in vivo studies in rats. Biomaterials 13:209–16. Hsieh KH, Tsai CC, Tseng SM (1990). Vapor and gas permeability of polyurethane membranes. Part I. Structure-property relationship. J Membr Sci 49: 341-50. Hsieh KH, Tsai CC, Chang DM (1991). Vapor and gas permeability of polyurethane membranes. Part II. Effect of functional group. J Membr Sci 56:279-87. Jensen SD, Fischer DJ (2004). Method for filling and sealing a root canal. US Patent 6,811,400. November 2. Jia WT, Alpert B (2003). Root canal filling material. US Patent 20030113686. June 19. Johansson BI (1980). A methodological study of the mechanical properties of endodontic gutta-percha points. J Endod 6:781-3. Johnson WT, Gutmann JL (2006). Obturation of the cleaned and shaped root canal system. In: Pathways of the pulp. 9th ed. Chapter 10. Cohen S, Burns RC, editors. St. Louis: Mosby, pp. 358-75. Kazemi R, Safavi KE, Spångberg LSW (1993). Dimensional changes of endodontic sealer. Oral Surg Oral Med Oral Pathol Oral Radiol Endo 76:766-71. King M, Zhang Z (1994). Quantitative analysis of the surface morphology and textile structure of the Polyurethane Vascugraft® arterial prosthesis using image and statistical analyses. Biomaterials 15:621–627. Lee KW, Williams MC, Camps JJ, Pashley DH (2002). Adhesion of endodontic sealers to dentin and gutta-percha. J Endod 28:684-8. Moshonov J, Trope M, Friedman S (1994). Retreatment efficacy 3 months after obturation using glass ionomer cement, zinc oxide-eugenol, and epoxy resin sealers. J Endod 20:90-2. Marciano J, Michailesco PM (1989). Dental gutta-percha: chemical composition X-Ray Identification, enthalpic studies and clinical implication. J Endod 15:149-53. Marciano J, Michailesco PM, Abadie MJM (1993). Stereochemical structure characterization of dental Gutta-percha. J Endod 19:31-4. McComb D, Smith D (1976). Comparison of physical properties of polycarboxylate- based and conventional root canal sealers. J Endod 2:228-35. Miner MR, Berzins DW, Bahcall JK (2006). A comparison of thermal properties between gutta-Percha and a synthetic polymer based root canal filling material (Resilon). J Endod 32:683-6. Möller B, Ørstavik D (1984). Chemical and energy-dispersive X-ray analyses of gutta-percha points. J Endod 10:413-16. Nikaido T, Takano Y, Sasafuchi Y, Burrow M, Tagami J (1999). Bond strength to endodontically treated teeth. Am J Dent 12:177-180. Nomoto R, Carrick TE, McCabe JF (2001). Suitability of a shear punch test for dental restorative materials. Dent Mater 17:415-21. Ørstavik D, Eriksen HM, Beyer-Olsen EM (1983). Adhesive properties and leakage of root canal sealers in vitro. Int Endod J 16:59–63. Pascon E, Spångberg LSW (1990). In vitro cytotoxcity of root canal filling materials, Part I. gutta-percha. J Endod 16:429-34. Pashley DH, Carvalho RM, Sano H, Nakajima M (1999). The microtensile bond test: a review. J Adhesive Dent 1:299–309.. Pest LB, Cavalli G, Bertani B, Gagliani M (2002). Adhesive post-endodontic restorations with fiber posts: push-out tests and SEM observations. Dent Mater 18: 596-602. Peter DD (1986). Two-year in vitro solubility evaluation of four gutta-percha sealer obturation techniques. J Endod 12:139-43. Pitout E, Oberholzer TG, Blignaut E, J Molepo (2006). Coronal leakage of teeth root-filled with gutta-percha or Resilon root canal filling material. J Endod 32: 879-81. Ricucci D, Gröndahl K, Bergenholtz G (2000). Periapical status of root-filled teeth exposed to the oral environment by loss of restoration or caries. Oral Surg Oral Med Oral Pathol Oral Radiol Endo 90:354-9 Roydhouse RH (1970). Punch-shear test for dental purposes. J Dent Res 49:131–6. Schafer E, Zandbiglari T (2003). Solubility of root canal sealers in water and artificial saliva. Int Endod J 36:660-9. Schilder H (1967). Filling root canals in three dimensions. Dent Clin North Am 11:723-44. Sevimay S, Kalayci A (2005). Evaluation of apical sealing ability and adaptation to dentine of two resin-based sealers. J Oral Rehabil 32:05-10. Shipper G, Ørstavik D, Teixeira FB, Trope M (2004). An evaluation of microbial leakage in roots filled with a thermoplastic synthetic polymer-based root canal filling material (Resilon). J Endod 30:342-7. Skidmore LJ, Berzins DW, Bahcall JK (2006). An in vitro comparison of the intraradicular dentin bond strength of Resilon and gutta-gercha. J Endod 32:963-6. Smith DC, Cooper WEG (1971). The determination of shear strength. Brit Dent J 130: 333-7. Stewart GG (1958). A comparative study of three root canal sealing agents (Part 1). Oral Surg Oral Med Oral Pathol Oral Radiol Endo11:1029-41. Sudsangiam S, van Noort R (1999). Do dentin bond strength tests serve a useful purpose? J Adhesive Dent 1:57–67. Tagger M, Tagger E, Kfir A (1988). Release of calcium and hydroxyl ions from setendodontic sealers containing calcium hydroxide. J Endod 14:588-91. Takahara A (1991). Transactions of the Annual Meeting of the Society for Biomaterials in conjunction with the International Biomaterial Symposium 14:93,15731. Tay FR, Loushine RJ, Weller RN, Kimbrough WF, Pashley DH, Mak YF, et al. (2005). Ultrastructural evaluation of the apical seal in roots filled with a polycaprolactone-based root canal filling material. J Endod 31:514-9. Tay FR, Loushine RJ, Monticelli F, Weller RN, Breschi L, Ferrari M, et al. (2005). Effectiveness of resin-coated gutta-percha cones and a dual-cured, hydrophilic methacrylate resin-based sealer in obturating root canals. J Endod 31(9):659-64. Teixeira FB, Teixeira EC, Thompson JY, Trope M (2004). Fracture resistance of roots endodonticallytreated with a new resin filling material. J Am Dent Assoc 135: 646– 52. Teixeira FB, Trope M (2006). Advances in Endodontic Obturation. US Dent Endod 45-8. Teixeira FB, Teixeira EC, Thompson J, Leinfelder KF, Trope M (2004). Dentinal bonding reaches the root canal system. J Esthet Restor Dent 16:348-54. Ungor M, Onay EO, Orucoglu H (2006). Push-out bond strengths: the Epiphany- Resilon endodontic obturation system compared with different pairings of Epiphany, Resilon, AH Plus and gutta-percha. Int Endod J 39:643-7. Walton RE, Johnson WT (1996). Obturation. 2nd ed. Chapter 14. In: Principles and practice of endodontics. Walton RE, Torabinejad M, editors. W.B. Saunders, pp. 234-59. Watanabe LG, Marshall GWJ, Marshall SJ (2000). Variables influence on shear bond strength testing to dentine. In: Proceedings of the Granada International Symposium 3–4 Dec 1999: Advanced Adhesive Dentistry pp 75-90. Weine FS (1992). A preview of the canal-filling materials of the 21st century. Com Cont Educ Dent 13:688-97. Weine FS, Wenckus CS (2004). Canal filling with semisolid materials. In: Endodontic therapy. 6th edition. Chapter 8. Weine FS, editor. Illinios: Mosby, pp. 304-12. Wennberg A, Orstavik D (1990). Adhesion of root canal sealers to bovine dentine and gutta-perch. Int Endod J 23:13-19. Williams C, Loushine RJ, Weller RN, Pashley DH, Tay FR (2006). A comparison of cohesive strength and stiffness of Resilon and gutta-percha. J Endod 32:553-5. Van Noort R, Cardew GE, Howard IC, Noroozi S (1991). The effect of local interfacial geometry on the measurement of the tensile bond strength to dentine. J Dent Res. 70:889–93. Xiu Y, Wang D, Hu C, Ying S, Li J (1993). Morphology-property relationship of segmented polyurethaneurea: Influences of soft-segment structure and molecular weight. J Appl Polymer Sci 48:867-9. Yen MS, Kuo SC (1996). Effects of mixing procedure on the structure and physical properties of ester-ether-type soft segment waterborne polyurethane. J Appl Polymer Sci, 61: 1639-47. Skoog 等著, 林敬二審譯 (2001). 儀器分析. 美亞書版股份有限公司. 鄭雅安 (2002). 馬來膠之熱能與晶相轉換研究. 國立台灣大學醫學院牙醫科學研究所碩士論文. 褚文煌 (1998). 人類牙本質脆性機轉之研究. 國立台灣大學醫學院牙醫科學研究所碩士論文. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/30391 | - |
| dc.description.abstract | 傳統根管封填材中,馬來膠長久以來居於主流地位。研究顯示雖然各種封填系統不斷地發展,馬來膠與各式封填劑終究沒有合適根管封填技術可搭配,而得以提供適當的根管系統密封性。馬來膠對於牙本質並無黏著效果,機械強度不足而易彎折變形;且當加溫冷卻或使用溶劑揮發時,還得面臨體積收縮。為了要達到與牙本質鍵結的目的,必須藉助高分子工程的專業技術,發展以樹酯為基底的替代封填材料。如此既可提供良好的密封性,也許還可強化根管治療後的齒質。我研究團隊已初步研發出新型高分子根管封填系統,以熱塑型聚胺酯為材料基質,並使用氧化鋅為填料,成為應用於牙科根管封填錐體之氧化鋅及聚胺酯複合材料。而根管封填劑部份,則利用可見光可硬化之胺酯壓克力樹酯做為基質,並使用三丙烯乙二醇雙丙烯酸酯做為稀釋單體,以提高胺酯壓克力樹酯於牙科根管封填劑上之基本需求。本研究的目的主要在探討新型熱塑型聚胺酯根管封填系統與與市售根管封填材料在熱性質、機械性質以及與根管牙本質間之鍵結強度,作為評估新型根管封填系統於臨床應用與操作的可行性。結果顯示在機械性質方面,氧化鋅聚胺酯複合材料已明顯超越市售封填材;而在熱性質方面也具有相似於臨床材料之熔點以及較低的熔化熱。同時在推離鍵結強度測試方面,胺酯壓克力樹酯/ 氧化鋅聚胺酯複合材料的搭配為具有最高鍵結強度的組別。於掃描式電子顯微鏡的觀察,以胺酯壓克力樹酯為基底的封填劑能流入牙本質小管。因此,不論機械性質、熱性質以及鍵結強度方面,以氧化鋅聚胺酯複合材與胺酯壓克力樹酯材料做為根管封填材,在未來臨床根管治療的應用上深具潛力。 | zh_TW |
| dc.description.abstract | The commonly obturation material used in conventional endodontics is gutta-percha (GP). Although various obturation systems have been developed, studies with using GP and sealers have revealed that no suitable technique can offer an adequate seal of the root canal system. GP has no dentinal adhesion, lacks sufficient rigidity, and shrinks after thermal obturation. In order to achieve the aim of dentin bonding, the employment of polymer technology have led to the recent development of resin-based obturation materials. Our research team has developed a novel polymer-based root canal obturation system. Thermoplastic polyurethane (TPU) was synthesized and zinc oxide (ZnO) was used as fillers to form the ZnO/ TPU composite. For the resin part of sealer, visible-light photopolymerizable urethane-acrylate (UA) oligomer was synthesized and mixed with dilute monomer to form UA/ TPGDA resin. The purpose of this study was to investigate the thermal, mechanical properties and bonding strength of TPU polymer-based obturation materials as well as commercial polymer-based obturation materials. The results showed that tensile strength and elastic modulus of the ZnO/TPU composites were higher than that of GP and Resilon. Enthalpy change of the ZnO/TPU composite during phase transition was similar to GP but lower than Resilon. For the push-out bonding test, the results revealed that the group of UA/ PU had the highest bonding strength among test materials. From the micrographs of SEM, UA based sealer was able to flow into dentinal tubules. Therefore, ZnO/TPU composite and UA oligomer have great potential in the materials of root canal obturation, no matter in mechanical, thermal properties or bonding strength. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-13T02:02:47Z (GMT). No. of bitstreams: 1 ntu-96-R94422003-1.pdf: 9270103 bytes, checksum: 411ee5fe9aed1bc3a2f94b84e6e90a2e (MD5) Previous issue date: 2007 | en |
| dc.description.tableofcontents | 目 錄
口試委員會審定書 --------------------------------------- i 誌謝 -------------------------------------------------- ii 中文摘要 ---------------------------------------------- iv 英文摘要 ----------------------------------------------- v 目錄 -------------------------------------------------- vi 圖次 -------------------------------------------------- ix 表次 -------------------------------------------------- xi 第一章前言 --------------------------------------------- 1 第二章文獻回顧 ----------------------------------------- 4 2.1理想的根管封填 -------------------------------------- 4 2.2傳統根管封填材料的發展 ------------------------------ 4 2.2.1根管封填錐體材料 ---------------------------------- 4 2.2.2根管封填劑材料 ------------------------------------ 6 2.3高分子根管封填系統 ---------------------------------- 6 2.3.1Resilon / Epiphany 根管封填系統 ------------------- 7 2.3.2EndoREZ 根管封填系統 ----------------------------- 10 2.4聚胺酯材料作為高分子根管封填系統的潛力 ------------- 10 2.4.1熱塑型聚胺酯 ------------------------------------- 10 2.4.2本研究團隊初步試驗結果 --------------------------- 12 2.5根管填充材與根管牙本質間之鍵結強度測試 ------------- 13 2.5.1評估根管封填材料與根管壁間之黏著能力 ------------- 13 2.5.2推離鍵結測試法 ----------------------------------- 14 第三章動機與目的 -------------------------------------- 16 第四章材料與方法 -------------------------------------- 18 4.1實驗樣本之製備 ------------------------------------- 18 4.1.1根管封填主錐體材料 ------------------------------- 18 4.1.2根管封填封填劑 ----------------------------------- 18 4.2熱分析試驗 ----------------------------------------- 19 4.2.1熱重分析法 --------------------------------------- 19 4.2.2微差掃描熱量分析法 ------------------------------- 20 4.3機械性質拉力測試 ----------------------------------- 21 4.3.1拉力強度測試 ------------------------------------- 21 4.4根管封填材與根管牙本質間之推離鍵結強度測試 --------- 22 4.4.1實驗樣本之製備 ----------------------------------- 22 4.4.2推離鍵結強度測試 --------------------------------- 25 4.5掃描式電子顯微鏡觀察鍵結破壞之模式 ----------------- 26 4.5.1掃描式電子顯微鏡樣本之處理 ----------------------- 26 4.5.2操作及實驗過程 ----------------------------------- 26 第五章結果 -------------------------------------------- 28 5.1熱分析試驗 ----------------------------------------- 28 5.1.1熱重分析的結果 ----------------------------------- 28 5.1.2微差掃描熱量分析的結果 --------------------------- 28 5.2機械性質拉力強度測試的結果 ------------------------- 29 5.3根管填充材與根管牙本質間之推離鍵結強度測試的結果 --- 29 5.4掃描式電子顯微鏡觀察鍵結失敗模式的結果 ------------- 29 第六章討論 -------------------------------------------- 32 6.1熱分析試驗方面 ------------------------------------- 32 6.1.1熱重分析的結果之探討 ----------------------------- 32 6.1.2微差掃描熱量分析的結果之探討 --------------------- 33 6.1.3熱分析法的綜合討論 ------------------------------- 33 6.2機械性質拉力強度測試的結果之探討 ------------------- 33 6.3根管填充材與根管牙本質間之推離鍵結強度測試 --------- 34 6.3.1推離鍵結強度測試的結果之探討 --------------------- 34 6.3.2實驗設計之探討 ----------------------------------- 35 6.4掃描式電子顯微鏡觀察的結果之探討 ------------------- 37 6.4.1封填劑對鍵結失敗模式的影響 ----------------------- 37 第七章結論 -------------------------------------------- 40 第八章未來研究方向 ------------------------------------ 41 參考文獻 ---------------------------------------------- 42 圖 次 圖1熱塑型聚胺酯(TPU)和氧化鋅(ZnO)無機填充料複合材料之合成-------------49 圖2胺酯壓克力樹酯 (urethane-acrylate, UA) 封填劑之合成-- 49 圖3熱重分析儀 TGA-7, Perkin-Elmer ---------------------- 50 圖4微差熱掃描分析儀 DSC 2010, TA Instruments ----------- 50 圖5萬能拉力測試機Universal Testing Instruments, RTM-IT - 51 圖6高速精密切割機 Isomet 2000 -------------------------- 51 圖7warm gutta percha obturation system, E & Q Plus----- 52 圖8Element obturation unit ----------------------------- 52 圖9高速鑽孔機, LT-848 ---------------------------------- 53 圖10推離鍵結強度測試法流程圖 --------------------------- 53 圖11離子覆膜機 BIO-RED SC 502 -------------------------- 54 圖12掃描式電子顯微鏡 Topcon ABT-60 --------------------- 54 圖13馬來膠、ZnO/TPU複合材料以及 Resilon的熱重分析圖 ---- 55 圖14馬來膠、ZnO/TPU複合材料以及 Resilon的微差掃描熱量分析圖 ----------------- 55 圖15GP、TB/GP、EP/GP根管充填材之推離鍵結強度 ----------- 56 圖16實驗組之根管充填材的推離鍵結強度 ---------------- 56 圖17a控制組 ( GP ):低倍巨觀檢視圖 --------------------- 57 圖17b控制組 ( GP ):高倍檢視圖 ------------------------- 57 圖18aTB / GP組:低倍巨觀檢視圖 ------------------------- 58 圖18bTB / GP組:材料與牙本質交界處 --------------------- 58 圖19aTB / R組:低倍巨觀檢視圖 -------------------------- 59 圖19bTB / R組:高倍檢視圖 ------------------------------ 59 圖20aEP / GP組:低倍巨觀檢視圖 ------------------------- 60 圖20bEP / GP組:高倍檢視圖 ----------------------------- 60 圖21aEP / R組:低倍巨觀檢視圖 -------------------------- 61 圖21bEP / R組:材料與牙本質交界處 ---------------------- 61 圖22aES / EC組:低倍巨觀檢視圖 ------------------------- 62 圖22bES / EC組:材料與牙本質交界處 --------------------- 62 圖23aES / PU組:低倍巨觀檢視圖 ------------------------- 63 圖23bES / PU組:高倍檢視圖 ----------------------------- 63 圖24aUA / PU組:低倍巨觀檢視圖 ------------------------- 64 圖24bUA / PU組:材料與牙本質交界處 --------------------- 64 圖25aUA / PU組:頰舌縱劈面之電子顯微鏡圖 --------------- 65 圖25bUA / PU組:頰舌縱劈面之高倍檢視圖 ----------------- 65 圖26aUA / EC組:低倍巨觀檢視圖 ------------------------- 66 圖26bUA/ EC組:材料與牙本質交界處 ---------------------- 66 表 次 表1不同根管充填材之實驗分組配對及其縮寫符號 ------------ 67 表2ZnO/ TPU複合材料、Resilon和馬來膠的機械性質比較 ----- 67 表3aGP與不同根管封填劑之推離鍵結強度測試結果統計量分析---68 表3bGP、TB/GP、EP/GP單因子變異數分析 ------------------- 68 表3cGP、TB/GP、EP/GP事後比較試驗分析表 ----------------- 69 表4a八組根管充填材之推離鍵結強度測試的結果 ------------- 69 表4b八組根管充填材單因子變異數分析表 -------------------- 70 表4c八組根管充填材事後比較試驗分析表 -------------------70 | |
| dc.language.iso | zh-TW | |
| dc.subject | 測試 | zh_TW |
| dc.subject | 根管封填材料 | zh_TW |
| dc.subject | 熱塑型聚胺酯 | zh_TW |
| dc.subject | 胺酯壓克力 | zh_TW |
| dc.subject | 樹酯 | zh_TW |
| dc.subject | 推離 | zh_TW |
| dc.subject | 鍵結強度 | zh_TW |
| dc.subject | Push-out bonding test | en |
| dc.subject | Root canal obturation material | en |
| dc.subject | Thermal polyurethane (TPU) | en |
| dc.subject | Urethane-acrylate | en |
| dc.title | 研發聚胺酯根管封填材料:熱、機械性質和鍵結強度 | zh_TW |
| dc.title | Development of polyurethane as root canal obturation materials: thermal, mechanical properties and bonding strength | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 95-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.coadvisor | 謝國煌 | |
| dc.contributor.oralexamcommittee | 李伯訓 | |
| dc.subject.keyword | 根管封填材料,熱塑型聚胺酯,胺酯壓克力,樹酯,推離,鍵結強度,測試, | zh_TW |
| dc.subject.keyword | Root canal obturation material,Thermal polyurethane (TPU),Urethane-acrylate,Push-out bonding test, | en |
| dc.relation.page | 70 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2007-07-09 | |
| dc.contributor.author-college | 醫學院 | zh_TW |
| dc.contributor.author-dept | 臨床牙醫學研究所 | zh_TW |
| 顯示於系所單位: | 臨床牙醫學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-96-1.pdf 未授權公開取用 | 9.05 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
