請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/30313完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 徐源泰(Yuan-Tay Shyu) | |
| dc.contributor.author | Yu- Shan Liu | en |
| dc.contributor.author | 劉育姍 | zh_TW |
| dc.date.accessioned | 2021-06-13T02:00:54Z | - |
| dc.date.available | 2008-07-16 | |
| dc.date.copyright | 2007-07-16 | |
| dc.date.issued | 2007 | |
| dc.date.submitted | 2007-07-06 | |
| dc.identifier.citation | 1. 田中長三郎。1993。柑橘分類論(上) (下) 。pp.155-186. In. 柑橘研究。養賢堂發行。
2. 岩政正男。1976。柑橘 起源 進化。pp. 1-18. In. 柑橘品種。靜岡縣柑橘農業協同組合聯合會發行。 3. 徐月珠。2001。文旦柚果汁之主要苦味成分與其脫苦味之研究。國立台灣大學園藝學研究所碩士論文。 4. 徐源泰。2005。太魯閣國家公園杜鵑花屬植物小分子熱休克蛋白與其地理分佈之研究。內政部營建署太魯閣國家公園管理處研究報告。 5. 倪元穎、張欣、葛毅強。1999。溫帶、亞熱帶果蔬汁原料及飲料製造。中國輕工業出版社。 6. 黃士穎、徐國凱。2001。應用葉綠體trnF-trnL核酸序列探討台灣八種杜鵑花之分子親緣關係。台灣林業科學 16(3):153-160。 7. 曾凡坤、鄒連生、焦必林。2003。柑橘中類檸檬苦素含量及分布研究。中國食品學報 3(4): 79-81。 8. 陳建智。2005。利用 Lea 第四群基因族探討大豆屬物種之親緣系統及分子演化關係。國立台灣大學農藝學研究所碩士論文。 9. 蔡平里。1994。細說柑橘與果香。鄉間小路 20(1):7-18。 10. 嚴夢如、翁仁祿。1995。台灣農家要覽。豐年社出版. p662-686。 11. 諶克終。1961。柑橘栽培學。國立編譯館。 12. 簡伯容。2001。Penicillium decumbens 中α–L-鼠李糖苷酶去除葡萄柚汁苦味之探討與其基因選殖之研究。國立台灣大學園藝學研究所博士論文。 13. 謝寶全、曾浩洋。1991。不同黴菌柚苷酶製品中α-鼠李糖苷酶之再純化及其特性之探討。中國農業化學會誌 29 (1): 61-73。 14. 謝孟穎。2004。線蟲小熱休克蛋白sHSP12.2與sHSP12.3之物化性質鑑定:最小之熱休克蛋白的分子保護活性評估。臺灣大學生命科學院生化科學研究所碩士論文。 15. 劉育姍。2002。省產大宗加工柑橘原料鑑別技術之開發研究。國立台灣大學園藝學研究所碩士論文。 16. 劉美華、葛學軍、王唯匡、許在文、蔣鎮宇。2004。香蕉的起源及野蕉的花粉與種子傳播。自然保育季刊 47:17-23。 17. Al-Janabi S. M., McClelland M., Petersen C., Sobral B. W. S. 1994. Phylogenetic analysis of organellar DNA sequences in the Andropogoneae: Saccharinae. Theor. Appl. Genet. 88: 933-944. 18. Amane M., Lumaret R., Hany V., Ouazzani N., Debain C., Vivier G., Deguilloux M. F. 1999. Chloroplast-DNA variation in cultivated and wild olive ( Olea europaeaL.). Theor. Appl. Genet. 99: 133-139. 19. Applequist W. L., Wagner W. L., Zimmer E. A., Nepokroeff M. 2006. Molecular evidence resolving the systematic position of Hectorella (Portulacaceae). Syst. Botany 31 (2): 310-319. 20. Burke J. H. 1967. The commercial citrus regions of the world. In. Te Citrus Industry, vol. 1. ed. Reuther W., H. J. Webber and L. D. Batchelor pp.40-189. Berkerly: Division of Agricultural Science, University of California. 21. Barrett H. C. and Rhodes A. M. 1976. A numerical taxonomic study of affinity relationships in cultivated citrus and its close relatives. Syst. Botany 1:105-136. 22. Berhow M. A. 2000. Effects of early plant growth regulator treatments on flavonoid levels in grapefruit. Plant Growth Regul. 30: 225–232. 23. Brouat C., Gielly L. and McKey D. 2001. Phylogenetic relationships in the genus Leonardoxa (Leguminosae: Caesalpinioideae) inferred from chloroplast trnL intron and trnL-trnF intergenic spacer sequences. Am. J. Bot. 88 (1): 143-149. 24. Bausher M. G., Singh N. D., Lee S. B., Jansen R. K., Daniell H. 2006. The complete chloroplast genome sequence of Citrus sinensis (L.) Osbeck var ‘Ridge Pineapple’: organization and phylogenetic relationships to other angiosperms. BMC Plant Biology 6: 21. 25. Canel C. 1994. Physiological and molecular genetic studies of acid accumulation in citrus fruit. PhD. Thesis. Botany & Plant Sciences, University of California at Riverside. 26. Chase M. W. 1993. Phylogenetics of seed plants: an analysis of nucleotide sequences from the plastid gene rbcL. Ann. Missouri Bot. Gar. 80: 935-951. 27. Chase M. W., de Bruijn A. Y., Cox A. V., Reeves G., Rudall P. J., Johnson M. A. T., Eguiarte L. E.. 2000. Phylogenetics of Asphodelaceae (Asparagales): An Analysis of Plastid rbcL and trnL-F DNA Sequences. Ann. Bot. 86 (5): 935-951. 28. Clark L. G., Zhang W. & Wendel J. F. 1995. A phylogeny of the grass family (Poaceae) based on ndhF sequence data. Syst. Botany 20: 436-460. 29. Corazza-Nunes M. J., Machado M. A., Nunes W. M. C., Cristofani M., Targon M. L. P. N. 2002. Assessment of genetic variability in grapefruit (Citrus paradisi Macf.) and pummelos (C. maxima (Burm.) Merr.) using RAPD and SSR markers. Euphytica 126: 169-176. 30. Demesure B., Sodzi N., Petit R. J. 1995. A set of universal primers for amplification of polymorphic noncoding regions of mitochondrial and chloroplast DNA in plants. Mol. Ecol. 4:129-131. 31. Dugo G. and Giacomo A. D. 2002. Citrus-the genus citrus. Taylor & Francis Inc., London, UK. 32. Fang D. Q., Zhang W. C. and Xiao S. Y. 1993. Studies on taxonomy and evolution of Citus and its related genera by isozyme analysis. Acta Phytotaxon Sinica 31:329-352. 33. Fang D.Q., Krueger R. R., Roose M. L. 1998. Phylogenetic relationships among selected Citrus germplasm accessions revealed by ISSR markers. J. Amer. Soc. Hort. Sci. 123: 612-617. 34. Federici C. T., Fang D. Q., Scora R. W., Roose M. L. 1998. Phylogenetic relationships within the genus Citrus (Rutaceae) and related genera as revealed by RFLP and RAPD analysis. Theor. Appl. Genet. 96: 812-822. 35. Gasteiger E., Gattiker A., Hoogland C., Ivanyi I., Appel R. D., Bairoch A. 2003. ExPASy: the proteomics server for in-depth protein knowledge and analysis. Nucleic Acids Res. 31:3784-3788. 36. Gielly L. and Taberlet P. 1994. The use of chloroplast DNA to resolve plant phylogenies: noncoding versus rbcL sequences. Mol. Biol. Evol 11: 769-777. 37. Golenberg E. M., Clegg M. T., Durbin M. L., Doebley J., Ma D.P. 1993. Evolution of a noncoding region of the chloroplast genome. Mol. Phylogen. Evol. 2: 52-64. 38. Graur D. and Li W. H. 2000. Fundamentals of Molecular Evolution. Sinauer Associates, Inc., USA. 39. Green RM, Vardi A and Galun E. 1986. The plastome of Citrus. Physical map, variation among Citrus cultivars and species, and comparison with related genera. Theor. Appl. Genet. 72:170-177. 40. Gulsen O. and Roose M. L. 2001. Chloroplast and nuclear genome analysis of the parentage of lemons. J. Amer. Soc. Hort. Sci. 126 (2): 210-215. 41. Gulsen O. and Roose M. L. 2001. Lemons: diversity and relationships with selected Citrus genotypes as measured with nuclear genome markers. J. Amer. Soc. Hort. Sci. 126 (2): 309-317. 42. Handa T, Ishizawa Y and Oogaki C. 1986. Phylogenic study of Fraction I protein in the genus Citrus and its close related genera. Jpn. J. Genet. 61:15-24. 43. Hasegawa S. and Brewster L. C. 1975. Limonoate defydrogenase and debittering of citrus products. U. S. patent. No. 3,917, 512 44. Hasegawa S. 1984. Strain of Coryne bacterium fascians and use thereof to reduce limonoid bitterness in citrus products. U.S. Patent No. 4447456. 45. Hasegawa S. 1988. Reduction of accumulation of limonoate A-ring lactone in citrus fruit by auxins. U.S. Pat. Appl. :14. 46. Hasegawa S., Berhow M. A., and Fong C. H. 1996. Analysis ofbitter principles in Citrus. In: Modern methods of plant analysis Vol 18, ed. by Linskens H.-F. and Jackson J. F. Berlin, Springer-Verlag. p. 59-80. 47. Hasegawa S., Miyake M., Ozaki Y., Berhow M. A. 1996. In: The Contribution of Low- and Nonvolatile Materials to Flavor, ed. by Pickenhagen W., Ho C. and Spanier A. M. Allured, Carol Stream. p.137-148. 48. Herrero R, Asins M. J., Carbonell A. E. and Navarro L. 1996. Genetic diversity in the orange subfamily Aurantioideae. I. Intraspecies and intragenus genetic variability. Theor. Appl. Genet. 92:599-609. 49. Hiratsuka J, Shimada H, Whittier R, Ishibashi T, Sakamoto M, Mori M, Kondo C, Honji Y, Sun CR, Meng B. Y, Li Y. Q, Kanno A, Nishizawa Y, Hirai A, Shinozaki K and Sugiura M. 1989. The complete sequence of rice(Oryza sativa)chloroplast genome:Intermolecular recombination between distinct tRNA genes accounts for a major plastid DNA inversion during the evolution of the cereals. Mol. Gen. Genet. 217:185-194. 50. Hoot S. B., Culham A. and Crane P. R. 1995. The utility of atpB gene sequences in resolving phylogenetic relationships: comparison with rbcL and 18S ribosomal DNA sequences in the Lardizabalaceae. Ann. Missouri Bot. Gar. 82: 194-208. 51. Johnson R. L. and Chandler B. V. 1985. Ion exchange and absorbent resin for removal of acid and bitter principles from citrus juice. J. Sci. Food Agric. 36(6):480-484. 52. Johnson L. A. and Soltis D. E. 1994. matK DNA sequence and phylogenetic reconstructure in Saxifragaceae s.s. Syst. Botany 19: 143-156. 53. Jung Y. H., Kwon H. M., Kang S. H., Kang J. H., Kim S. C. 2005. Investigation of the phylogenetic relationships within the genus Citrus (Rutaceae) and related species in Korea using plastid trnL-trnF sequences. Sci. Hort. 104: 179-188. 54. Ki W. K., Kim J. K. and Kim M. C. 1973. Studies on naringinase of moulds. Purification of Aspergillus naringinase. Korean J. Food Sci. Technol. 5 (2): 78-83. 55. Kijas J. M. H., Fowler J. C. S. and Thomas M. R. 1995. An evolution of sequence tagged microsatellite site markers for genetic analysis within Citrus and related species. Genome 38: 349-355. 56. Kim K. J. and Jansen R. K. 1995. ndhF sequence evolution and the major clades in the sunflower family. Proceeding of the National Academy of Sciences, USA 92: 10379-10383. 57. Kimura M. 1980. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J. Mol. Evol. 10: 111-120. 58. Kita M, Hirata Y, Moriguchi T, Endo-Inagaki T, Matsumoto R, Hasegawa S, Suhayda C.G., Omura M. 2000. Molecular cloning and characterization of a novel gene encoding limonoid UDP-glucosyltransferase in Citrus. FEBS Lett. 469 (2-3): 173-8. 59. Knight A. I. 2000. Development and validation of a PCR-based heteroduplex assay for the quantitative detection of mandarine juice in processed orange juices. http://www.teknoscienze. com/articles/ afmarapr/1knight.htm. 60. Koca U. 2004. Manipulation of the flavonoid pathway in citrus. PhD. thesis, University of Florida USA. 61. Lee G. J. and Vierling E. 2000. A small heat shock protein cooperates with heat shock protein 70 system to reactivate a heat-denatured protein. Plant Physiol. 122: 189-198. 62. Maier V. P. and Beverly G. D. 1968. Limonin monolactone, the nonbitter precursor responsible for delayed bitterness in certain citrus juices. J. Food Sci. 33: 488-492. 63. Maier V. P., Brewster L. C., Hsu A. C. 1973. Ethylene-accelerated limonoid metabolism in citrus fruit. Process for reducing juice bitterness. J. Agric. Food Chem. 21 (3): 490-495. 64. Michon F., Pozsgay V., Brisson J. R., Jennings H. J. 1989. Substrate specificity of aringinase an α–L-rhamnosidase from Penicillium decumbens. Carbohydr. Res. 194: 321-324. 65. Miller E. G., Gonzales-Sanders A. P., Couvillon A. M., Wright J. M., Hasegawa S., Lam L. K. 1992. Inhibition of hamster buccal pouch carcinogenesis by limonin 17-beta-D-glucopyranoside. Nutr. Cancer 17:1-7. 66. Miller E. G., Porter J.L., Binnie W. H., Guo I. Y., Hasegawa S. 2004. Further studies on the anticancer activity of citrus limonoids. Agric. Food Chem. 52 (15) :4908-4920. 67. Mogensen H. L. 1996. The hows and whys of cytoplasmic inheritance in seed plants. Am. J. Bot. 118: 9-17. 68. Moreira C. D., Gmitter Jr. F. G., Grosser J. W., Huang S., Ortega V. M., Chase C. D. 2002. Inheritance of organelle DNA sequences in a Citrus-Poncirus intergeric cross.American Genetic Association 93: 174-178. 69. Murata T. 1997. Citrus. In: Mitra, S. K. (ed.). 1997. Postharvest physiology and storage of tropical and subtropical fruits. CAB International. P.21-46. 70. Nei M. and Li W. H. 1979. Mathematical model for studying genetic variation in terms of restriction endonucleases. Proc. Natl. Acad. Sci. 76(10): 5269-5273. 71. Nicolosi E., Deng Z. N., Gentile A., Malfa S. L., Continella G., Tribulato E. 2000. Citrus phylogeny and genetic origin of important species as investigation by molecular marker. Theor. Appl. Genet. 100: 1155-1166. 72. Nishikawa K., Okabayashi H., Mitiku S. B., Sawamura M. 2002. Bitter and volatile compounds in ethylene-treated Citrus grandis [L.] osbeck fruits. J. Japan Soc. Hort. Sci. 71 (2): 292-296. 73. Olmsted R. G. and Palmer J. D. 1994. Chloroplast DNA systematics: a review of methods and data analysis. Am. J. Bot 81: 1205-1224. 74. Page R. D. M. and Holmes E. C. 1998. Molecular evolution: A phylogenetic approach. Blackwell Science Inc. 75. Palmer J. D., Jansen R. K., Michaels H. J., Chase M. W., Manhart J. R. 1988. Chloroplast DNA variation and plant phylogeny. Ann Missouri Bot Garden 75: 1180-1206. 76. Pierre T., Ludovic G., Guy P., Jean B. 1991. Universal primers for amplification of three noncoding regions of chloroplast DNA. Plant Mol. Biol 17: 1105-1109. 77. Parsell D. A. and Lindquist S. 1993. The function of heat-shock proteins in stress tolerance: degradation and reactivation of damaged proteins. Annu. Rev. Genet. 27: 437–496. 78. Paulo J. E., Edite M. J. and Jose M. L. 1999. Identification of mandarin hybrids by isozyme and RAPD analysis. Sci. Hortic. 81:287-299. 79. Peterson J. J., Dwyer J. T., Beecher G. R., Bhagwat S. A., Gebhardt S. E., Haytowitz D. B., Holden J. M. 2006. Flavanones in grapefruit, lemons, and limes: A compilation and review of the data from the analytical literature. J. Food Compos. Anal. 19:S66-S73. 80. Poulose S. M., Harris E. D. and Patil B. S. 2005. Citrus limonoids induce apoptosis in human neuroblastoma cells and have radical scavenging activity. J Nutr. 135 (4): 870-7. 81. Puri M., Kaur H. and Kennedy J. F. 2005. Covalent immobilization of naringinase for the transformation of a flavonoid. J. Chem. Technol. Biotechnol 80 (10): 1160-1165. 82. Remero C. 1985. A method for assaying the rhamnosidase activity of naringinase. Anal. Biochem. 19 (1): 1-98. 83. Reboud X. and Zeyi C. 1994. Organelle inheritance in plants. J. Hered 72: 132-140. 84. Richardson J. E, Fay M. F, Cronk Q. C. B, Bowman D., Chase M. W. 2000. A phylogenetic analysis of Rhamnaceae using rbcL and trnL-F plastid DNA sequences. Am. J. Bot. 87 (9): 1309-1324. 85. Rozenzvieg D., Elmaci C., Samach A., Lurie S., Porat R. 2004. Isolation of four heat shock protein cDNAs from grapefruit peel tissue and characterization of their expression in response to heat and chilling temperature stresses. Physiol. Plantarum 121 (3): 421-428. 86. Saunt J. 2000. The pummelo, Citrus varieties of the world.2nd edition. Sinclair Int. Ld. Norwich, England. 98-107. 87. Scotland R. W., Sweere J. A., Reeves P. A., Olmstead R. G. 1995. Higher-level systematics of Acanthaceae determined by chloroplast DNA sequences. Am. J. Bot. 82: 266–275. 88. Scora R. W. 1975. On the history of citrus. Symposium of the Biochemical Systematics, Genetics and Origin of Cultivated Plants. 102 (6):369-375. 89. Shaw J., Lickey E. B., Beck J. T., Farmer S. B., Liu W., Miller J., Siripun K. C., Winder C. T., Schilling E. E., Small R. L. 2005. The tortoise and the hare II: relative utility of 21 noncoding chloroplast DNA sequences for phylogenetic analysis . Am. J. Bot. 92:142-166. 90. Shinozoki K., Ohme M., Tanaka M., Wakasugi T., Hayashida N., Matsubayashi T., Zaita N., Chunwongse J., Obokata J., Yamaguchi-Sinozaki K., Ohto C., Torazawa K., Meng B. Y., Sugita M., Deno H., Kamogashira T., Yamada K., Kusuda J., Takaiwa F., Kato A., Tohdoh N., Shimada H. S. 1986. The complete nucleotide sequence of the tobacco chloroplast genome. Plant Mol. Biol. Rep. 4: 110-147. 91. Steele K. P. and Vilgalys R. 1994. Phylogenetic analyses of Polemoniaceae using nucleotide sequences of the plastid gene matK. Syst. Botany 19: 126–142. 92. Spiegel-Roy P. and Goldschmidt E. E.. 1996. Biology of Citrus. Cambridge University Press, Cambridge. pp. 230. 93. Sun W., Van Montagu M., Verbruggen N. 2002. Small heat shock proteins and stress tolerance in plants. Biochim. Biophys. Acta. 1577: 1–9. 94. Swingle W. T. 1946. The batany of Citrus and it wild relatives in the orange subfamily. The citrus industry 1: 128-474. 95. Swingle W. T. and Reece P. C.. 1967. The botany of citrus and it wild relatives. In. The Citrus Industry, vol.1. ed. Reuther, W., H. J. Webber. and L. D. Batchelor pp.190-430. Berkerly: Division of Agricultural Science, University of California. 96. Taiz L. and Zeiger E. 1991. Plant Physiology. The Benjamin/Cumming Publishing Company. 97. Tanaka T. 1954. Species problems in citus. Japanese Society for the Promotion of Science, Ueno, Tokyo, 152. 98. Tanaka T. 1977. Fundamental discussion of Citrus classification. Stud. Citrol. 14: 1-6. 99. Torres A. M., Soost R. K. and Diedenhofen U. 1978. Leaf isozymes as genetic markers in Citrus. Am. J. Bot. 65: 869-881. 100. Tsen H. Y. and Yu G. K. 1981. Limonin and naringin removal from grapefruit juice with naringingase entrapped in cellulose triacetate fibers. J. Food Sci. 56: 31-34. 101. Vanee B. W., Jelinski N., Berry P. E., Hipp A. L. 2006. Phylogeny and biogeography of Croton alabamensis (Euphorbiaceae), a rare shrub from Texas and Alabama, using DNA sequence and AFLP data. Mol. Ecol. 15 (10): 2735-2751. 102. Wallander E. and Albert V. A. 2001. Phylogeny and classification of Oleaceae based on rps16 and trnL-F sequence data. Am. J. Bot. 87(12):1827-1841. 103. Wang W., Vinocur B., Shoseyov O., Altman A. 2004. Role of plant heat-shock proteins and molecular chaperones in the abiotic stress response. Trends Plant Sci. 9 (5): 244-252. 104. Wanger C. J. Jr., Wilson C. W. III and Shaw P. E. 1988. Reduction of grapefruit bitter components in fluidized β-cyclodextrin polymer bed. J. Food Sci. 53 (2): 51 6. 105. Wanntorp L., Kocyan A. and Renner S. S. 2006. Wax plants disentangled: A phylogeny of Hoya (Marsdenieae, Apocynaceae) inferred from nuclear and chloroplast DNA sequences. Mol. Phylogenet. Evol. 39: 722-733. 106. Walter R., Herbert J. W. and Leon D. B. 1967. The citrus industry. University of California. 107. Waters E. R. 1995. The molecular evolution of the small heat shock protein in plants. Genetics. 141: 785-795. 108. Waters E. R. 2003. Molecular adatpation and the origin of land plants. Mol. Phylogenet. Evol. 29: 456-463. 109. Webber H. J. 1943. Cultivated varities of Citrus. In: H.J. Webber&L.D. Batchelor (ed.), The Citrus Industry 1:475-642. 110. Wolf P. G. 1997. Evaluation of atpB nucleotide sequences for phylogenetic studies ferns and other pteridophytes. Am. J. Bot. 84: 1429-1440. 111. Wolfe, K. H., Li, W. -H. & Sharp, P. M. 1987. Rates of nucleotide substitution vary greatly among plant mitochondrial, chloroplast, and nuclear DNAs. Proc. Natl. Acad. Sci. 84: 9054-9058. 112. Xia X. 2000. Data anaylsis in molecular biology and evolution. Kluwer Academic Publishers. 277 pp. 113. Xia X. and Xie Z. 2001. DAMBE: Data analysis in molecular biology and evolution. J. Hered. 92: 371-373. 114. Xu D. H., Abe J., Kanazawa A., Gai J. Y., Shimamoto Y. 2001. Identification of sequence variations by PCR-RFLP and its application to the evaluation of cpDNA diversity in wild and cultivated soybeans. Theor. Appl. Genet. 102:683–688. 115. Yamamoto M., Kobayashi S., Nakamura Y., Yamada Y. 1993. Phylogenic relationships of Citrus revealed by diversity of cytoplasmic genomes. Fruit Trees Research Station, Okitsu, Japan 39-46. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/30313 | - |
| dc.description.abstract | 柑橘屬植物之發展歷史悠久,過去對其親緣關係研究多根據其外觀型態以及化學特性等進行分類,然而柑橘屬植物之雜交種繁多,且有多種芽條變異而產生之品系,若僅以傳統植物分類方法往往易對其來源或分類有所誤判。近十幾年來因為分子技術進步,以分子標誌對生物重新進行分類上的探討已儼然成為分類學上的重要方法,在植物分類方面最常被使用的標的為葉綠體 DNA,主要是因為葉綠體在大多數植物中皆是母系遺傳,且演化速度較核基因慢,利於遺傳變異的分析,然而柑橘葉綠體中最常被用於親緣關係研究的僅有 trnL-trnL-trnF 非轉譯區域,其他區域鮮少被使用於遺傳變異與親緣關係的研究,因此本研究使用多個柑橘屬植物的核基因以及葉綠體基因進行遺傳變異上的分析並比較其差異。其中葉綠體基因之分析主要著重於其親緣關係之探討,核基因部份則以兩個與柑橘的環境適應和特性表現相關之基因進行研究。
第一部份以柑橘屬植物葉綠體上的9個非轉譯區域進行親緣分析,結果發現過去常被使用的 trnL-trnL-trnF 非轉譯區雖然具有高度的單套基因型歧異度,但在甜橙、葡萄柚和柚類中皆具有相同的單套基因型,僅適用於區分寬皮柑和甜橙。此外,葉綠體 DNA 上不同區域之演化速度不同,因而適用於分析不同種類的柑橘使用,若要得到最佳的區分效果,需要同時使用多個區域進行分析。 第二部份為使用細胞質第一型小分子熱休克蛋白進行其遺傳變異的分析,結果發現於轉譯區域的核酸變異大多為transversion 和 transition,並無 indel 出現,因而其胺基酸序列之保守性相當高。此基因的3’-UTR 有一段 indel 存在,此變異可將柚類、葡萄柚類以及橘柚 (tangelos) 依其原產地和環境適應性的差異進行區分,但在寬皮柑、甜橙、檸檬和萊姆中並無相同之效果,其可能是因為後者之特性較受人類喜愛,且可製造多種的加工產品,所以經過人為大量的進行雜交和配種,生產了許多適合栽種於各種氣候下的品系,造成以 cytosolic classI sHSP 核酸序列不易分群的情形。 第三部份為使用檸檬苦素葡萄糖轉移酶基因進行其遺傳變異的分析。柑橘屬植物中的甜橙類、寬皮柑類和葡萄柚類之檸檬苦素葡萄糖轉移酶多有兩種型態,而柚類中的暹邏柚 (S1) 和沙田柚 (S2) 以及 citron 中的佛手柑 (B1) 僅具單種型態之檸檬苦素葡萄糖轉移酶基因。對 24種柑橘屬植物的檸檬苦素葡萄糖轉移酶基因進行序列分析後發現,柑橘屬植物中之檸檬苦素類化合物的苦味應該是由多個因素所造成,並非僅與檸檬苦素葡萄糖轉移酶基因有關。 | zh_TW |
| dc.description.abstract | The discovery and development of citrus genus has a long history, however, in most of the past studies, citrus classification was mainly based on appearance and chemical characteristics. Citrus hybrids and branch mutations have made us difficult to distinguish their origins and species using traditional methods. Following to the advancement of molecular technology, the molecular markers have become the most important methods at taxonomy in past decade. The cpDNA (chloroplast DNA) has become one of the most useful markers for classification due to its characters such as maternal inheritance and slow evolution, which suitable for genetic variation analysis. The region commonly used for phylogenetic relationship of cpDNA is trnL-trnL-trnF noncoding region. The other regions were less used in the researches of phylogenetic relationship and genetic variation. In this study, nuclear DNA and cpDNA were used for the analysis of genetic variation. The noncoding regions of cpDNA were used to study their phylogenetic relationship. The genetic variation of two nuclear genes related to the environment adatpation and the fruit characteristic after processing were also compared.
In the first part, 9 noncoding regions of cpDNA were used for the analysis of phylogenetic relationship of citrus. It was found out that the trnL intron and trnL-trnF IGS which frequently analyzed in the past showed high haplotype diversity. Nevertheless, the sweet oranges, grapefruits and pummelos have the same haplotype in these regions. Accordingly, both trnL intron and trnL-trnF IGS could only used to distinguish mandarins and sweet oranges. To address different evolutional rates of different regions at cpDNA and accuracy for analysis, we further combined several other DNA sequences. Secondly, the cytosolic classI small heat shock protein (sHSP) was used to analyze citrus genetic variation. It was found that most of the nucleotide variations in the coding regions were transversion and transition, and there was no indel in these regions. Therefore, the amino acid sequences of cytosolic classI sHSP were rather conservative. There was an indel in the 3’-UTR (3’-untranlated region) of this gene. According to this variation, the pummelos, grapefruits and tangelos which originated from different regions and grow in different climates could be distinguished into different groups. Nevertheless, this finding was not similar in the groups of mandarins, sweet oranges, lemons and limes. Latter citrus species were rapidly worldwide distributed and genetically hybridized and adatped to different climate patterns. These situations made the DNA sequences of cytosolic classI sHSP in citrus not an optimum marker for phylogenetic analysis. The final part in this study was to analyze the genetic variation of LGTase (limonoid glucosyltransferase). Most of the citrus, such as sweet oranges, mandarins and grapefruit, have 2 types of LGTase gene. However, 2 pummelos (Siam and Shatianyu) and one citron (Bergamot) only have 1 type of LGTase gene. Comparing the DNA sequences of LGTase from 24 citrus, it was found that the bitterness of limonoids was caused by several other factors instead of LGTase alone, thus its variation did not contribute much on limonoid bitterness. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-13T02:00:54Z (GMT). No. of bitstreams: 1 ntu-96-D92628009-1.pdf: 3362689 bytes, checksum: ee3a09835115801fcd9a30dd52bad778 (MD5) Previous issue date: 2007 | en |
| dc.description.tableofcontents | 謝誌 i
目錄 iii 表目錄 vi 圖目錄 vii 中文摘要 1 Abstract 3 第一章 研究背景與動機 第一節 柑橘屬植物之介紹 5 一、柑橘之起源及栽培歷史 5 二、柑橘之栽種條件 6 三、柑橘之品種 6 四、柑橘屬植物的分佈與產量 7 第二節 柑橘分類之研究 14 ㄧ、柑橘之傳統分類 14 二、柑橘之分子分類 15 第三節 主要研究目的 18 第二章 柑橘屬植物葉綠體與粒線體DNA之分子分類及遺傳歧異性分析 第一節 前言 19 第二節 材料與方法 24 第三節 結果與討論 32 一、結果 (一) trnL intron 以及trnL-trnF IGS 區域之遺傳多樣性分析 32 (二) trnH-psbA IGS 區域之遺傳多樣性分析 33 (三) trnK-matK-trnK intron 區域之遺傳多樣性分析 39 (四) trnM-atpE IGS 和 atpB-rbcL IGS 區域之遺傳多樣性分析 45 (五) rbcL-accD IGS 和 accD-psaI IGS 區域之遺傳多樣性分析 46 二、討論 (一) 葉綠體 DNA 的遺傳變異分析 57 (二) 馴化對遺傳變異的影響 58 (三) 葉綠體基因中最佳親緣關係鑑別區域的選擇 59 第四節 結論 67 第三章 柑橘屬植物小分子熱休克蛋白之遺傳歧異性與其親緣地理分析 第一節 前言 68 第二節 材料與方法 70 第三節 結果與討論 76 一、結果 (一) 柑橘屬植物 cytosolic classI sHSP 之引子對設計 76 (二) 遺傳變異分析 76 (三) 親緣關係分析 78 (四) 中性假說檢定 79 二、討論 (一) 柑橘屬植物 cytosolic classI sHSP 遺傳變異之分析 87 (二) 柑橘屬植物原產地與其遺傳變異之關係 88 (三) 祖先品系與栽種品系之遺傳變異分析 90 第四節 結論 91 第四章 檸檬苦素葡萄糖轉移酶去除柑橘果汁苦味之探討及其基因選殖之研究 第一節 前言 92 第二節 材料與方法 98 第三節 結果與討論 104 一、結果 (一) 檸檬苦素葡萄糖轉移酶基因之型態 104 (二) 遺傳變異分析 104 (三) 親緣關係分析和中性假說檢定 106 二、討論 (一) 柑橘屬植物檸檬苦素葡萄糖轉移酶基因遺傳變異之分析 123 (二) 柑橘屬植物特性與其檸檬苦素葡萄糖轉移酶基因遺傳變異之關係 124 第四節 結論 126 第五章 總結 127 參考文獻 128 附錄一、柑橘試樣之葉綠體 trnL intron 和 trnL-trnF IGS 之排序比對. 140 附錄二、柑橘試樣之葉綠體 trnH-psbA IGS 之排序比對 147 附錄三、柑橘試樣之葉綠體 trnK-matK intron 之排序比對 149 附錄四、柑橘試樣之葉綠體 matK-trnK intron 之排序比對 151 附錄五、柑橘試樣之葉綠體 trnM-atpE IGS 之排序比對 156 附錄六、柑橘試樣之葉綠體 atpB-rbcL IGS 之排序比對 157 附錄七、柑橘試樣之葉綠體 rbcL-accD IGS 之排序比對 162 附錄八、柑橘試樣之葉綠體 accD-psaI IGS 之排序比對 166 附錄九、柑橘試樣之 cytosolic classI sHSP 之排序比對 172 附錄十、柑橘試樣之第一型檸檬苦素葡萄糖轉移酶基因之排序比對 175 附錄十一、柑橘試樣之第二型檸檬苦素葡萄糖轉移酶基因之排序比對 183 | |
| dc.language.iso | zh-TW | |
| dc.subject | 小分子熱休克蛋白 | zh_TW |
| dc.subject | 柑橘 | zh_TW |
| dc.subject | 親緣關係 | zh_TW |
| dc.subject | 葉綠體 | zh_TW |
| dc.subject | chloroplast | en |
| dc.subject | small heat shock protein | en |
| dc.subject | citrus | en |
| dc.subject | phylogenetic | en |
| dc.title | 柑橘屬植物親緣關係及分子演化之研究 | zh_TW |
| dc.title | Studies of Phylogenetic and Molecular Relationship in the Genus Citrus | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 95-2 | |
| dc.description.degree | 博士 | |
| dc.contributor.oralexamcommittee | 何國傑,陳昭瑩,許輔,胡哲明 | |
| dc.subject.keyword | 柑橘,親緣關係,葉綠體,小分子熱休克蛋白, | zh_TW |
| dc.subject.keyword | citrus,phylogenetic,chloroplast,small heat shock protein, | en |
| dc.relation.page | 190 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2007-07-10 | |
| dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
| dc.contributor.author-dept | 園藝學研究所 | zh_TW |
| 顯示於系所單位: | 園藝暨景觀學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-96-1.pdf 未授權公開取用 | 3.28 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
