請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/30312完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 朱浩華(Hao-Hua Chu) | |
| dc.contributor.author | Hao-Ji Wu | en |
| dc.contributor.author | 吳昊極 | zh_TW |
| dc.date.accessioned | 2021-06-13T02:00:52Z | - |
| dc.date.available | 2007-07-16 | |
| dc.date.copyright | 2007-07-16 | |
| dc.date.issued | 2007 | |
| dc.date.submitted | 2007-07-09 | |
| dc.identifier.citation | Bibliography
[1] M. Maroti, B. Kusy, G. Balogh, P. Volgyesi, A. Nadas, K. Molnar, S. Dora, and A. Ledeczi, “Radio-interferometric geolocation,” Proc. 3rd Int’l Confer-ence Conf. Embedded Networked Sensor Systems (SenSys 05), November 2005, pp. 1-12 . [2] B. Kusy, M. Maroti, G. Balogh, P. Volgyesi, J. Sallai, A. Nadas, A. Ledeczi, L. Meertens, “Node Density Independent Localization,” Proc. 5th Int’l Conf. Information Processing in Sensor Networks (IPSN/SPOTS 06), April 2006, pp. 441-448. [3] B. Kusy, Gy. Balogh, A. Ledeczi, J. Sallai, M. Maroti, “inTrack: High Preci-sion Tracking of Mobile Sensor Nodes,” Proc. 4th European Workshop on Wireless Sensor Networks (EWSN 2007), January 2007, pp. 51-66. [4] B. Kusy, J. Sallai, G. Balogh, A. Ledeczi, V. Protopopescu, J. Tolliver, F. DeNap, M. Parang, “Radio Interferometric Tracking of Mobile Wireless Nodes,” Proc. 5th Int’l Conf. Mobile systems, applications and services (MobiSys 07), June 2007. [5] L. Cong and W. Zhuang, “Hybrid TDOA/AOA mobile user location for ide-band CDMA cellular systems,” IEEE Tran. Wireless Communications, vol. 1, no. 3, July 2002, pp. 439-447. [6] N. Patwari, “Relative location estimation in wireless sensor networks,” IEEE Tran. Signal processing, vol. 51, no. 8, Aug. 2003, pp. 2137-2148. [7] D. Niculescu, “Positioning in ad hoc sensor networks,” IEEE Networks, vol. 18, no. 4, July 2004, pp. 24-29. [8] P. Bahl and V. Padmanabhan, “An in building RF-based user location and tracking system,” Proc. Conf. Computer Communications (IEEE Infocom 00), March 2000, pp. 775-784 [9] K. Lorincz and M. Welsh, “Motetrack: A robust, decentralized approach to RF-based location tracking,” Proc. Int’l Workshop on Location- and Con-text-Awareness (LoCA 05) May 2005, pp. 63-82 [10] N. Priyantha, A. Charkraborty, and H.Balakrishnan, “The cricket location support system,” Proc. 6th Int’l Conf. Mobile Computing and Networking (MOBICOM 00), August 2000, pp. 32-43. [11] 3rd Generation Partnership Project, 3GPP TS 05.05, http://www.3gpp.org/. [12] K. R‥omer, “The lighthouse location system for smart dust,” Proc. 1st Int’l Conf. Mobile systems, applications and services (MobiSys 03), May 2003, pp. 15-30. [13] R. Stoleru, T. He, J. a. Stankovic, and D. Luebke, “A high-accuracy, lowcost localization system for wireless sensor networks,” Proc. 3rd Int’l Conference Conf. Embedded Networked Sensor Systems (SenSys 05), November 2005, pp. 13-26 . [14] T. He, C. Huang, B. M. Blum, J. A. Stankovic, and T. Abdelzaher, “Range-Free Localization Schemes in Large-Scale Sensor Networks,”. Proc. 9th annual Int’l Conf. Mobile computing and networking (MOBICOM 03), September 2003, pp. 81-95. [15] G. Zhou, T. He, and J. A. Stankovic, “Impact of Radio Irregularity on Wire-less Sensor Networks,” Proc. 2rd Int’l Conf. Mobile systems, applications and services (MobiSys 04), June 2004, pp. 125-138. [16] L. Girod, M. Lukac, V. Trifa, and D. Estrin, 'The design and implementation of a self-calibrating acoustic sensing platform,' Proc. 4th Int'l Conference Conf. Embedded Net-worked Sensor Systems (SenSys 06), October 2006, pp.71-84. [17] A. Savvides, C. C. Han, and M. B. Srivastava, 'Dynamic Fine-grained Lo-calization in Ad-Hoc Networks of Sensors,' Proc. 7th annual Int'l Conf. Mo-bile computing and net-working (MOBICOM 01), July 2001, pp. 166-179. [18] N. Patwari, A. O. Hero III, M. Perkins, N. S. Correal, R. J. O'Dea, “Relative location estimation in wireless sensor networks,” IEEE Tran. Signal Process, Special Issue on Signal Processing in Networking, vol. 51, no. 9, Aug. 2003, pp. 2137-2148. [19] N. Dragos, and B. Nath, “Ad hoc positioning system (APS) using AoA,” Proc. Conf. Computer Communications (IEEE Infocom 03), April 2003, pp.1734-1743. [20] RIPS, http://tinyos.cvs.sourceforge.net/tinyos/tinyos-1.x/contrib/vu/apps/RipsOneHop/ | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/30312 | - |
| dc.description.abstract | 「定位精準度」是評量一個定位系統效能最重要的指標,在現存的各種定位系統中,「無線電波干涉定位法(Radio Interferometric Positioning, RIP)」是少數可以達到公分尺度精準度的定位系統。在這篇畢業論文中,我們動態選擇環境中已知位置的感應點當作無線電波的發射點,藉此改善對於多個目標同時定位時的定位精準度。我們建立了一個誤差估計模型,這個模型可以預測使用任何發射點組合時的定位誤差。利用這個誤差估計模型,我們發展出「適性的無線電波干涉定位法(Adaptive RIP)」,可以根據定位目標的位置選擇最佳的發射點組合。我們實做Adaptive RIP,並且在實際環境中實驗。根據我們的實驗結果,不管在單一目標或是多個目標,Adaptive RIP的定位精準度都比原本的RIP好,平均定位精準度進步了47%~60%。 | zh_TW |
| dc.description.abstract | One of the most important performance objectives for a localization system is positional accuracy. It is fundamental and essential to general location-aware services. The radio interferometric positioning (RIP) method [1] is an exciting ap-proach which promises sub-meter positional accuracy. In this work, we would like to enhance the RIP method by dynamically selecting the best anchor nodes as beacon senders, and further optimizing the positional accuracy when tracking multiple targets. We have developed an estimation error model to predict posi-tional error of the RIP algorithm given different combinations of beacon senders. Building upon this estimation error model, we further devise an adaptive RIP method that selects the optimal sender-pair combination (SPC) according to the locations of targets relative to anchor nodes. We have implemented the adaptive RIP method and conducted experiments in a real sensor network testbed. Experi-mental results have shown that our adaptive RIP method outperforms the static RIP method in both single-target and multi-target tracking, and improves the av-erage positional accuracy by 47%~60% and re-duces the 90% percentile error by 55%~61%. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-13T02:00:52Z (GMT). No. of bitstreams: 1 ntu-96-R94922032-1.pdf: 650272 bytes, checksum: 7b7e71adb59688a95dc1778ef5d8433a (MD5) Previous issue date: 2007 | en |
| dc.description.tableofcontents | Contents
Contents 1 List of Figures 2 List of Tables 3 Chapter 1 Introduction 5 Chapter 2 Background on the Radio Interferometric Positioning (RIP) 7 Chapter 3 Estimation Error Model 15 Chapter 4 Design of the Adaptive RIP Method 27 Chapter 5 Implementation of the Adaptive RIP System 31 Chapter 6 Experimental Results 33 Chapter 7 Related Work 39 Chapter 8 Conclusion and Future Work 43 Bibliography 45 | |
| dc.language.iso | en | |
| dc.subject | 最佳化 | zh_TW |
| dc.subject | 雙曲線 | zh_TW |
| dc.subject | 感測網路 | zh_TW |
| dc.subject | 定位系統 | zh_TW |
| dc.subject | 無線電波干涉現象 | zh_TW |
| dc.subject | 測距 | zh_TW |
| dc.subject | 模型化 | zh_TW |
| dc.subject | Sensor Networks | en |
| dc.subject | Hyperbolic Curve | en |
| dc.subject | Optimizing | en |
| dc.subject | Modeling | en |
| dc.subject | Ranging | en |
| dc.subject | Radio Interferometry | en |
| dc.subject | Positioning System | en |
| dc.title | 利用雙曲線的幾何特性對於適性無線電波干涉定位系統的定位精準度進行模型化與最佳化 | zh_TW |
| dc.title | Modeling and Optimizing Positional Accuracy based on Hyperbolic Geometry for the Adaptive Radio Interferometric Positioning System | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 95-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 黃寶儀(Polly Huang),王傑智(Chieh-Chih Wang),許永真(Jane Yung-jen Hsu),廖世偉(Shih-Wei Steve Liao) | |
| dc.subject.keyword | 感測網路,定位系統,無線電波干涉現象,測距,模型化,最佳化,雙曲線, | zh_TW |
| dc.subject.keyword | Sensor Networks,Positioning System,Radio Interferometry,Ranging,Modeling,Optimizing,Hyperbolic Curve, | en |
| dc.relation.page | 47 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2007-07-10 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 資訊工程學研究所 | zh_TW |
| 顯示於系所單位: | 資訊工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-96-1.pdf 未授權公開取用 | 635.03 kB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
