請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/30283完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陳宜廷(Yi-Ting Chen) | |
| dc.contributor.author | Chun-Yao Chao | en |
| dc.contributor.author | 趙俊堯 | zh_TW |
| dc.date.accessioned | 2021-06-13T01:48:50Z | - |
| dc.date.available | 2010-07-16 | |
| dc.date.copyright | 2007-07-16 | |
| dc.date.issued | 2007 | |
| dc.date.submitted | 2007-07-10 | |
| dc.identifier.citation | [1] Alexander, C., and E., Lazar, (2004). Time aggregation of normal
mixture GARCH models, Proceedings of Second IASTED International Conference Financial Engineering and Applications. No. 8-10. Cambridge, MA. [2] Azzalini, A., (1985), A. A class of distributions which includes the normal ones, Scandinavian Journal of Statistics, 12, 171-178. [3] Barndorff-Nielsen, O., J., Kent and M., Sørensen, (1982). Normal variance-mean mixture and z distributions, International Statistical Review, 50, 145-159. [4] Bekaert, G. and G., Wu, (2000). Asymmetric volatility and risk in equity markets, Review of Financial Studies, 13, 1-42. [5] Black, F., (1976). Studies of stock price volatility changes, Proceedings of the 1976 Meetings of the American Statistical Association, Business and Economical Statistics Section. 177-181. [6] Blanchard, O.J. and M., Watson, 1982. Bubbles, rational expectations, and financial market. Crises in Economic and Financial Structure. Lexington Books, Lexington, MA, 295-315. [7] Campbell, J.Y. and L., Hentschel, (1992). No news is good news. An asymmetric model of changing volatility in stock returns, Journal of Financial Economics, 31, 281-318. [8] Charoenrook, A. and H., Daouk, (2004). Conditional skewness of aggregate market returns, Working paper. [9] Chen, J., H., Hong and J.C., Stein, (2001). Forecasting crashes: Trading volume, past returns and conditional skewness in stock prices, Journal of Financial Economics, 61, 345-381. [10] Christie, A.A., (1982). The stochastic behavior of common stock variances, Journal of Financial Economics, 10, 407-432. [11] French, K.R., G.W., Schwert and R.F., Stambough, (1987). Expected stock returns and volatility, Journal of Financial Economics, 19, 3-29. [12] Glosten, L.R., R., Jagannathan and D.E., Runkle, (1993). On the relation between the expected value and the volatility of the normal excess return on stocks, The Journal of Finance, 48, 1779- 1801. [13] Greene, W.H., (2003). Econometric Analysis, Fifth Edition. Prentice Hall, New Jersey. [14] Guidolin, M. and A., Timmermann, (2006). Optimal portfolio choice under regime switching, skew and kurtosis preferences, Working paper. The federal reserve bank of St. Louis. [15] Hansen, B.E., (1994). Autoregressive conditional density estimation, International Economic Review, 35, 705-730. [16] Harvey, C.R. and A., Siddique, (1999). Autoregressive conditional skewness, Journal of Financial and Quantitative Analysis 34, 465-487. [17] Harvey, C.R. and A., Siddique, (2000a). Conditional Skewness in Asset Pricing Tests, The Journal of Finance, bf 55, 1263-1295. [18] Harvey, C.R. and A., Siddique, (2000b). Time-Varying Conditional Skewness and the Market Risk Premium, Research in Banking and Finance, 1, 27-60. [19] Hashmi, A.R. and A.S., Tay, (2007). Global and regional sources of risk in equity markets: Evidence from factor models with time varying conditional skewness, Journal of International Money and Finance, 26, 430-453. [20] Hong, H. and J.C., Stein, (2003). Differences of opinion, short sales constraints and market crashes, Review of Financial Studies, 16, 487-525. [21] Hueng, C.J., (2006). Short-sales constraints and stock return asymmetry: Evidence from the Chinese stock markets, Applied Financial Economics, 16:10, 707-716. [22] Hueng, C.J., and J.B., McDonald, (2005). Forecasting asymmetries in aggregate stock market returns: Evidence from conditional skewness, Journal of Empirical Finance, 12, 666-685. [23] Jokipii, T., (2006). Forecasting market crashes: Further international evidence, Discussion paper. Bank of Finland Research. [24] Jondeau, E. and M., Rockinger, (2003). Entropy densities with an application to autoregressive conditional skewness and kurtosis, Journal of Econometrics, 106, 119-142. [25] Korkie, B., R., Sivakumar and H.J., Turtle, (2006). Variance spillover and skewness in financial asset returns, The Financial Review , 41, 139-156. [26] Lanne, M. and P., Saikkonen, (2007). A Multivariate Generalized Orthogonal Factor GARCH Model, Journal of Business and Economic Statistics, 25, 61-75. [27] Le′on, A., G., Rubio, and G., Serna, (2005). Autoregressive volatility, skewness and kurtosis, The Quarterly Review of Economics and Finance, 45, 599-618. [28] Luca, G.D., M., Genton and N., Loperfido, (2006). The multivariate skew GARCH model, Advances in Econometrics: Econometric Analysis of Economic and Financial Time Series, 20A, 33-58. [29] Nelson, D.B., (1991). Conditional heteroskedasticity in asset return: a new approach, Econometrica , 59, 347-370. [30] Patton, A.J., (2004). On the out-of-sample importance of skewness and asymmetric dependence for asset allocation, Journal of Financial Econometrics, 2(1), 130-168. [31] Pindyck R.S., (1984). Risk, inflation and the stock market, The American Economic Review , 74, 335-351. [32] Poterba, J.M. and L.H., Summers, (1986). The persistence of volatility and stock market fluctuations, The American Economic Review , 76, 1142-1151. [33] Ramsey, J.B., (1969). Tests for Specification Errors in Classical Linear Least Squares Regression Analysis, Journal of Royal Statistical Society B, 32, 350-371. [34] Schwert, G.W., (1989). Why does stock market volatility change over time ?, The Journal of Finance, 44, 1115-1153. [35] Shannon, C.E., (1948). A mathematical theory of communication, The Bell System Technical Journal, 27, 379-423 and 623- 656. [36] Theodossiou, P., (1998). Financial data and the skewed generalized t distribution, Management Science, 44, 1650-1661. [37] Wang, K.L., C., Fawson, C., Barrett, and J.B., McDonald, (2001). A flexible parametric GARCH model with an application to exchange rates, Journal of Applied Econometrics, 16, 521-536. [38] Wooldridge, J.M., (1990). A unified approach to robust regression-based specification tests, Econometric Theory, 6, 17- 43. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/30283 | - |
| dc.description.abstract | 近來已有不少實證研究嘗試利用泡沫理論以及異質性投資者理論來預測股價指數報酬率的非對稱性。然而,這些實證研究並未得到一致的結論。在本論文中,我們注意到這兩項經濟理論或許可用來預測波動度非對稱性,但是未必可用於預測報酬率分配的非對稱性。我們藉由Hansen (1994) 的自我迴歸條件分配 (ARCD 模型),搭配不同的非對稱條件變異設定方式進一步驗證我們的論點。 | zh_TW |
| dc.description.abstract | There are certain recent studies that attempt to predict return asymmetry using the bubble theory and the investor - heterogeneity theory. However, their empirical findings are not conclusive. In this thesis, we demonstrate that these economic theories may be useful for predicting volatility asymmetry but not necessarily useful for predicting return asymmetry. We also examine this point by applying the autoregressive conditional density models of Hansen~(1994,
International Economic Review, 705--730) with various volatility asymmetry specifications to an empirical study of stock index returns, and find that the empirical results are consistent with our viewpoint. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-13T01:48:50Z (GMT). No. of bitstreams: 1 ntu-96-R93723002-1.pdf: 353668 bytes, checksum: 6ddd7220a941df5a8fa4fc91eb1fa0d7 (MD5) Previous issue date: 2007 | en |
| dc.description.tableofcontents | 1 Introduction 1
2 The Economic Hypotheses 5 2.1 The Leverage Effect . . . . . . . . . . . .. . . . . . 5 2.2 The Volatility-Feedback Effect . . . . . . . . . . . . . 5 2.3 The Bubble Theory . . . . . . . . . . . . . . . .. . . 6 2.4 The Investor-Heterogeneity Theory . . . . . . . . . . . 7 3 The Autoregressive Conditional Density Models 9 4 The Empirical Study 13 4.1 Model Specifications . . . . . . . . . . . . . . . . . 13 4.2 Data and Empirical Results . . . . . . . . . . . . . . 17 5 Conclusions 27 A Appendix: Gauss Code for Estimating the ARCD Model 32 | |
| dc.language.iso | en | |
| dc.subject | 波動非對稱性 | zh_TW |
| dc.subject | 報酬率非對稱性 | zh_TW |
| dc.subject | return asymmetry | en |
| dc.subject | volatility asymmetry | en |
| dc.title | 報酬率非對稱性與波動度非對稱性之實證研究 | zh_TW |
| dc.title | An Empirical Study on Volatility Asymmetry and Return Asymmetry | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 95-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.coadvisor | 管中閔(Chung-Ming Kuan) | |
| dc.contributor.oralexamcommittee | 何泰寬(Tai-Kuang Ho) | |
| dc.subject.keyword | 波動非對稱性,報酬率非對稱性, | zh_TW |
| dc.subject.keyword | volatility asymmetry,return asymmetry, | en |
| dc.relation.page | 35 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2007-07-10 | |
| dc.contributor.author-college | 管理學院 | zh_TW |
| dc.contributor.author-dept | 財務金融學研究所 | zh_TW |
| 顯示於系所單位: | 財務金融學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-96-1.pdf 未授權公開取用 | 345.38 kB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
