請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/30282
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 廖中明(Chung-Min Liao) | |
dc.contributor.author | Szu-Chieh Chen | en |
dc.contributor.author | 陳詩潔 | zh_TW |
dc.date.accessioned | 2021-06-13T01:48:47Z | - |
dc.date.available | 2008-07-19 | |
dc.date.copyright | 2007-07-19 | |
dc.date.issued | 2007 | |
dc.date.submitted | 2007-07-09 | |
dc.identifier.citation | Amaku M, Coutinho FA, Azevedo RS, Burattini MN, Lopez LF, Massad E. Vaccination against rubella: analysis of the temporal evolution of the age-dependent force of infection and the effects of different contact patterns. Physical Review. E, Statistical, nonlinear, and soft matter physics 2003; 67: 051907.
Anderson RM, Fraser C, Ghani AC, Donnelly CA, Riley S, Ferguson NM, Leung GM, Lam TH, Hedley AJ. Epidemiology, transmission dynamics and control of SARS: the 2002-2003 epidemics. Philosophical Transactions of the Royal Society B 2004; 359: 1091-1105. Anderson RM, May RM. 1991. Infectious diseases of humans: Dynamics and control. UK: Oxford University Press. Anderson RM, May RM. Age-related changes in the rate of disease transmission: implications for to design of vaccination programmes. Journal of Hygiene 1985; 94: 365-436. Anderson RM. 1982. The population dynamics of infectious diseases: theory and applications. London, New York, Chapman and Hall. Armstrong C, Hopkins R. An epidemiologic study of the 1920 epidemic of influenza in an isolated rural community. Public Health Reports 1921; 36: 1671-1702. Balazy A, Toivola M, Adhikari A, Sivasubramani SK, Reponen T, Grinshpun SA. Do N95 respirators provide 95% protection level against airborne viruses, and how adequate are surgical masks? American Journal of Infection Control 2006a; 34: 51-57. Balazy A, Toivola M, Reponen T, Podgorski A, Zimmer A, Grinshpun SA. Manikin-based performance evaluation of N95 filtering-face piece respirators challenged with nanoparticles. Annual of Occupational Hygiene 2006b; 50: 259-269. Bauch CT, Srinivasa ASR, Pham BZ, Krahn M, Gilca V, Duval B, Chen MH, Tricco AC. A dynamic model for assessing universal hepatitis A vaccination in Canada. Vaccine 2007; 25: 1719-1726. Beggs CB, Noakes CJ, Sleigh PA, Flethcer LA, Kerr KG.. Methodology for determining the susceptibility of airborne microorganisms to irradiation by an upper-room UVGI system. Journal of Aerosol Science 2006; 37: 885-902. Bellini WJ, Helfand RF. The challenges and strategies for laboratory diagnosis of measles in an international setting. Journal of Infection Disease 2003; 187: S283-S290. Bloch AB, Orenstein WA, Ewing WM, Spain WH, Mallison GF, Herrmann KL, Hinman AR. Measles outbreak in a pediatric practice: airborne transmission in an office setting. Pediatrics 1985; 75: 676-683. Boswell TC, Fox PC. Reduction in MRSA environmental contamination with p portable HEPA-filtration unit. Journal of Hospital Infection 2006; 63: 47-54. Brookmeyer, R., Johnson, E., Bollinger, R. Modeling the optimum duration of antibiotic prophylaxis in an anthrax outbreak, Proceedings of the National Academy of Sciences of the United States of America 2003; 100: 10129-10132. Brookmeyer, R., Johnson, E., Bollinger, R. Public health vaccination policies for containing an anthrax outbreak, Nature, 2004; 432: 901-904. Chiang, C.L. Competing risks in mortality analysis, Annual Review Public Health 1991; 12: 281-307. Chin DY, Foley JF, Doto IL, Gravelle CR, Weston J. Morbidity and mortality characteristics of Asian strain influenza. Public Health Reports 1960; 75: 148-158. Chiu HH, Lee CY, Chih TW, Lee PI, Chang LY, Lin YJ, Hsu CM, Huang LM. Seroepidemiological study of measles after the 1992 nationwide MMR revaccination program in Taiwan. Journal of Medical Virology 1997; 51: 32-35. Chowell G, Ammon CE, Hengartner NW, Hyman JM. Transmission dynamics of the great influenza pandemic of 1918 in Geneva, Switzerland: Assessing the effects of hypothetical interventions. Journal of Theoretical Biology 2006; 241: 193-204. Chowell G, Castillo-Chavez C, Fenimore PW, Kribs-Zaleta CM, Arriola L, Hyman JM. Model parameters and outbreak control for SARS. Emerging Infectious Disease 2004; 10: 1258-1263. Chowell G, Fenimore PW, Castilo-Garsow MA, Castillo-Chavez C. SARS outbreaks in Ontario, Hong Kong and Singapore: the role of diagnosis and isolation as a control mechanism. Journal of Theoretical Biology 2003; 224: 1-8. Construction and Planning Agency, Ministry of Interior, ROC (http://www.cpami.gov.tw/pwi/br/br_26-1.php). Crowe JE. Influence of maternal antibodies on neonatal immunization against respiratory viruses. Clinical Infection Disease 2001; 33: 1720-1727. Dee SA, Batista L, Deen J, Pijoan C. Evaluation of system for reducing the transmission of Porcine reproductive and respiratory syndrome virus by aerosol. Canadian Journal of Veterinary Research 2006a; 70: 28-33. Dee SA, Deen J, Cano JP, Batista L, Pijoan C. Further evaluation of alternative air-filtration systems for reducing the transmission of Porcine reproductive and respiratory syndrome virus by aerosol. Canadian Journal of Veterinary Research 2006b; 70: 168-175. Department of Statistics, Minister of the Interior, ROC (http://www.mio.gov.tw/stat/) Derrick JL, Li PTY, Tang SPY, Gomersall CD. Protecting staff against airborne viral particles: in vivo efficiency of laser masks. Journal of Hospital Infection 2006; 64: 278-281. Dowdle WR. Influenza pandemic periodicity, virus recycling, and the art of risk assessment. Emerging Infectious Disease 2006; 12: 34-39. Duke T, Mgone CS. Measles: not just another viral exanthem. The Lancet 2003; 361: 763-773. Dunn FL, Carey DE, Cohen A, Martin JD. Epidemiologic studies of Asian influenza in a Louisiana Parish. American Journal of Hygiene 1959; 70: 351-371. Dyer DL, Shinder A, Shinder F. Alcohol-free instant hand sanitizer reduces elementary school illness absenteeism. Family Medicine 2000; 32: 633-638. Eckmanns T, Ruden H, Gastmeier P. The influence of high-efficiency particulate air filtration on mortality and fungal infection among highly immunosuppressed patients: a systematic review. Journal of Infectious Disease 2006; 193: 1408-1418. Edmunds WJ, Callaghan CJ, Nokes DJ. Who mixes with whom? A method to determine the contact patterns of adults that may lead to the spread of airborne infections. Proceeding of the Royal Society of London Series B 1997; 264: 949-957. Edmunds WJ, Gay NJ, Kretzschmar M, Pebody RG, Wachmann H. The pre-vaccination epidemiology of measles, mumps and rubella in Europe: implications for modelling studies. Epidemiology and Infections 2000a; 125: 635-650. Edmunds WJ, van de Heijden OG, Eerola M, Gay NJ. Modelling rubella in Europe. Epidemiology and Infections 2000b; 125: 617-634. Enders JF, Katz SL, Milovanovic MV, Holloway A. Studies on an attenuated measles-virus vaccine. I. Development and preparations of the vaccine: technics for assay of effects of vaccination. New England Journal of Medicine 1960; 263: 153-159. Enders JF, Peebles TC. Propagation in tissue cultures of cytopathic agents from patients with measles. Proceedings of the Society for Experimental Biology and Medicine 1954; 86: 277-286. Farrington CP. Modeling force of infection for measles, mumps and rubella. Statistics in Medicine 1990; 9: 953-967. Fennelly KP, Davidow AL, Miller SL, Connell N, Ellner JJ. Airborne infection with Bacillus anthracis - from mills to mail. Emerging Infectious Disease 2004; 10: 996-1001. Fennelly KP, Nardell EA. The relative efficacy of respirators and room ventilation in prevention occupational tuberculosis. Infection Control and Hospital Epidemiology 1998; 19: 754-759. Ferguson NM, Cummings DA, Cauchemez S, Fraser C, Riley S, Meeyai A, Iamsirithaworn S, Burke DS. Strategies for containing an emerging influenza pandemic in Southeast Asia. Nature 2005; 437: 209-214. Ferguson NM, Keeling MJ, Edmunds WH, gain R, Grenfell BT, Anderson RM, Leach S. Planning for smallpox outbreaks. Nature 2003a; 425: 681-685. Ferguson NM, Mallett S, Jackson H, Roberts N, Ward P. A population-dynamic model for evaluating the potential spread of drug-resistant influenza virus infections during community-based use of antivirals. The Journal of Antimicrobial Chemotherapy 2003b; 51: 977-990. Flahault A, Vergu E, Coudeville L, Grais RF. Strategies for containing a global influenza pandemic. Vaccine 2006; 24: 6751-6755. Fox JP, Hall CE, Cooney MK, Foy HM. Influenzavirus infections in Seattle families, 1975-1979. American Journal of Epidemiology 1982; 116: 212-227. Fraser C, Riley S, Anderson RM, Ferguson NM. Factors that make an infectious disease outbreak controllable. Proceedings of the National Academy of Sciences of the United States of America 2004; 101: 6146-6151. Fujieda M, Maeda A, Kondo K, Kaji M, Hirota Y. Inactivated influenza vaccine effectiveness in children under 6 years of age during the 2002-2003 season. Vaccine 2006; 24: 957-963. Gani R, Leach S. Transmission potential of smallpox in contemporary populations. Nature 2001; 414: 748-751. Germann TC, Kadau K, Longini IM, Macken CA. Mitigation strategies for pandemic influenza in the United States. Proceeding of the National Academy of Scienes of the United States of America 2006; 103: 5935-5940. Glass K, Kappey J, Grenfell BT. The effect of heterogeneity in measles vaccination on population immunity. Epidemiology and Infections 2004; 132: 675-683. Glezen WP, Couch RB. Interpandemic influenza in the Housion area, 1974-76. New England Journal of Medicine 1978; 298: 587-592. Glezen WP, Taber LH, Frank AL, Gruber WC, Piedra PA. Influenza virus infections in infants. Pediatric Infection Disease Journal 1997; 16: 1065-1068. Glikmann G, Petersen I, Mordhorst C. Prevalence of IgG-antibodies to mumps and measles virus in nonvaccinated children. Danish Medical Bulletin 1988; 35: 185-187. Grenfell BT, Anderson RM. The estimation of age related rates of infection from case notifications and serological data. Journal of Hygiene 1985; 95: 419-436. Gumel AB, Ruan S, Day T, Watmough J, Brauer F, van den Driessche P, Gabrielson D, Bowman C, Alexander ME, Ardal S, Wu J, Sahai BM. Modeling strategies for controlling SARS outbreaks. Proceedings of the Royal Society of London Series B 2004; 271: 2223-2232. Gustafson TL, Lavely GB, Brawner Jr ER, Hutcheson Jr RH, Wrigt PF, Schaffner W. An outbreak of airborne nosocomial varicella. Pediatrics 1982; 70: 550-556. Heikkinen T, Silvennoinen H, Peltola V, Ziegler T, Vainionpaa R, Vuorinen T, Kainulainen L, Puhakka T, Jartti T, Toikka P, Lehtinen P, Routi T, Juven T. Burden of influenza in children in the community. Journal of Infectious Disease 2004; 190: 1369-1373. Hilleman MR. Realities and enigmas of human viral influenza: pathogenesis, epidemiology and control. Vaccine 2002; 20: 3068-3087. Huang CL, Yang YH, Wang LC, Lin YT, Tsai YY, Chiang BL. Humoral and cellular immune response after measles vaccination in Taiwan. The Journal of Microbiology, Immunology and Infect 2005; 38: 169-175. ICRP. 1994. Human respiratory tract model for radiological protection, a report of task group of the International Commission on Radiological Protection. ICRP Publication, vol. 66. New York: Elsevier. Izurieta HS, Thompson WW, Kramarz P, Shay DK, davis RL, DeStefano F, et al. Influenza and the rates of hospitalization for respiratory disease among infants and young children. The New England Journal of Medicine 2000; 342: 232-239. Jorden EO. Influenza in three Chicago groups. Journal of Infection Disease 1919; 25: 74-95. Kanaan MN, Farrington CP. Matrix models for childhood infections: a Bayesian approach with applications to rubella and mumps. Epidemiology and Infections 2005; 133: 1009-1021. Kermack WO, McKendrick AG. A contribution to the mathematical theory of epidemics. Proceedings of the Royal Society of London Series A 1927; 115: 700-721. Kilbourne ED. Influenza pandemics of the 20th century. Emerging Infectious Disease 2006; 12: 9-14. Kujundzic E, Matalkah F, Howard CJ, Hernandez M, Miller SL. UV air cleaners and upper-room air ultraviolet germicidal irradiating for controlling airborne bacteria and fungal spores. Journal of Occupational and Environmental Hygiene 2006; 3: 536-546. Ladegaard MB, Stage V. Hand-hygiene and sickness among small children attending day care centers. An intervention study. Ugeskrift for Laeger 1999; 161: 4396-4400. Lee MS, Chien LJ, Yueh YY, Lu CF. Measles seroepidemiology and decay rate of vaccine-induced measles IgG titers in Taiwan, 1995-1997. Vaccine 2001; 19: 4644-4651. Lee MS, King CC, Chen CJ, Yang SY, Ho MS. Epidemiology of measles in Taiwan: dynamics of transmission and timeliness of reporting during an epidemic in 1988-9. Epidemiology of Infections 1995; 114: 345-359. Lee MS, King CC, Jean JY, Kao CL, Wang CC, Ho MS, Chen CJ, Lee GCY. Seroepidemiology and evaluation of passive surveillance during 1988-1989 measles outbreak in Taiwan. International Journal of Epidemiology 1992; 21: 1165-1174. Lee MS, Nokes DJ, Hsu HM, Lu CF. Protective titres of measles neutralizing antibody. Journal of Medicine Virology 2000; 62: 511-517. Lee MS, Nokes DJ, Wu YC, Huang YH, Lu CF. Measles IgG seroprevalence prior to mass vaccination in Taiwan. International Journal of Infectious Disease 2002; 6: 42-47. Lee VJ, Chen MI. 2007. Effectiveness of neuraminidase inhibitors for preventing staff absenteeism during pandemic influenza. Emerging Infectious Diseases 13; 449-457. Li Y, Duan S, Yu IT, et al. Multi-zone modeling of probable SARS virus transmission by airflow between flats in Block E, Amoy gardens. Indoor Air 2005; 15: 96-111. Li Y, Huang X, Yu IT, et al. Role of air distribution in SARS transmission during the largest nosocomial outbreak in Hong Kong. Indoor Air 2005; 15: 83-95. Li Y, Leung GM, Tang JW, Yang X, CHao CYH, Lin JZ, Lu JW, Nielsen PV, Niu J, Qian H, Sleigh AC, Su HJJ, Sundell J, Wong TW, Yuen PL. Role of ventilation in airborne transmission of infectious agents in the built environment-a multidisciplinary systematic review. Indoor Air 2007; 17: 2-18. Liao CM, Chang CF, Liang HM. A probabilistic transmission dynamic model to assess indoor airborne infection risks. Risk Analysis 2005; 25: 1097-1107. Lipsitch M, Cohen T, Cooper B, Robins JM, Ma S, Janmes L, Gopalakrishna G, Chew SK, Ten CC, Samore MH, Fisman D, Megan M. Transmission dynamics and control of severe acute respiratory syndrome. Science 2003; 300: 1966-1970. Liu CC, Lei HY, Chiang YP. Seroepidemiology of measles in southern Taiwan: Two years after implementation of the Measles elimination program. Journal of the Formosa Medicine Association 1996; 95: 37-40. Longini IM, Halloran ME, Nizam A, Yang Y. Containing pandemic influenza with antiviral agents. American Journal of Epidemiology 2004; 159: 623-633. Longini IM, Nizam A, Xu SF, Ungchusak K, Hanshaoworakul W, Cummings DAT, Halloran ME. Containing pandemic influenza at the source. Science 2005; 309: 1083-1087. Luke CJ, Subbarao K. Vaccines for pandemic influenza. Emerging Infectious Disease 2006; 12: 66-72. Luz PM, Codeco CT, Werneck GL, Struchiner CJ. A modeling analysis of pertussis transmission and vaccination in Rio de Janeiro, Brazil. Vaccine 2006; 134: 850-862. Manfredi P, Williams JR, Ciofidegliatti ML, Salmaso S. Measles elimination in Italy: projected impact of the national elimination plan. Epidemiology and Infections 2005; 133: 87-97. Massad E, Burattini MN, Coutinho FAB, Lopez LF. The 1918 influenza A epidemic in the city of Sap Paulo, Brazil. Medical Hypotheses 2007; 68: 442-445. Master D, Longe SH, Dickson H. Scheduled hand washing in an elementary school population. Family Medicine 1997; 29: 336-339. Matthews L, Woolhouse M. New approaches to quantifying the spread of infection. Nature Review Microbiology 2005; 3: 529-536. Melker HDE, Pebody RG, Edmunds WJ, Levy-Bruhl D, Valle M, Rota MC, Salmaso S, van den Hof S, Berbers G, Saliou P, Conyn-van Spaendonck M, Crovari P, Davidkin I, Gabutti G, Hesketh L, Morgan-Capner P, Plesner AM, Raux M, Tischer A, Miller E. The seroepidemiology of measles in Western Europe. Epidemiology and Infections 2001; 126: 249-259. Menzies D, Fanning A, Yuan L, FitzGerald JM. Hospital ventilation and risk for tuberculous infection in Canadian health care workers. Annual International Medicine 2000; 133: 779-789. Mills CE, Robins JM, Lipsitch M. Transmissibility of 1918 pandemic influenza. Nature 2004; 432: 904-906. Monto AS, Comanor L, Shay DK, Thompson WW. 2006. Epidemiology of pandemic influenza: use of surveillance and modeling for pandemic preparedness. The Journal of Infectious Diseases 2006; 194: S92-97. Monto AS. Vaccines and antiviral drugs in pandemic preparedness. Emerging Infectious Disease 2006; 12: 55-60. Morgan-Capner P, Wright J, Miller L, Miller E. Surveillancee of antibody to measles, mumps and rubella by age. British Medical Journal 1988; 297: 770-772. Moser MR, Bender TR, Margolis HS, Noble GR, Kendal AP, Ritter DG. An outbreak of influenza aboard a commercial airliner. American Journal of Epidemiology 1979; 110: 1-6. Moss WJ, Griffin DE. Global measles elimination. Nature Reviews 2006; 4: 900-908. Munoz FM. Influenza virus infection in infancy and early childhood. Pediatric Respiratory Reviews 2003; 4: 99-104. Murphy BR, Webster RG. “Orthomyxovirus.” In: Fields BN, Knipe DM, Howley PM, et al., eds. Virology. 3rd ed. Philadelphia, Pa: Lippincott-Raven Publishers; 1996: 1409-1432. Murray JD. 1989. Mathematical Biology, Springer-Verlag Press. Nelson KE and Williams CM. 2007. Infectious Disease Epidemiology: Theory and Practice. Second edition. Jones and Bartlett Publishers, Inc. Nelson KE, Holmes EC. The evolution of epidemic influenza. Nature Review 2007; 8: 196-205. Nelson KE, Williams CM, Graham NMH. 2001. Infectious disease epidemiology: theory and practice. Gaithersburg, Maryland. Nicas M. Refinng a risk model for occupational tuberculosis transmission. American Industrial Hygiene Association 1996; 57: 16-22. Nicas M. Regulating the risk of tuberculosis transmission among health care workers. American Industrial Hygiene Association 2000; 61: 334-339. Nicholson K, Webster RG, Hay AJ. 1998. Textbook of influenza. Blackwell Science, Malden, Massachusetts. Nicholson KG, Wood JM, Zambon M. Influenza. The Lancet 2003; 362: 1733-1745. Niffenegger JP. Proper handwashing promotes wellness in child care. Journal of Pediatric Health 1997; 11: 26-31. Noakes CJ, Beggs CB, Sleigh PA, Kerr KG. Modelling the transmission of airborne infections in enclosed spaces. Epidemiology and Infections 2006; 134: 1082-1091. Ohmit SE, Victor JC, Rotthoff JR, Teich ER, Truscon RK, Baum LL, Rangarajan B, Newton DW, Boulton ML, Monto AS. Prevention of antigenically drifted influenza by inactivated and live attenuated vaccines. The New England Journal of Medicine, 2006; 24: 2513-2522. Piedra PA, Gaglani MJ, Kozinetz CA, Herschler G, Riggs M, Griffith M, Fewlass C, Watts M, Hessel C, Cordova J, Glezen WP. Herd immnity in adults against influenza-related illness with use of the trivalent-live attenuated influenza vaccine (CAIV-T) in children. Vaccine 2005; 23: 1540-1548. Prosser LA, Bridges CB, Uyeki TM, Hinrichsen VL, Meltzer MI, Molinari NAM, Schwartz B, Thompson WW, Fukuda K, Lieu TA. Health benefits, risks, and cost-effectiveness of influenza vaccination of children. Emerging Infectious Diseases 2006; 12: 1548-1558. Rabie T, Curtis V. Hanswashing and risk of respiratory infections: a quantitative systematic review. Tropical Medicine and International Health 2006; 3: 258-267. Reichert TA, Sugaya N, Fedson DS, Glezen WP, Simonsen L, Tashiro M. The Japanese experience with vaccinating schoolchildren against influenza. New England Journal of Medicine 2001; 344: 889-896. Remington PL, Hall WN, Davis IH, Herald A, Gunn RA. Airborne transmission of measles in a physician’s office. The Journal of the American Medical Association 1985; 253: 1574-1577. Riley EC, Murphy G, Riley RL. Airborne spread of measles in a suburban elementary-school. American Journal of Epidemiology 1978; 107: 421-432. Riley RL, Mills CC, O’Grady F, Sultan Lu, Wittstadt F, Shivpuri DN. Infectiousness of air from a tuberculosis ward: ultraviolet irradiation of infected air: comparative infectiousness of different patients. American Review Respiratory Disease 1962; 85: 511-525. Riley RL. Indoor airborne infection. Environment International 1982; 8: 317-320. Riley S, Fraser C, Donnelly CA, Ghani AC, Abu-Raddad LJ, Hedley AJ, Leung GM, Ho LM, Lam TH, Thach TQ, Chau P, Chan KP, Lo SV, Leung PY, Tsang T, Ho W, Lee KH, Lau EMC, Ferguson NM, Anderson RM. Transmission dynamics of the etiological agent of SARS in Hong Kong: impact of public health interventions. Science 2003; 300: 1961-1966. Roberts L, Smith W, Jorm L, Patel M, Douglas RM, McGilchrist C. Effect of infection control measures on the frequency of upper respiratory infection in child care: a randomized controlled trial. Pediatrics 2000; 105: 738-742. Roberts MG, Tobias MI. Predicting and preventing measles epidemics in New Zealand: application of mathematical model. Epidemiology and Infections 2000; 124: 279-287. Rudnick SN, Milton DK. Risk of indoor airborne infection transmission estimated from carbon dioxide concentration. Indoor Air 2003; 13: 237-245. Ryan MA, Christian RS, Wohlrabe J. Handwashing and Respiratory illness among young adults in military training. American Journal of Preventive Medicine 2001; 21: 79-83. Salleras L, Dominguez A, Pumarola T, Prat A, Marcos MA, Garrido P, Artigas R, Bau A, Brotons J, Bruna X, Catala P, Carreras E, Cuadra D, Gatell A, Millet S, Oller J, Raga E. Effectiveness of virosomal subunit influenza vaccine in preventing influenza-related illnesses and its social and economic consequences in children aged 3-14 years: A prospective cohort study. Vaccine 2006; 24: 6638-3342. Santoro R, Ruggeri FM, Battaglia M, Rapicetta M, Grandolfo ME, Annesi J, Cortellessa CM. Measles epidemiology in Italy. International Journal of Epidemiology 1984; 13: 201-209. Scherer A, McLean A. Mathematical models of vaccination. British Medical Bulletin 2002; 62: 187-199. Schulman JL, Kilbourne ED. Airborne transmission of influenza virus infection in mice. Nature 1962; 195: 1129-1130. Shih SR, Chen GW, Yang CC, Yang WZ, Liu DP, Lin JH, Chiu SC, Chen HY, Tsao KC, Huang CG, Huang YL, Mok CK, Chen CJ, Lin TY, Wang JR, Kao CL, Lin KH, Chen LK, Eng HL, Liu YC, Chen PY, Lin JS, Wang JH, Lin CW, Chan YJ, Lu JJ, Hsiung CA, Chen PJ, Su IJ. Laboratory-based surveillance and molecular epidemiology of influenza virus in Taiwan. Journal of Clinical Microbiology 2005; 43: 1651-1661. Smith DJ. Predictability and preparedness in influenza control. Science 2006; 312: 392-394. Smith W, Andrews CH, Laidlaw PP. A virus isolated from influenza patients. The Lancet 1933; 2: 66-68. Tang JW, Li Y, Eames I, Chan PKS, Ridgway GL. Factors involved in the aerosol transmission of infection and control of ventilation in healthcare premises. Journal of Hospital Infection 2006; 64: 100-114. Taubenberger JK, Morens DM. 1918 influenza: the Mother of All Pandemics. Emerging Infectious Disease 2006; 12: 15-22. Tellier R. Review of aerosol transmission of influenza A virus. Emerging Infectious Disease 2006; 12: 1657-1662. Teo SS, Nguyen-Van-Tam JS, Booy R. Influenza burden of illness, diagnosis, treatment, and prevention: what is the evidence in children and where are the gaps? Archives of Disease in Childhood 2005; 90: 532-536. Thomas JC, Weber DJ. 2001. Epidemiologic methods for the study of infectious diseases. Oxford University Press. Tseng CC, Li CS. Inactivation of virus-containing aerosols by ultraviolet germicidal irradiation. Aerosols Science and Technology 2005; 39: 1136-1142. Wallinga J, Edmunds WJ, Kretzschmar M. Perspective: human contact patterns and the spread of airborne infectious diseases. Trends in Microbiology 1999; 7: 372-377. Wallinga J, Levy-Bruhl D, Gay NJ, Wachmann CH. Estimation of measles reproduction ratios and prospects for elimination of measles by vaccination in some Western European countries. Epidemiology and Infections 2001; 127: 281-295. Wallinga J, Teunis P, Kretzschmar M. Using data on social contacts to estimate age-specific transmission parameters for respiratory-spread infectious agents. American Journal of Epidemiology 2006; 164: 936-944. Wang CS, Wang ST, Chou P. Efficacy and cost-effectiveness of influenza vaccination of the elderly in a densely populated and unvaccinated community. Vaccine 2002; 20: 2494-2499. Wang ST, Lee LT, Chen LS, Chen HH. Economic evaluation of vaccination against influenza in the elderly: an experience from a population-based influenza vaccination program in Taiwan. Vaccine 2005; 23: 1973-1980. Webby RJ, Webster RG. Are we ready for pandemic influenza? Science 2003; 302: 1519-1522. Wehrle PF, Posch J, Richter KH, Henderson DA. An airborne outbreak of smallpox in a German hospital and its significance with respect to other recent outbreaks in Europe. Bulletin World Health Organism 1970; 43: 669-679. Wells WF. 1955. Airborne Contagion and Air Hygiene: an Ecological Study of Droplet Infection. Cambridge, MA, Harvard University Press. Wells, W.F. On air-borne infection. Study II. Droplets and droplet nuclei. American Journal of Hygiene 1934; 20: 611-618. Whitaker HJ, Farrington CP. Estimation of infectious disease parameters from serological survey data: the impact of regular epidemics. Statistic Medicine 2004; 23: 2429-2443. White C, Kolble R, Carlson R. Lipson N, Dolan M, Ali Y, Cline M. The effect of hand hygiene on illness rate among students in university residence halls. American Journal of Infection Control 2003; 31: 364-370. White CG, Shinder FS, Shinder AL, Dyer DL. Reduction of illness absenteeism in elementary schools using an alcohol-free instant hand sanitizer. The Journal of School Nursing 2001; 17: 258-265. Wikening, D.A. Sverdlovsk revisited: modeling human inhalation anthrax. Proceedings of the National Academy of Sciences of the United States of America 2006; 20: 7589-7594. World Health Organization (2003) Influenza overview (http://www.who.int/topics/influenza/en). World Health Organization (2004) The world health report 2004 - changing history (http://www.who.int/whr/2004/en) World Health Organization (2007) Measles (http://www.who.int/mediacentre/factsheets/fs286/en/print.html) World Health Organization Writing Group. Nonpharmaceutical interventions for pandemic influenza, national and community measures. Emerging Infectious Disease 2006; 12: 88-94. Wu JT, Riley S, Fraser C, Leung GM. Reducing the impact of the next influenza pandemic using household-based public health interventions. PLOS Medicine 2006; 3: 1532-1540. Xu P, Kujundzic E, Peccia J, Schafer MP, Moss G, Hernandez M, Miller SL. Impact of environmental factors on efficacy of upper-room air ultraviolet germicidal irradiation for inactivating airborne mycobacteria. Environmental Science and Technology 2005; 39: 9565-9664. Yu ALF, Amaku M, Burattini MN, Massad E, Azevedo RS. Vericella transmission in two samples of children with different social behaviour in the State of Sao Paulo, Brazil. Epidemiology and Infections 2001; 127: 493-500. Yu IT, Wong TW, Chiu UL, Lee N, Li Y. Temporal-spatial analysis of severe acute respiratory syndrome among hospital inpatients. Clinical Infectious Disease 2005; 40: 1237-1243. Yu ITS, Li Y, Wong TW, Tam W, Chan AT, Lee HW, Leung YC, Ho T. 2004. Evidence of airborne transmission of the severe acute respiratory syndrome virus. The New England Journal of Medicine 2004; 350: 1731-1739. Zhang J, Lou J, Ma X, Wu J. A compartmental model for the analysis of SARS transmission patterns and outbreak control measures in China. Applied Mathematics and Computation 2005; 162: 909-924. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/30282 | - |
dc.description.abstract | 本論文之目的為提供一整合性數學模式以描述室內呼吸性傳染病麻疹與流感之傳輸動態、控制策略模擬及成本效益分析。本架構之基礎資料包括季節性流感之流行病學資料與麻疹疫苗前後之全國/山區/鄉村/都市之血清流行病學資料。第一部分,本研究以三個相異之接觸矩陣(Who Acquire Infection From Who,WAIFW描述在不同年齡族群中及不同年齡族群之間的麻疹傳染率,量化疫苗前後因年齡而異之感染力與基本再生數(Basic reproduction number,R0),而後,結合一標準之易感–暴露–感染–復原(Susceptible-Exposed-Infective-Recovery,SEIR)模式,以一簡易之一階常微分方程式,明確地模擬麻疹疫苗施行後,傳染發生之族群動態。
其次,本研究利用一機制模式Wells-Riley數學方程式推測學校孩童於通風空間中之流行性感冒感染機率,依據通風空間中之環境影響因子(如空間大小與通風率)及傳染者之影響因子(如人體呼吸率與暴露於通風空間中之時間),可推測出季節性且因年齡而異之感染風險與基本再生數。本研究亦結合Wells-Riley數學方程式與競爭風險(Competing-risks)模式,量化學校孩童暴露於學校之環境下,採取控制策略對於室內環境流感發生之衝擊,探討以室內通風為基礎之工程控制與個人保護方法之影響,更進一步研擬以Von Foerster方程式加以量化公共衛生策略包含流感疫苗與隔離政策施行之衝擊。因此,藉由上述之Wells-Riley數學方程式、Competing-risks模式及Von Foerster方程式之整合,可建立ㄧ關鍵之R0 – θ控制曲線以最佳化研擬控制策略之衝擊,其中θ表示未發生症狀而可傳染的期間除以可傳染總時間長度之比例。 第三部份,本研究發展一套以成本效益為基礎之整合性數學模式,以模擬季節性流感之發生。針對工程控制方法(如室內通風、紫外光殺菌燈及高效率顆粒過濾網)、個人保護方法(如口罩與洗手)及公共衛生策略(如疫苗施行與隔離政策)之控制效率與成本加以整理蒐集以利進行成本-效益分析,並以資源使用最小化、平均每人負擔之成本功效最大化為目標,建立出因應季節性變異之最佳化流感控制策略。 本研究結果指出區域性或全國性之疫苗計畫可大幅降低麻疹流行之主要衝擊。成本-效益分析可利用於評估多種整合性控制策略對於季節性流感之衝擊,本研究可提供一個完整且已量化之麻疹與流感傳輸動態,藉由結合室內呼吸性傳染病之傳輸機制、控制策略之衝擊研擬,與成本-效益分析之整合性方法,對於預測學校孩童感染流感將會是個強而有力的工具。 | zh_TW |
dc.description.abstract | The objective of this dissertation is to provide an integrated relevant mathematical model for describing the transmission dynamics, control measures modeling, and cost-effectiveness analysis for indoor respiratory infections including measles and influenza. The empirical evidence of proposed framework is based on the seasonal epidemiological data of influenza and robust age-stratified seroepidemiological data of measles for pre/post-vaccination and setting of nationwide/mountain/rural/urban. In the first phase, three contact patterns of “who acquire infection from who” (WAIFW) matrices are employed to characterize the transmission rate within and between each age group and subsequently the parameters of age-dependent force of infection and age-dependent basic reproduction number (R0) for measles can be quantified. A standard susceptible-exposed-infected-recovery (SEIR) structure can model straightforwardly the dynamics of measles vaccination by using a simple parameterized set of differential equations.
Secondly, Wells-Riley mathematical model is used to predict the influenza infection risk in terms of environmental factors (e.g., room size and ventilation rate) and host factors (e.g., breathing rate and exposure time) and to estimate seasonal-specific age-dependent risk of infection and R0. This study integrates the Wells-Riley mathematical equation and competing-risks model to quantify the impact of combination efforts of indoor air-based engineering and personal protection control measures in containing pandemic influenza within an elementary school. Public health interventions including vaccination and isolation are modeled based on the Von Foerster equation for schoolchildren infected influenza. Then, a critical R0 –θ control line constructed by integrating the Wells-Riley equation, competing-risks model, and the Von Foerster equation, is used to prioritize control measure efforts. The symbol θ,asymptomatic proportion, can be defined as the ratio of the asymptomatic infection over the summation of symptomatic and asymptomatic infection. In the third phase, an integrated mathematical model linking with the cost-effectiveness-based control methods is developed for preventing from seasonal influenza in an elementary school. The costs and effectiveness of engineering control measurers (ventilation, ultraviolet germicidal irradiation, high-efficiency particulate air filter), personal protection (respiratory masking and handwashing), and public interventions (vaccination and isolation) were collected to perform the cost-effectiveness analysis to minimize the waste of resource and to maximize the health per dollar spent because the seasonal variation in disease transmission may play an important role on modeling the optimal control measures on influenza. In the present study, the results indicate that the mass regional or nationwide vaccination programmes could greatly reduce the potential for a major measles epidemic. The cost-effectiveness analysis is useful for evaluating the multiple control measures on seasonal influenza. This work can provide a quantitative understanding of the transmission dynamics of measles and influenza. The proposed integrated approach, by employing the mechanism of transmission of indoor respiratory infection, the impact of infectious control programs, and the cost-effectiveness analysis, is a powerful tool for risk profiling prediction of pandemic influenza among schoolchildren. | en |
dc.description.provenance | Made available in DSpace on 2021-06-13T01:48:47Z (GMT). No. of bitstreams: 1 ntu-96-F92622007-1.pdf: 1736384 bytes, checksum: ab65d9075fbd7870ac3a4012e94cc75e (MD5) Previous issue date: 2007 | en |
dc.description.tableofcontents | TABLE OF CONTENTS
口試委員會審定書 I 誌謝 II 中文摘要 VI ABSTRACT VIII TABLE OF CONTENTS X LIST OF TABLES XIII LIST OF FIGURES XV NOMENCLATURE XXIII CHAPTER I. INTRODUCTION 1 CHAPTER II. MOTIVATION AND RESEARCH OBJECTIVES 3 2.1. Motivation 3 2.2. Research Objectives 6 CHAPTER III. LITERATURE REVIEW 7 3.1. Indoor Respiratory Infections 7 3.1.1. Measles 7 3.1.2. Influenza 16 3.2. Mathematical Models 23 3.2.1. Infectious disease modeling 23 3.2.1.1. Who acquires infection from whom (WAIFW) matrix model 27 3.2.1.2. Susceptible-infected-recovery (SIR) model 31 3.2.1.3. Wells-Riley mathematical equations 35 3.2.2. Control measure modeling 40 3.2.2.1. Competing-risks model 40 3.2.2.2. Von Foerst equation 42 3.3. Control Measures 44 3.3.1. Engineering control 44 3.3.2. Personal protection 47 3.3.3. Public health intervention 48 CHAPTER IV. MATERIALS AND METHODS 50 4.1. Modeling Vaccination Programmes Against Measles 50 4.1.1. Quantitative seroepidemiological data 50 4.1.2. Age-specific force of infection (FOI) 54 4.1.3. WAIFW matrix contact pattern model 55 4.1.4. Vaccination dynamics 58 4.2. Modeling Pandemic Influenza Among Schoolchildren 60 4.2.1. Study population 60 4.2.2. Transmission dynamics 63 4.2.3. Control measure modeling 67 4.3. Modeling Seasonal Influenza and Cost-Effectiveness Analysis 69 4.3.1. Quantitative epidemiological data 69 4.3.2. R0 – θ control line 71 4.3.3. Cost and efficacies of control measure 78 CHAPTER V. RESULTS AND DISCUSSION 81 5.1. Vaccination Programmes against Measles 81 5.1.1. Age-specific FOI 81 5.1.2. Age/population-specific R0 estimates 87 5.1.3. Measles vaccination effectiveness on R0 93 5.1.4. Pre- and postvaccination dynamics 95 5.1.5 Discussion 97 5.2. Pandemic Influenza Among Schoolchildren 101 5.2.1. Age-specific R0 estimates 101 5.2.2. Single control measure efforts 104 5.2.3. Multiple control measure efforts 113 5.3. Seasonal Influenza and Cost-Effectiveness Analysis 117 5.3.1. Seasonal influenza incidence 117 5.3.2. Control measure combinations 123 5.3.3. Dynamic modeling 136 5.3.4. Cost-effectiveness analysis 138 5.3.5. Discussion 144 CHAPTER VI. CONCLUSIONS 147 CHAPTER VII. SUGGESTIONS FOR FUTURE RESEARCH 149 APPENDIX A: MEASLES SEROEPIDEMIOLOGICAL DATA 150 BIBLIOGRAPHY 154 CURRICULUM VITAE 171 | |
dc.language.iso | en | |
dc.title | 室內呼吸性傳染病麻疹與流感傳輸動態與控制 | zh_TW |
dc.title | Transmission dynamics and control for indoor respiratory infections of measles and influenza | en |
dc.type | Thesis | |
dc.date.schoolyear | 95-2 | |
dc.description.degree | 博士 | |
dc.contributor.oralexamcommittee | 劉振宇,廖秀娟,喻新,葉錦瑩,江漢全 | |
dc.subject.keyword | 室內呼吸性傳染病,傳輸動態,成本–效益,易感–暴露–感染–復原模式,控制策略,流行性感冒,麻疹,基本再生數, | zh_TW |
dc.subject.keyword | Indoor respiratory infections,Transmission dynamics,Cost-effectiveness,Susceptible-exposed-infected-recovery (SEIR) model,Control strategy,Influenza,Measles,Basic reproduction number (R0), | en |
dc.relation.page | 172 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2007-07-10 | |
dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
dc.contributor.author-dept | 生物環境系統工程學研究所 | zh_TW |
顯示於系所單位: | 生物環境系統工程學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-96-1.pdf 目前未授權公開取用 | 1.7 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。