Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 免疫學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/30263
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor許秉寧(Ping-Ning Hsu)
dc.contributor.authorCheng-Yuan Yangen
dc.contributor.author楊政遠zh_TW
dc.date.accessioned2021-06-13T01:47:28Z-
dc.date.available2008-07-20
dc.date.copyright2007-07-20
dc.date.issued2007
dc.date.submitted2007-07-10
dc.identifier.citationAlmasan,A. and Ashkenazi,A. (2003). Apo2L/TRAIL: apoptosis signaling, biology, and potential for cancer therapy. Cytokine Growth Factor Rev. 14, 337-348.
Ashkenazi,A. and Dixit,V.M. (1998). Death Receptors: Signaling and Modulation. Science 281, 1305-1308.
Brown,D.A. and London,E. (1998). FUNCTIONS OF LIPID RAFTS IN BIOLOGICAL MEMBRANES. Annual Review of Cell and Developmental Biology 14, 111-136.
Cayabyab,M., Phillips,J.H., and Lanier,L.L. (1994). CD40 preferentially costimulates activation of CD4+ T lymphocytes. J. Immunol. 152, 1523-1531.
Chen,N.J., Huang,M.W., and Hsieh,S.L. (2001). Enhanced secretion of IFN-gamma by activated Th1 cells occurs via reverse signaling through TNF-related activation-induced cytokine. J. Immunol. 166, 270-276.
Chou,A.H., Tsai,H.F., Lin,L.L., Hsieh,S.L., Hsu,P.I., and Hsu,P.N. (2001). Enhanced proliferation and increased IFN-gamma production in T cells by signal transduced through TNF-related apoptosis-inducing ligand. J. Immunol. 167, 1347-1352.
Crawley,J.B., Rawlinson,L., Lali,F.V., Page,T.H., Saklatvala,J., and Foxwell,B.M. (1997). T Cell Proliferation in Response to Interleukins 2 nd 7 equires p38MAP Kinase Activation. J. Biol. Chem. 272, 15023-15027.
Diehn,M., Alizadeh,A.A., Rando,O.J., Liu,C.L., Stankunas,K., Botstein,D., Crabtree,G.R., and Brown,P.O. (2002). Genomic expression programs and the integration of the CD28 costimulatory signal in T cell activation. Proc. Natl. Acad. Sci. U. S. A 99, 11796-11801.
Dienz,O., Moller,A., Strecker,A., Stephan,N., Krammer,P.H., Droge,W., and Schmitz,M.L. (2003). Src Homology 2 Domain-Containing Leukocyte Phosphoprotein of 76 kDa and Phospholipase C{gamma}1 Are Required for NF-{kappa}B Activation and Lipid Raft Recruitment of Protein Kinase C{theta} Induced by T Cell Costimulation. J Immunol 170, 365-372.
Feito,M.J., Vaschetto,R., Criado,G., Sanchez,A., Chiocchetti,A., Jimenez-Perianez,A., Dianzani,U., Portoles,P., and Rojo,J.M. (2003). Mechanisms of H4/ICOS costimulation: effects on proximal TCR signals and MAP kinase pathways. Eur. J. Immunol. 33, 204-214.
Frauwirth,K.A. and Thompson,C.B. (2002). Activation and inhibition of lymphocytes by costimulation. J. Clin. Invest 109, 295-299.
Gaide,O., Favier,B., Legler,D.F., Bonnet,D., Brissoni,B., Valitutti,S., Bron,C., Tschopp,J., and Thome,M. (2002). CARMA1 is a critical lipid raft-associated regulator of TCR-induced NF-[kappa]B activation. Nat Immunol 3, 836-843.
Ghosh,S. and Karin,M. (2002). Missing pieces in the NF-kappaB puzzle. Cell 109 Suppl, S81-S96.
Holdorf,A.D., Lee,K.H., Burack,W.R., Allen,P.M., and Shaw,A.S. (2002). Regulation of Lck activity by CD4 and CD28 in the immunological synapse. Nat. Immunol. 3, 259-264.
Kabouridis,P.S., Magee,A.I., and Ley,S.C. (1997). S-acylation of LCK protein tyrosine kinase is essential for its signalling function in T lymphocytes. EMBO J. 16, 4983-4998.
Kane,L.P., Lin,J., and Weiss,A. (2002). It's all Rel-ative: NF-kappaB and CD28 costimulation of T-cell activation. Trends Immunol. 23, 413-420.
Kane,L.P., Shapiro,V.S., Stokoe,D., and Weiss,A. (1999). Induction of NF-[kappa]B by the Akt/PKB kinase. Current Biology 9, 601-605.
Lafont,V., Astoul,E., Laurence,A., Liautard,J., and Cantrell,D. (2000). The T cell antigen receptor activates phosphatidylinositol 3-kinase-regulated serine kinases protein kinase B and ribosomal S6 kinase 1. FEBS Letters 486, 38-42.
LeBlanc,H.N. and Ashkenazi,A. (2003). Apo2L/TRAIL and its death and decoy receptors. Cell Death. Differ. 10, 66-75.
Monks,C.R.F., Kupfer,H., Tamir,I., Barlow,A., and Kupfer,A. (1997). Selective modulation of protein kinase C-[Theta] during T-cell activation. Nature 385, 83-86.
Narayan,P., Holt,B., Tosti,R., and Kane,L.P. (2006a). CARMA1 is required for Akt-mediated NF-kappaB activation in T cells. Mol. Cell Biol. 26, 2327-2336.
Narayan,P., Holt,B., Tosti,R., and Kane,L.P. (2006b). CARMA1 Is Required for Akt-Mediated NF-{kappa}B Activation in T Cells. Mol. Cell. Biol. 26, 2327-2336.
Narayan,P., Holt,B., Tosti,R., and Kane,L.P. (2006c). CARMA1 Is Required for Akt-Mediated NF-{kappa}B Activation in T Cells. Mol. Cell. Biol. 26, 2327-2336.
Ohnuma,K., Uchiyama,M., Yamochi,T., Nishibashi,K., Hosono,O., Takahashi,N., Kina,S., Tanaka,H., Lin,X., Dang,N.H., and Morimoto,C. (2007). Caveolin-1 Triggers T-cell Activation via CD26 in Association with CARMA1. J. Biol. Chem. 282, 10117-10131.
Pages,F., Ragueneau,M., Rottapel,R., Truneh,A., Nunes,J., Imbert,J., and Olive,D. (1994). Binding of phosphatidylinositol-3-OH kinase to CD28 is required for T-cell signalling. Nature 369, 327-329.
Pan,G., Ni,J., Wei,Y.F., Yu,G.l., Gentz,R., and Dixit,V.M. (1997a). An Antagonist Decoy Receptor and a Death Domain-Containing Receptor for TRAIL. Science 277, 815-818.
Pan,G., O'Rourke,K., Chinnaiyan,A.M., Gentz,R., Ebner,R., Ni,J., and Dixit,V.M. (1997b). The Receptor for the Cytotoxic Ligand TRAIL. Science 276, 111-113.
Pitti,R.M., Marsters,S.A., Ruppert,S., Donahue,C.J., Moore,A., and Ashkenazi,A. (1996). Induction of Apoptosis by Apo-2 Ligand, a New Member of the Tumor Necrosis Factor Cytokine Family. J. Biol. Chem. 271, 12687-12690.
Salomon,B. and Bluestone,J.A. (2001). Complexities of CD28/B7: CTLA-4 costimulatory pathways in autoimmunity and transplantation. Annu. Rev. Immunol. 19, 225-252.
Schmitz,M.L. and Krappmann,D. (2006). Controlling NF-kappaB activation in T cells by costimulatory receptors. Cell Death. Differ. 13, 834-842.
Schulze-Osthoff,K., Ferrari,D., Los,M., Wesselborg,S., and Peter,M.E. (1998). Apoptosis signaling by death receptors. Eur. J. Biochem. 254, 439-459.
Simons,K. and Ikonen,E. (1997). Functional rafts in cell membranes. Nature 387, 569-572.
Song,J., Salek-Ardakani,S., Rogers,P.R., Cheng,M., Van,P.L., and Croft,M. (2004). The costimulation-regulated duration of PKB activation controls T cell longevity. Nat. Immunol. 5, 150-158.
Sun,Z., Arendt,C.W., Ellmeier,W., Schaeffer,E.M., Sunshine,M.J., Gandhi,L., Annes,J., Petrzilka,D., Kupfer,A., Schwartzberg,P.L., and Littman,D.R. (2000). PKC-[thetas] is required for TCR-induced NF-[kappa]B activation in mature but not immature T lymphocytes. Nature 404, 402-407.
Suzuki,I., Martin,S., Boursalian,T.E., Beers,C., and Fink,P.J. (2000). Fas ligand costimulates the in vivo proliferation of CD8+ T cells. J. Immunol. 165, 5537-5543.
Thome,M. (2004). CARMA1, BCL-10 AND MALT1 IN LYMPHOCYTE DEVELOPMENT AND ACTIVATION. Nat Rev Immunol 4, 348-359.
Tsai,H.F., Lai,J.J., Chou,A.H., Wang,T.F., Wu,C.S., and Hsu,P.N. (2004). Induction of costimulation of human CD4 T cells by tumor necrosis factor-related apoptosis-inducing ligand: possible role in T cell activation in systemic lupus erythematosus. Arthritis Rheum. 50, 629-639.
van,E.D., Kikutani,H., and Gray,D. (1995). CD40 ligand-transduced co-stimulation of T cells in the development of helper function. Nature 378, 620-623.
Viola,A., Schroeder,S., Sakakibara,Y., and Lanzavecchia,A. (1999). T lymphocyte costimulation mediated by reorganization of membrane microdomains. Science 283, 680-682.
Wang,D., You,Y., Case,S.M., Allister-Lucas,L.M., Wang,L., DiStefano,P.S., Nunez,G., Bertin,J., and Lin,X. (2002). A requirement for CARMA1 in TCR-induced NF-[kappa]B activation. Nat Immunol 3, 830-835.
Wiley,S.R., Goodwin,R.G., and Smith,C.A. (1996). Reverse signaling via CD30 ligand. J. Immunol. 157, 3635-3639.
Wiley,S.R., Schooley,K., Smolak,P.J., Din,W.S., Huang,C.P., Nicholl,J.K., Sutherland,G.R., Smith,T.D., Rauch,C., Smith,C.A., and . (1995). Identification and characterization of a new member of the TNF family that induces apoptosis. Immunity. 3, 673-682.
Wulfing,C. and Davis,M.M. (1998). A receptor/cytoskeletal movement triggered by costimulation during T cell activation. Science 282, 2266-2269.
Wulfing,C., Sumen,C., Sjaastad,M.D., Wu,L.C., Dustin,M.L., and Davis,M.M. (2002). Costimulation and endogenous MHC ligands contribute to T cell recognition. Nat. Immunol. 3, 42-47.
Yang,H. and Reinherz,E.L. (2001). Dynamic recruitment of human CD2 into lipid rafts. Linkage to T cell signal transduction. J. Biol. Chem. 276, 18775-18785.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/30263-
dc.description.abstractTRAIL屬於腫瘤壞死因子家族之中的一員,具有引發多種轉型細胞株進行細胞凋亡的能力,但是對於一般正常的細胞並沒有細胞毒殺的能力。而在我們實驗室之前的研究中顯示出,同時給予T細胞抗CD3抗體和DR4的刺激之下,可以引起T細胞的活化增生和誘導干擾素-gamma的產生。這樣的結果指出,當TRAIL與其對應的死亡受體結合之後,除了會造成細胞的凋亡之外,TRAIL本身也會傳遞一個反向的訊息導致T細胞的活化。然而,在我們之前的研究更進一步發現到,在TRAIL所引起T細胞的活化當中可以觀察到PI3K/Akt的活化,顯示PI3K/Akt可能參與在其中。然而,由TRAIL所傳遞的反向訊息路徑的詳細機制目前仍然未被研究清楚。目前已知,NF-kappaB訊息傳導路徑參與在CD28所引起的細胞共活化之中,顯示NF-kappaB訊息傳導路徑對於T細胞共活化相當重要。在最近的研究中也發現到,在T細胞共活化的情況之下,CARMA1, BCL10, 以及MALT1對於調控NF-kappaB訊息傳導路徑扮演著相當重要的角色。並且也有報導指出,Akt會透過與CARMA1的結合去調控NF-kappaB訊息傳導路徑。在本篇研究中,我們利用西方墨點法去研究在TRAIL所引起T細胞共活化的情況之下,NF-kappaB訊息傳導路徑所扮演的角色。我們證明了在TRAIL所引起T細胞共活化之情況下,NF-kappaB從細胞質轉移到細胞核的量會有所增加。並且這個現象會伴隨著細胞質中IkappaB-alpha所被分解量的增加同時發生。更進一步的研究顯示,TRAIL所引起T細胞活化增生和介白素-2的產生可以藉由加入NF-kappaB抑制劑而達到顯著的抑制。並且,我們也發現到,在只以TRAIL的死亡受體DR4的刺激情況下,即可以造成PKC-theta的磷酸化而造成NF-kappaB的活化,使NF-kappaB從細胞質轉移到細胞核中,這樣的結果顯示出,TRAIL所引起的反向訊息會透過增加NF-kappaB的活性而來增加活化T細胞的能力。zh_TW
dc.description.abstractTumor necrosis factor-related apoptosis inducing ligand (TRAIL) is a member of the TNF superfamily which is capable of inducing apoptosis in transformed cells but not in most of the primary cells. In our previous study, we demonstrated that TRAIL stimulated with immobilized DR4, in conjunction with suboptimal anti-CD3, induced T cell proliferation and enhanced IFN-gamma production. This indicates that TRAIL can transduce reverse signal to induce T cell activation. Furthermore, we found that PI3K/Akt activity was enhanced after TRAIL-mediated T cell activation. However, the reverse signaling pathway transduced by TRAIL is still not clear.It has been demonstrated that NF-kappaB was involved in CD28 costimulation signaling pathway, suggesting that NF-kappaB signaling pathway is important in costimulation of T cells. Recent studies have shown that the CARMA1, Bcl10, and MALT1 proteins are critical for the NF-kappaB signaling pathway to the TCR and CD28. Recently studies have confirmed that Akt plays a modulatory role and CARMA1 is required for Akt-mediated in NF-kappaB induction by TCR and CD28. In our previous study, we found that PI3K/Akt activity was enhanced after TRAIL-mediated T cell activation, suggest that PI3K/Akt signaling pathway is involved in TRAIL reverse signaling pathway.
In this study, we use Western blotting to identify the role of NF-kappaB signaling pathway in TRAIL-induced costimulation of T cells. Our results showed that NF-kappaB activation and translocation into nucleus is enhanced in TRAIL-mediated T cell activation. In accordance with this observation is the concomitant enhanced degradation of IkappaB-alpha. Furthermore, TRAIL-mediated T cell proliferation and IL-2 production was significantly decreased by NF-kappaB inhibitor, indicating that NF-kappaB signaling pathway is involved in TRAIL-induced activation of T cells. Moreover, we directly induced PKC-theta phosphorylation and NF-kappaB translocation with DR4-Fc stimulation alone. These results indicated that TRAIL-reversed signaling in T cells transduce via enhancing NF-kappaB activation.
en
dc.description.provenanceMade available in DSpace on 2021-06-13T01:47:28Z (GMT). No. of bitstreams: 1
ntu-96-R94449013-1.pdf: 1168117 bytes, checksum: e100f743eb76ef0537f8bc848cb0416e (MD5)
Previous issue date: 2007
en
dc.description.tableofcontentsAcknowledgement i
Abstract (Chinese) ii
Abstract iii
Chapter I. Introduction 1
1. TRAIL and TRAIL receptors 1
2. Reverse signal transduction in TNF superfamily 2
3. T cell activation 2
4. NF-κB signaling pathway 4
5. Lipid raft in T cell activation 5
6. Rationale of the study 6
Chapter II. Materials and methods 8
Part 1. Experimental Materials 8
Part 2. Experimental Procedures 12
Purification of soluble TRAIL receptor DR4-Fc 12
Jurkat cell activation 12
Cytosolic and nuclear extract separation 13
SDS-PAGE and Western blotting 13
Human primary T cell purification 14
Human primary T cell proliferation assay 14
Mouse IL-2 production ELISA 15
Luciferase reporter assay 15
Statistical analysis 16
Chapter III. Results 17
Part 1. NF-κB is a possible downstream molecule in the signaling pathway of TRAIL-induced T cell activation. 17
Part 2. The NF-κB activity is enhanced by DR4-TRAIL engagement 18
Part 3. IκBα degradation and NF-κB nuclear translocation after TRAIL-induced costimulatory signal 19
Part 4. Akt maybe a modulator in TRAIL-induced costimulation 20
Part 5. NF-κB pathway is directly involved in the TRAIL reverse signal 21
Part 6. TRAIL-induced NF-κB activation is through PKC-θ 23
Chapter IV. Discussion 25
Part 1. NF-κB pathway is involved in the TRAIL-induced reversed signaling in T cell activation. 25
Part 2. The role of Akt in NF-κB signaling pathway in TRAIL-induced costimulation 27
Part 3. NF-κB is activated by TRAIL reverse signal 28
Reference 30
Figures 34
Figure 1. TRAIL-induced IL-2 production in EL4 cells could be blocked by NF-κB activation inhibitor (QNZ) 34
Figure 2. TRAIL-induced IL-2 production in human primary T cells could be blocked by NF-κB activation inhibitor (QNZ) 35
Figure 3. TRAIL-induced human primary T cell proliferation could be blocked by NF-κB activation inhibitor (QNZ) 36
Figure 4. After DR4-TRAIL engagement in conjunction with anti-CD3 enhanced NF-κB luciferase activity in Jurkat T cells 37
Figure 5. DR4-TRAIL engagement in conjunction with anti-CD3 enhanced NF-κB nuclear translocation in Jurkat T cells 38
Figure 6. DR4-TRAIL engagement in conjunction with anti-CD3 enhanced cytosolic IκBα degradation in Jurkat T cells 40
Figure 7. The DR4-induced NF-κB activation was slightly suppressed by Akt inhibitor 42
Figure 8. DR4 directly enhanced NF-κB activity in a dose-depend manner in Jurkat T cells 43
Figure 9. DR4-Fc directly induce NF-κB nuclear translocation and sustained nuclear translocation for 2 hours in Jurkat T cells 44
Figure 10. DR4-Fc directly induced PKC-θ phosphorlation in Jurkat T cells 45
Figure 11. DR4-Fc-induced NF-κB nuclear translocation could be inhibited by PKC-θ inhibitor 46
dc.language.isoen
dc.title探討NF-kappaB訊息傳導路徑在TRAIL分子雙向傳導訊息中扮演之角色zh_TW
dc.titleThe role of NF-κB signaling pathway in TRAIL-induced costimulation of T cellsen
dc.typeThesis
dc.date.schoolyear95-2
dc.description.degree碩士
dc.contributor.oralexamcommittee賴明宗(Ming-Zong Lai),謝世良(Shie-Liang Hsieh),陳俊任(Chun-Jen Chen)
dc.subject.keyword訊息傳導路徑,zh_TW
dc.subject.keywordsignaling pathway,en
dc.relation.page46
dc.rights.note有償授權
dc.date.accepted2007-07-10
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept免疫學研究所zh_TW
顯示於系所單位:免疫學研究所

文件中的檔案:
檔案 大小格式 
ntu-96-1.pdf
  目前未授權公開取用
1.14 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved