請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/30253完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 顏溪成(Shi-Chern Yen) | |
| dc.contributor.author | Po-Han Huang | en |
| dc.contributor.author | 黃柏涵 | zh_TW |
| dc.date.accessioned | 2021-06-13T01:46:47Z | - |
| dc.date.available | 2009-07-16 | |
| dc.date.copyright | 2007-07-16 | |
| dc.date.issued | 2007 | |
| dc.date.submitted | 2007-07-10 | |
| dc.identifier.citation | Chih, M.H.; Lee, E., and Hsu, J.P. “Electrophoresis of a sphere normal to a plane at arbitrary electrical potential and double layer thickness”, J. Colloid Interface Sci.,248 (2002) 383.
Ennis, J., and Anderson, J. L., J. Colloid Interface Sci. 185, 497 (1997). Gileadi, E., Kirowa, E., Penciner, J., “Interfacial Electrochemistry”, Addison-Wesley Publishung Company, Inc., 1975 Gill, C. B. Materials Beneficiation. Berlin: Springer. 1991 Goetzberger, A. and Hebling, C., “Photovoltaic materials, past, present, future.” Solar Energy Materials & Solar Cells, 62 (2000) 1-19. Green, M.A., ” Photovoltaics: technology overview,” Energy Policy, 28 (2000) 989-998 . Helmholtz, H. Von Wied. Ann. 1879, 7, 337. Henry, D. C., Proc. Roy. Soc. (London) 133, 106 (1931). Hogg, R., Healy, T. W., and Fuerstenau, D. W., Trans. Faraday Soc. 62, 1638 (1966). Huckel, E. and Physik, Z. 1924, 25, 204. Huynh L., and Jenkins, P., “A rheological and electrokinetic investigation of the interactions between pigment particles dispersed in aqueous solutions of short-chain phosphates” Colloids and Surfaces A: Physicochemical and Engineering Aspects, v 190, n 1-2, (2001) 35-45 Jacob, H. M., “Electrokinetic Transport Phenomena.”, AOSTRA, Canada. Junji Shibata, Norihiro Murayama and Kengo Nagae, “Flotation Separation of SiC from Wastes in theSilicon Wafer Slicing Process”, The Society of Chemical Engineers, Japan 32 (2006)93 Khattak, C. P., Joyce, D. B. and Schmid, F., ” A simple process to remove boron from metallurgical grade silicon.” Solar Energy Materials & Solar Cells, 74 (2002) 77-89. Kosmulski, M., Gustafsson, J. and Rosenholm, J. B., “Electroacoustics in low- temperature ionic liquids.”, Journal of Colloid and Interface Science, v 275, n 1, (2004) 317-321 Kosmulski, M., Maczka, E. and Rosenholm, J. B., “Isoelectric Points of Metal Oxides at High Ionic Strengths.”, The journal of physical chemistry, B, v 106, n 11 (2002) 2918 Maude, Whitmore, “Courtesy of the Institute of Physics and the Physical Society.”, Br. J. Appl. Phys., 9, 481 (1958). Morrison, F.A. J. Colloid Interface Sci. 1970, 34, 210. Muhlbauer, A., Diers, V., Walther, A. and Grabmaier, J. G., “Removal of C/SiC from liquid silicon by directional solidification”, Journal of Crystal Growth 108 (1991) 41. Ohshima, H. “Electrophoretic mobility of a cylindrical colloidal particle in a salt-free medium”, J. Colloid Interface Sci., 255(2002)202. Palla, B. J. and Shah D. O., “Correlation of Observed Stability and Polishing Performance to Abrasive Particle Size for CMP,” IEEE/CPMT, Electronic Manufacturing Technology Symposium (1999) 362-369. Peng, W. Y. and Liao, Y. S., “Study of electrical discharge machining technology for slicing silicon ingots,” Journal of Materials Processing Technology, 140 (2003) 274–279. Quincke, G. Poggendorf’s Ann. 1861, 113, 513. Reuss, F.F. Mem. Soc. Imperiale Naturalistes de Moscow 1809, 2, 327. Sarti, D. and Einhaus, R., “Silicon Feedstock for the Multi-Crystalline Photovoltaic Industry,” Solar Energy Materials & Solar Cells, 72 (2002) 27-40. Schiller, L., and Naumann, A., “Uber die grundlegenden Berechnungen bei der Schwerkraftaufbereitung”, Z. Ver. Deut. Ing., 77 (1933) 318. Smoluchowski, M. Von Bull. Int. Acad. Sci. Cracovie 1903, p.184. Stokes, G. G., “On the effect of the internal friction of fluids on the motion of pendulums”, Trans. Cam. Phil. Soc.,9 (1851) 8. Surek, T. “Crystal growth and materials research in photovoltaics: progress and challenges”, Journal of Crystal Growth 275 (2005) 292–304 Tsuo, Y. S., Gee, J. M., Menna, P., Strebkov, D.S., Pinov, A. and Zadde, V., “Environmentally Benign Silicon Solar Cell Manufacturing,” Presented at the 2nd World Conference and Exhibition on Photovoltaic Solar Energy Conversion; 6-10 July 1998; Vienna, Austria. Urs. A, Dragos. C, Samuila. A, and Iuga. A, “Electrostatic Sizing of Abrasive Particles Using a Free-Fall Corona Separator.”, Particulate Science and Technology, 22: 85–92, 2004 Vallar, S., Houivet, D., Fallah, J. E., Kervadec, D. and Haussonne J. M., 'Oxide Slurries Stability and Powers and Dispersion: Optimization with Zeta Potential and Rheological Measurements,” Journal of the European Ceramic Society, 19 (1999) 1017-1021. Ye, C and Li, D., “Electrophoretic Motion of a Sphere in a microchannel under the Gravitional Field”, J. Colloid Interface Sci. 251 (2002) 331. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/30253 | - |
| dc.description.abstract | 「矽」是目前半導體工業不可或缺的原料之一,舉凡太陽能電池、電腦中的矽晶片、顯示器中的基材等,都需要大量使用矽原料。然而隨著半導體工業及太陽能工業的蓬勃發展,使得原物料「矽」的價格也水漲船高,成本的高漲也直接衝擊了相關產業的發展。因此本研究將利用重力法(Gravity)及電泳法(Electrophoresis)來分離矽(Si)及碳化矽(SiC),以得到高純度的矽來回收使用。
目前矽晶棒的切割約有34%的損失(kerf loss),這些損失最後都以污泥的方式被丟棄或是回收SiC粒子(切割用磨料)後丟棄。這些矽泥包含了矽晶圓粉末、SiC粒子、潤滑油或是乙二醇、切割線損耗的金屬等已知雜質。本研究的第一部分先將矽泥以酸洗作為前處理,同時探討不同的酸洗條件下,矽泥中金屬離子含量的變化結果,找出移除金屬離子之最佳條件,本篇研究利用硝酸(HNO3)作為酸洗液,當酸液濃度大於0.5M、體積比大於23 mL acid/mL slurry,可以移除矽泥中99.5 wt%以上之金屬離子。接著再回收矽泥中酸處理過後之固成分,以進行本研究之第二部分。 本研究之第二部分是則是利用重力合併電泳作用,來分離固成分中的矽及碳化矽。以蠕動幫浦將稀釋後的矽泥緩慢打入沉降槽中,並施以一外加電壓,利用不同成分在不同的酸鹼度環境下,粒子表面之zeta potential不同的特性,輔以不同大小之粒子,在重力場中所受重力不同的效果、不同之表面電位於電力場中受到電力牽引不同的效果來分離此二種粒子,在pH值為7、外加電場為5volt/30 cm、離子強度低於0.005M之溶液來進行分離,當進行一次電泳重力分離後,可將矽泥中矽含量由25 wt%提高至80 wt%。 | zh_TW |
| dc.description.abstract | Solar grade silicon material is important in the manufacturing of photovoltaic cells. There is about 34% kerf silicon loss during Si wafer slicing process. The slurry wastes include abrasive particles (SiC), lubricating oil (ethylene glycol), metals from cutting wire, and the kerf silicon fine particles. The recycle of the silicon from the cutting slurry could save the raw material used significantly.
In the first part, we treat the slurry with acid washed, and determine the amount of metal content. At the same time, we observe the change of metal content in different condition of acid washing. And decide the best condition to remove the most metal component from slurry. In this thesis, we try to remove the metal component utilizing the nitric acid (HNO3), when the concentration of the acid is greater than 0.5M, the volume ratio of acid and slurry is great than 23, and mixing time over 40 minutes, we can remove 99.5 wt% of metal in slurry. In the second part, we separate the SiC from Si particles by Electrophoresis and Gravity force. We get the dry solid component after acid washing, and dilute the dry solid by water. We inject the diluted solution into the settling tank by metering pump. When particles settle in the tank, we apply the electric field in the solution. Finally, we discuss the effect on the separation in different pH value of diluted solution and different electric field strength in solution. In this thesis, we use the solution which the pH value is 7, the ionic strength is less than 0.005M, and also we apply the voltage 5V to the solution. We can increase the silicon content in slurry from 25wt% to 80wt% by the electrophoresis and gravity effect. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-13T01:46:47Z (GMT). No. of bitstreams: 1 ntu-96-R94524051-1.pdf: 3184607 bytes, checksum: 30f03bafca2c302bcc9c98f6bfb9319d (MD5) Previous issue date: 2007 | en |
| dc.description.tableofcontents | 中文摘要 I
英文摘要(Abstract) II 目錄 III 表目錄 V圖目錄 VI 第一章 緒論 1 1-1 矽泥的來源及組成 5 1-2 研究動機與目標 9 第二章 文獻回顧 11 第三章 理論分析與技術 21 3-1 重力沉降原理 21 3-2 電動力學原理 26 第四章 實驗設備與方法 33 4-1 實驗藥品與材料 33 4-2 實驗項目與程序 39 第五章 實驗結果與討論 43 5-1 矽泥酸洗移除金屬之探討 43 5-2 矽、碳化矽zeta potential變化之探討 46 5-3 重力沉降與電泳移動分析 47 5-4 矽、碳化矽電泳重力分離效果探討 51 第六章 結論 85 符號說明 87 參考文獻 89 | |
| dc.language.iso | zh-TW | |
| dc.subject | 碳化矽 | zh_TW |
| dc.subject | 重力 | zh_TW |
| dc.subject | 電泳分離 | zh_TW |
| dc.subject | 矽 | zh_TW |
| dc.subject | Silicon carbide | en |
| dc.subject | gravity | en |
| dc.subject | electrophoresis | en |
| dc.subject | Silicon | en |
| dc.title | 以電泳法及重力法進行矽及碳化矽分離之研究 | zh_TW |
| dc.title | The Study of Separation of Silicon and Silicon Carbide
by Electrophoresis and Gravity. | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 95-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 蔡子萱,高振宏 | |
| dc.subject.keyword | 矽,碳化矽,電泳分離,重力, | zh_TW |
| dc.subject.keyword | Silicon,Silicon carbide,electrophoresis,gravity, | en |
| dc.relation.page | 92 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2007-07-10 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 化學工程學研究所 | zh_TW |
| 顯示於系所單位: | 化學工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-96-1.pdf 未授權公開取用 | 3.11 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
