請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/30235完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陳炳煇 | |
| dc.contributor.author | Chih-Hsiang Chang | en |
| dc.contributor.author | 張智翔 | zh_TW |
| dc.date.accessioned | 2021-06-13T01:45:29Z | - |
| dc.date.available | 2008-07-16 | |
| dc.date.copyright | 2007-07-16 | |
| dc.date.issued | 2006 | |
| dc.date.submitted | 2007-07-10 | |
| dc.identifier.citation | [1]. G. B. Blankenstein, and U. D. Larsen, “Modular concept of a laboratory on a chip for chemical and biochemical analysis,” Biosensors and Bioelectronics, Vol. 13, No. 3, pp. 427-738, 1998
[2]. D. R. Reyes, D. Iossifidis, P. A. Auroux, and A. Manz, “Micro total analysis systems: 1. Introduction, theory, and technology,” Analytical Chemistry, Vol. 74, No. 12, pp. 2623-2636, 2002 [3]. P. A. Auroux, D. Iossifidis, D. R. Reyes, and A. Manz, “Micro total analysis systems: 2. Analytical standard operation and application,” Analytical Chemistry, Vol. 74, No. 12, pp. 2637-2652, 2002 [4]. B. M. Berkovsky, V. F. Medvedev, and M. S. Krakov, “Magnetic fluids-engineering applications,” (Oxford University Press, New York.), 1993 [5]. S. S. Papell, “Manufacture of magnetofluids,” U.S. Patent. No. 3215527, 1965 [6]. 下飯坂達, 中缽良治, 中塚勝人, 佐藤惟陽, “磁流體製造性質”, 粉體粉末冶金第22卷第1號, pp. 22-26, 1975 [7]. G. W. Reimers, and S. E. Khalafalla, “Production of dilution-stable aqueous magnetic fluids,” IEEE Transactions on Magnetics, Vol. 16, No. 2, pp. 178-183, 1980 [8]. K. Raj, and R. Moskowitz, “Commercial applications of ferrofluids,” Journal of Magnetism and Magnetic Materials, Vol. 85, No. 1, pp. 233-245, 1990 [9]. Z. G. Forbes, B. B. Yellen, K. A. Barbee, and G. Friedman, “An approach to targeted drug delivery based on uniform magnetic fields,” IEEE Transactions on Magnetics, Vol. 39, No. 5, pp. 3372-3377, 2003 [10]. Q. A. Pankhurst, J. Connolly, S. K. Jones, and J. Dobson, “Applications of magnetic nanoparticles in biomedicine,” Journal of Physics D: Applied Physics, Vol. 36, pp. 167-181, 2003 [11]. M. Shinkai, and A. Ito, “Functional magnetic particles for medical application,” Journal of Bioscience and Bioengineering, Vol. 94, No. 6, pp. 606-613, 2002 [12]. A. Hatch, A. E. Kamholz, G. Holman, P. Yager, and K. F. Böhringer, “A ferrofluidic magnetic micropump,” Journal of Microelectromechanical Systems, Vol. 10, No. 2, pp. 215-221, 2001 [13]. H. Hartshorne, C. J. Backhouse, and W. E. Lee, “Ferrofluid-based microchip pump and valve,” Sensors and Actuators B, Vol. 99, pp. 592-600, 2004 [14]. J. M. Nam, S. I. Stoeva, and C. A. Mirkin, “Bio-bar-code-based DNA detection with PCR-like sensitivity,” Journal of the American Chemical Society, Vol. 126, No. 19, pp. 5932-5933, 2004 [15]. R. Hiergeist, W. Andra, N. Buske, R. Hergt, I. Hilger, U Richter, and W. Kaiser, “Application of magnetite ferrofluids for hyperthermia,” Journal of Magnetism and Magnetic Materials, Vol. 201, No. 1, pp. 420-422, 1999 [16]. R. W. Speetjens, and J. D. Boeck, “On-chip magnetic particle transport by alternating magnetic field gradients,” IEEE Transactions on Magnetics, Vol. 40, No. 4, pp. 1944-1946, 2004 [17]. H. Lee, A. M. Purdon, V. Chu, and R. M. Westervelt, “Controlled assembly of magnetic nanoparticles from magnetotactic bacteria using microelectromagnets arrays,” Nano Letters, Vol. 4, No. 5, pp. 995-998, 2004 [18]. S. Ostergaard, G. Blankenstein, H. Dirac, and O. Leistiko, “A novel approach to the automation of clinical chemistry by controlled manipulation of magnetic particles,” Journal of Magnetism and Magnetic Materials, Vol. 194, No. 1, pp. 156-162, 1999 [19]. N. Chronis, W. Lam, and L. Lee, (ed. J. M. Ramsey and A. van den Berg), “Micro Total Analysis Systems 2001,” (Kluwer, Academic Publishers, Monterey, USA), 2001 [20]. N. Pamme, and A. Manz, “On-chip free-flow magnetophoresis: Continuous flow separation of magnetic particles and agglomerates,” Analytical Chemistry, Vol. 76, No. 24, pp. 7250-7256, 2004 [21]. D. Gobby, P. Angeli, and A. Gavriilidis, “Mixing characteristics of T-type microfluidic mixers,” Journal of Micromechanics and Microengineering, Vol. 11, No. 2, pp. 126-132, 2001 [22]. R. F. Ismagilov, A. D. Stroock, P. J. A. Kenis, H. A. Stone, and G. M. Whitesides, “Experimental and theoretical scaling laws for transverse diffusive broadening in two-phase laminar flows in microchannels,” Applied Physics Letters, Vol. 76, No. 17, pp. 2376-2378, 2000 [23]. M. Koch, D. Chatelain, A. G. R. Evans, and A. J. Brunnschweiller, “Two simple micromixers based on silicon,” Journal of Micromechanics and Microengineering, Vol. 9, No. 2, pp. 123-126, 1998 [24]. F. G. Bossoth, A. J. deMello, and A. Manz, “Microstructure for efficient continuous flow mixing,” Analytical Communication, Vol. 36, No. 6, pp. 213-216, 1999 [25]. J. Branebjerg, P. Gravesen, J. P. Krog, and C. R. Nielsen, “Fast mixing by lamination,” in Pro. IEEE 9th International Conference on Micro Electro-Mechanical Systems Workshop, San Diego, CA, pp. 441-446, 1996 [26]. N. Schwesinger, T. Frank, and H. Wurmus, “A modular microfluid system with an integrated micromixer,” Journal of Micromechanics and Microengineering, Vol. 6, No. 1, pp. 99-102, 1996 [27]. J. B. Knight, A. Vishwanath, J. P. Brody, and R. H. Austin, “Hydrodynamic focusing on a silicon chip: Mixing nanoliters in microseconds,” Physical Review Letters, Vol. 80, No. 17, pp. 3863-3866, 1998 [28]. J. Voldman, M. L. Grayand, and M. A. Schmidt, “An integrated liquid mixer/valve,” Journal of Microelectromechanical Systems, Vol. 9, No. 3, pp. 295-302, 2000 [29]. A. D. Strook, S. K. W. Dertinger, A. Ajdari, I. Mezic, H. A. Stone, and G. M. Whiteside, “Chaotic mixer for microchannels,” Science, Vol. 295, No. 5555, pp. 647-651, 2002 [30]. A. D. Strook, S. K. W. Dertinger, G. M. Whiteside, and A. Ajdari, “Patterning flows using grooved surfaces,” Analytical Chemistry, Vol. 74, No. 20, pp. 5306-5312, 2002 [31]. D. S. Kim, S. W. Lee, T. H. Won, and S. S. Lee, “A barrier embedded chaotic micromixer,” Journal of Micromechanics and Microengineering, Vol. 14, No. 6, pp. 798-805, 2004 [32]. H. Sato, S. Ito, K. Tajima, N. Orimoto, and S. Shoji, “PDMS microchannels with slanted grooves embedded in three walls to realize efficient spiral flow,” Sensors and Actuators A, Vol. 119, No. 2, pp. 365–371, 2005 [33]. H. Song, M. R. Bringer, J. D. Tice, C. J. Gerdts, and R. F. Ismagilov, “Experimental test of scaling of mixing by chaotic advection in droplets moving through microfluidic channels,” Applied Physics Letters, Vol. 83, No. 22, pp. 4664-4666, 2003 [34]. Z. B. Stone, and H. A. Stone, “Imaging and quantifying mixing in a model droplet micromixer,” Physics of Fluids, Vol. 17, No. 6, pp. 063103(1)-(11), 2005 [35]. P. Paik, V. K. Pamula, and R. B. Fair, “Rapid droplet mixers for digital microfluidic systems,” Lab On A Chip, Vol. 3, No. 4, pp. 253-259, 2003 [36]. C. C. Hong, J. W. Choi, and C. H. Ahn, “A novel in-plane passive microfluidic mixer with modified Tesla structures,” Lab On A Chip, Vol. 4, No. 2, pp. 109-113, 2004 [37]. U. Gebhard, H. Hein, E. Just, and P. Ruther, “Combination of a fluidic micro-oscillator and micro-actuator in LIGA-technique for medical application,” International Conference on Solid-state Sensors and Actuators, Chicago, 1997 [38]. M. K. Jeon, J. H. Kim, J. Noh, S. H. Kim, H. G. Park, and S. I. Woo, “Design and characterization of a passive recycle micromixer,” Journal of Micromechanics and Microengineering, Vol. 15, No. 2, pp. 346-350, 2005 [39]. I. Glasgow, and N. Aubry, “Enhancement of microfluidic mixing using time pulsing,” Lab On A Chip, Vol. 3, No. 2, pp. 114-120, 2003 [40]. X. Niu, and Y. K. Lee, “Efficient spatial-temporal chaotic mixing in microchannels,” Journal of Micromechanics and Microengineering, Vol. 13, No. 3, pp. 454-462, 2003 [41]. L. H. Lu, K. S. Ryu, and C. Liu, “A magnetic microstirrer and array for microfluidic mixing,” Journal of Microelectromechanical Systems, Vol. 11, No. 5, pp. 462-469, 2002 [42]. K. S. Ryu, K. Shaikh, E. Goluch, Z. Fan, and C Liu, “Micro magnetic stir-bar mixer integrated with parylene microfluidic channels,” Lab On A Chip, Vol. 4, No. 6, pp. 608 -613, 2004 [43]. Y. K. Lee, J. Deval, P. Tabeling, and C. M. Ho, “Chaotic mixing in electrokinetically and pressure drive micro flows,” The 14th IEEE Workshop on MEMS, Interlaken, Switzerland, pp. 483-486, 2001 [44]. M. H. Oddy, J. G. Santiago, and J. C. Mikkelsen, “Electrokinetic instability micromixing,” Analytical Chemistry, Vol. 73, No. 24, pp. 5822-5832, 2001 [45]. Z. Yang, S. Matsumoto, H. Goto, M. Matsumoto, and R. Maeda, “Ultrasonic micromixer for microfluidic systems,” Sensors and Actuators A, Vol. 93, No. 3, pp. 266-272, 2001 [46]. G. G. Yaralioglu, I. O. Wygant, T. C. Marentis, and B. T. K. Yakub, “Ultrasonic mixing in microfluidic channels using integrated transducers,” Analytical Chemistry, Vol. 76, No. 13, pp. 3694-3698, 2004 [47]. D. J. Beebe, J. D. Trumbull, and I. K. Glasgow, “Microfluidics and bioanalysis systems: Issues and examples,” Proceedings of Annual International Conference of the IEEE Engineering in Medicine and Biology, Vol. 20, pp. 1692-1697, 1998 [48]. R. A. Fisher, “Design of experiments,” (1st edition, London, Oliver and Boyd), 1947 [49]. C. R. Hicks, “Fundamental concepts in the design of experiments,” (3rd edition, Saunders College Publishing, FL), 1982 [50]. R. O. Kuehl, “Design of experiments:Statistical principles of research design and analysis,” (2nd edition, Pacific Grove, CA), 2000 [51]. C. R. Rao, “Factorial experiments derivable from combinatorial arrangements of arrays,” Supplement to the Journal of the Royal Statistical Society, Vol. 9, No. 1, pp. 128-139, 1947 [52]. G. Taguchi (Y. Wu, technical editor for the English edition), “Taguchi methods / design of experiments,” ( Dearborn MI / ASI Press, Tokyo), 2004 [53]. 黃忠良, “磁性流體理論應用,”(復漢出版社印行), 1989 [54]. 陳澄佑, 碩士論文, “磁性流體的研製,” 國立清華大學材料科學與工程學系, 1993 [55]. B. D. Cullity, “Introduction to magnetic materials,” (Addison–Wesley co.), 1972 [56]. R. E. Rosensweig, “Ferohydrodynamics,” (Press Syndicate of the University of Cambridge, London, 1985 [57]. 王永立, 碩士論文, “利用外加磁場降低暴雨期濁度之研究,” 國立台灣大學環工所, 2006 [58]. Y. Xia, and G. M. Whiteside, “Soft Lithography,” Angewandte Chemie International Edition, Vol. 37, No. 5, pp. 550-575, 1998 [59]. 吳志偉, “化學清洗槽訓練課程指導手冊,” 國科會北區微機電系統研究中心, 2003 [60]. S. H. Huang, W. H. Tan, F. G. Tseng, and S. Takeuchi, “A monolithically three-dimensional flow-focusing device for formation of single/double emulsions in the closed/open microfluidic systems,” Journal of Micromechanics and Microengineering, Vol. 16, No. 11, pp. 2336-2344, 2006 | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/30235 | - |
| dc.description.abstract | 本實驗研究目的在於提出新型微型混合器:混合器本身首先具有一般被動式微型混合器結構簡單的特性,其次因為本實驗工質乃具有磁化特性之奈米磁性流體,其具有可控制性,所以只要外加磁場作用,將可期待類似磁棒轉動或者互拉推擠的效果產生,這些現象都是主動式微型混合器特有優勢。綜合以上兩種微型混合器的優點,本實驗研究將利用外加磁鐵,取代一般主動式混合制動器的地位,搭配簡易蜻蜓式(Dragonfly)微流道結構,流體於微流道內部因被動式結構將先形成液珠,接著藉由媒介油基磁性流體受磁鐵磁化影響,對液珠產生主動式互拉推擠作用,不需要額外持續耗能,即可提升混合效率,在此,吾人將本新研究發展之設計稱為「半主動式微混合器」(Semi-Active Micromixer)。
論文首先進行媒介工質即奈米磁性流體之製作改良,應用田口法找尋最佳化水基磁性流體製作參數,研究顯示水基磁性流體在不同的實驗環境下,對流體本身特性會造成影響,研究採用三種控制因子(流體倒入方式、攪拌時加溫性、油酸氨保護)進行實驗,最後分析磁化結果顯示:採用鐵離子酸液滴定氫氧化鈉鹼液溶液中、平台攪拌時設定加溫90℃、油酸與氨各以5mg:5mg配置為其最佳化,而最後配置出來的水基磁性流體與油基磁性流體其皆具有超順磁性。水基於莫耳濃度0.05M磁場強度13500 Oe下,磁化強度可達0.96emu/g,油基在磁場強度13500 Oe下其莫耳濃度分別為0.5M、0.25M、0.125M,磁化強度可達7.98emu/g、6.56emu/g、4.73emu/g。 決定好磁性流體之配置後,其次利用微機電製程技術進行微型混合器製作,使用黃光製程製作SU-8光阻模仁,並利用PDMS轉印微流道結構,最後接管翻模並接附於玻璃上即完成本實驗微型混合器。最終實驗目的在於研究新型混合器之混合效率,入口管道各別注入油基磁性流體、無色去離子水及藍染劑水,實驗結果顯示,單一磁性流體濃度在單一磁場強度下,液珠本身依靠擴散作用整體混合隨著流道往下游混合越均勻,同一種流體濃度以中央相同特徵距離來看,混合均勻度隨著磁場強度增強而越均勻,相同磁場強度下,混合均勻度隨磁性流體濃度增大而混的較均勻。 | zh_TW |
| dc.description.abstract | The purpose of this essay is to propose a novel micro-mixer. The structure of the proposed mixer is as simple as that of the traditional passive mixer. Furthermore, the working flow of this assay is a kind of controllable nano-magnetic fluids therefore it can be twisted or squeezed like a magnetic rod once an external magnetic field is applied. To combine the advantages mentioned above, instead of an active mixer, an external magnet is employed in our research. With the simple dragonfly type of micro-fluidic channel, the fluid can be formed as the droplet shape by this passive structure. The oil-based agent magnetic working fluid is magnetized to squeeze the droplets and enhance the mixing efficiency. This type of mixer is called a “Semi-Active Micromixer”.
First we focus on the refinement of the agent of nano-magnetic fluids. The results show that different experimental environments have effects on the characteristics of the fluid by using Taguchi method. Three controlled parameters, the way of pouring, the way of heating, and the modification of the Ammonium Oil acid are tested for the experiments. The optimal conditions are as follows. (1). Use Fe ionized solution to titrate the sodium hydroxide solution. (2). Stir the mixing fluid at 90 oC. (3). Adopt 5 mg: 5 mg as the proportion of oleic acid and ammonia. The magnetization is 0.96emu/g for optimal water-based magnetic fluids of 0.05M. The magnetization is 7.98emu/g, 6.56emu/g and 4.73emu/g for oil-based magnetic fluids of 0.5M, 0.25M, 0.125M respectively at the external magnetic filed of 13500 Oe. All the ferrofluids illustrates the characteristic of superparamagnety. The MEMS process and soft lithography technique were employed to fabricate the micro-mixer device.The final results of the experiments focus on the mixing efficiency of the novel mixer. The oil-based magnetic fluid, transparent DI water and the blue dye are injected through the inlets respectively. The resultes show that: (1).The mixing uniformaity is more stable as closer to the end the microchannel when the same concentration of the magnetic fluid is applied. (2).The mixing is more uniform when stronger magnetic field is applied. (3).The mixed fluid is more uniform when the concerntration of the magnetic fluid is higher. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-13T01:45:29Z (GMT). No. of bitstreams: 1 ntu-95-R94522305-1.pdf: 9276944 bytes, checksum: 8f4624475569b8664d73572335b9f2dd (MD5) Previous issue date: 2006 | en |
| dc.description.tableofcontents | 目錄
誌謝 I 中文摘要 II 英文摘要 IV 符號說明 VI 目錄 VIII 表目錄 X 圖目錄 XI 第一章 緒論 1 1.1 背景 1 1.2 文獻回顧 2 1.2.1 奈米磁性流體 2 1.2.2 微型混合器 3 1.3 研究目的與動機 10 1.4 章節概述 11 第二章 應用田口法找尋最佳化磁性流體製作參數 12 2.1 田口法簡介 12 2.2 奈米磁性流體製作 16 2.3 應用田口法參數設計 18 2.4 結果討論 21 2.4.1 奈米磁性流體特性 21 2.4.2 最佳化奈米磁性流體 23 2.4.3 結論整理 25 第三章 微流道製程方法與步驟 27 3.1 微流道製作規劃 27 3.2 光罩佈局設計 28 3.3 黃光製程(光阻模仁) 29 3.4 微流道轉印製程(PDMS模仁) 33 第四章 研究方法與實驗規劃 35 4.1 實驗設計 35 4.1.1 實驗參數 35 4.1.2 儀器配置 36 4.2 量測分析 36 4.2.1 混合效率 36 4.2.2 流場流速計算 37 4.2.3 實驗誤差分析 37 第五章 結果討論 40 5.1 液珠生成現象 40 5.2 混合效率與現象(無磁場影響) 41 5.3 混合效率與現象(有磁場影響) 41 第六章 結論整理與未來展望 44 參考文獻 47 | |
| dc.language.iso | zh-TW | |
| dc.subject | 田口參數設計 | zh_TW |
| dc.subject | 奈米磁性流體 | zh_TW |
| dc.subject | 混合器 | zh_TW |
| dc.subject | 微機電製程 | zh_TW |
| dc.subject | 微流體晶片 | zh_TW |
| dc.subject | MEMS process | en |
| dc.subject | Magnetic fluids | en |
| dc.subject | Taguchi method | en |
| dc.subject | Microfluidic chip. | en |
| dc.subject | Mixer | en |
| dc.title | 新型半主動式微型混合器之研發 | zh_TW |
| dc.title | Development of a Novel Semi-Active Micromixer | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 95-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 孫珍理,李達生 | |
| dc.subject.keyword | 田口參數設計,奈米磁性流體,混合器,微機電製程,微流體晶片, | zh_TW |
| dc.subject.keyword | Taguchi method,Magnetic fluids,Mixer,MEMS process,Microfluidic chip., | en |
| dc.relation.page | 107 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2007-07-11 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 機械工程學研究所 | zh_TW |
| 顯示於系所單位: | 機械工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-95-1.pdf 未授權公開取用 | 9.06 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
