請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/30233
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 宋國士(Gwo-Shyh Song) | |
dc.contributor.author | Pei-Kun Liu | en |
dc.contributor.author | 劉佩琨 | zh_TW |
dc.date.accessioned | 2021-06-13T01:45:20Z | - |
dc.date.available | 2007-07-16 | |
dc.date.copyright | 2007-07-16 | |
dc.date.issued | 2007 | |
dc.date.submitted | 2007-07-11 | |
dc.identifier.citation | Aliotta S. and Perillo G.M.E., 1987, A sand wave field in the entrance to Bahia Blanca Estuary, Argentina, Marine Geololgy, vol.76, p.1-14.
Allen J.R.L., 1968, Current Ripples, North-Holland, Amsterdam, p.433-440. Allen J.R.L. and Collinson J.D., 1974, The superimposition and classification of dunes formed by unidirectional aqueous flows, Sediment Geololgy., vol.12, p.169-178. Allen J.R.L., 1980. Sandwaves: a model of origin and internal structures. Sediment Geology, vol.26, p.281-328. Amos C.L. and King E.L., 1984, Bedforms of the Canadian eastern seaboard: A comparison with global occurrences, Marine Geology, vol.57, p.167-208. Barrie J.V., Lewis C.F.M., Fader G.B., and King L.H., 1984, Seabed processes on the northeastern Grand Banks of Newfoundland; Modern reworking of relict sediments, Marine Geololgy, vol.57, p.209-227. Bell J.M., Chantler M.J. and Wittig T., 1999, Sidescan sonar: a directional filter of seabed texture? IEE Proceeding, Radar, Sonar & Navigation, vol.146(1), p.65-72. Beyer A., Chakraborty B. and Schenke H.W., 2007, Seafloor classification of the mound and channel provinces of the Porcupine Seabight: an application of the multibeam angular backscatter data, Internaitonal Journal of Earth Sciences, vol.96(1), p.11-20. Blondel Ph., 2000, Automatic mine detection by textural analysis of COTS sidescan sonar imagery, Internaitonal Journal of Earth Sciences, vol.21(16), p.3115-3128. Boggs S. JR., 1974, Sand-wave fields in Taiwan Strait, Geololgy, vol.2, p.251-253. Boggs S. JR., Wang W. C., Lweis F. S. and Chen J. C., 1979, Sediment properties and water characteristics of the Taiwan shelf and slop. ACTA Oceanogr. Taiwanica, vol.10, p.10-49. Borgeld J.C., Clarke J.E.H., Goff J.A. and Mayer L.A., 1999, Acoustic backscatter of the 1995 flood deposit on the Eel shelf, Marine Geology, vol.154, p.197-210. Brown C.J., Cooper K.M., Meadows W.J., Limpenny D.S. and Rees H.L., 2002, Small-scale mapping of sea-bed assemblages in the Eastern English channel using sidescan sonar and remote sampling techniques, Estuarine, Coastal and Shelf Science, vol.54, p.263-278. Carmichel D.R., Linnett L.M., Clarke S.J. and Calder B.R., 1996, Seabed classification through multifractal analysis of sidescan sonar imagery, IEE Proceeding, Radar, Sonar & Navigation, vol.143(3), p.140-148. Charlot D., Girault R. and Zerr, B., 1994, DELPH-SONAR: a compact system for the acquisition and processing of side scan sonar images, OCEANS ‘94., Oceans Engineering for Today's Technology and Tomorrow's Preservation. Proceedings, vol.2, p.II/428-432. Cochrane G.R. and Lafferty K.D., 2002, Use of acoustic classification of sidescan sonar data for mapping benthic habitat in the Northern Channel, Continental Shelf Research, vol.22, p.683-690. Collier J.S. and Brown C.J., 2005, Correlation of sidescan backscatter with grain size distribution of surficial seabed sediments, Marine Geology, vol.214, p.431-449. Dalrymple R.W., Knight R.J. and Lambiase J.J., Bedforms and their hydraulic stability relationships in a tidal environment, Bay of Fundy, Canada, Nature, vol.275, p.100-104. Davis K.S., Slowey N.C., Stender I.H., Fiedler H., Bryant W.R. and Fechner G., 1996, Acoustic backscatter and sediment textural properties of inner shelf sands, northeastern Gulf of Mexico, Geo-Marine Letters, vol.16, p.273-278. Elliot T. and Gardiner A.R., 1981, Ripple, megaripple and sandwave bedforms in the macrotidal Loughor Estuary, South Wals, U.K. Publ. int. Ass. Sediment, vol.5, p.51-64. Fish J.P. and Carr H.A., 1990, Sound Underwater Images- A Guide to the Generation and Interpretation of Side Scan Sonar data, American Underwater Search and Survey, 188p. Fonseca L., Mayer L., Orange D. and Driscoll N., 2002, The high-frequency backscattering angular response of gassy sediments: Model/data comparison from the Eel River Margin, California, Journal of Acoustic Society of America. vol.111(6), p.2621-2631. Gardner J.V., Field M.E., Lee H., Edwards B.E., Masson DG, Kenyon N. and Kidd R. B., 1991, Ground truthing 6.5-kHz sidescan sonographs: what are we really imaging. Journal of Geophysical Research, vol.95, p.5955-5974 Gauer R.C., McFadzean A. and Reid C., 1999, An automated sidescan sonar pipeline inspection system, OCEANS '99 MTS/IEEE. Riding the Crest into the 21st Century, vol.2, p.811-816. Goff J.A., Olson H.C. and Duncan C.S., 2000, Correlation of side-scan backscatter intensity with grain-size distribution of shelf sediments, New Jersey margin, Geo-Marine Letters, vol.20(1), p.43-49. Gonidec Y.L., Lamarche G. and Wright I.C., 2003, Inhomogeneous substrate analysis using EM300 backscatter imagery, Marine Geophy. Research, vol.24(3-4), p.311-327. Hamilton E.L., 1970, Sound Velocity and related properties of marine sediments, North Pacific, Journal of Geolphysical Research. vol.75, p.4423-4446. Harris P.T. and Collins M.B., 1984, Side-scan sonar investigation into temporal variation in sand wave morphology: Helwick sands, Bristol Channel, Geo-Marine Letters, vol.4(2), p.91-97. Harris P.T., 1988, Large-scale bedforms as indicators of mutually evasive sand transport and the sequential infilling of wide-mouthed estuaries. Sedimentary geology, vol.57, p.273-289. Hawkins A.B. and Sebbage M.J., 1972. Reversal of sand waves in the Bristol Channel. Marine Geology, vol.12, p.M7-M9. Hay A. E. and Wilson D. J., 1994, Rotary sidescan images of nearshore bedform evolution during a storm, Marine Geology, vol.119, p.57-60. Hennings I., Lurin B., Vernemmen C. and Vanhessche U., 2000, On the behaviour of tidal current directions due to the presence of submarine sand waves, Marine Geology, vol.169(1-2), p.57-68. Hicks D.M. and Inman D.L.,1987, Sand dispersion from an ephemeral river delta on the Central California coast, Marine geology, vol.77(3-4), p.305-318. Hobbs G.H., 1986, Side-scan sonar as a tool for mapping spatial variations in sediment type, Geo-Marine Letters, vol.5, p.241-245. Huvenne V.A.I., Blondel Ph. and Henriet J.-P., 2002, Textural analyses of sidescan sonar imagery from two mound provinces in the Porcupine seabight, Marine Geology., vol.189, p.323-341. Jackson D.R. and Winerbrenner D.P., 1986, Application of the composite roughness model to high-frequency bottom backscattering, Journal of Acoustic Society of America,. vol.79, p.1410-1422. Jackson D.R., Baird A.M., Crisp J.J., Thomson P.A.G., 1986, High-frequency bottom backscatter measurements in shallow water, Journal of Acoustic Society of America, vol.80(4), p.1188-1199. Jackson D.R., Briggs K.B., 1992, High-frequency bottom back-scattering: roughness versus sediment volume scattering, Journal of Acoustic Society of America, vol.92(2), p.962-977. Jackson D.R., Williams K.L., Thorsons E.I., and Kargl S.G., 2002, High-frequency subcritical acoustic penetration into a sandy sediment, IEEE Journal of Oceanic Engineering, vol.27(3), p.346-361. Johnson H.P. and Helferty M., 1990, the interpretation of side-scan sonar, Reviews of Geophysics, vol.28(4), p.357-380. Jordan G. F., 1962, Large Submarine Sand Waves, Science vol.136, p.839-848. Jung W.Y., Suk B.C., Min G.H. and Lee Y.K., 1998, Sedimentary structure and origin of a mud-cored pseude-tidal sand ridge, eastern Yellow Sea, Korea, Marine Geology, vol.151, p.73-88. Kenyon N.H., 1970, Sand ribbons of European tidal seas, Marine Geology, vol.9(1), p.25-39. Kenyon N.H., Belderson R.H., Srtide A.H. and Johnson M.A., 1981, Offshore tidal sand banks as indicators of net sand transport and as potential deposites. Sepc. Publ. Int. Assoc. Sedimentology, vol.5, p.257-268. Klein Associates, INC., 1985, Side Scan Sonar Record Interpretation, 134p. Klein G.D., Park Y.A., Chang J.H. and Kim C.S., 1982, Sedimentology of a subtidal, tide-dominated sand body in the Yellow Sea, Southwest Korea, Marine Geology, vol.50, p.221-240. Knebel H.J., Signell R.P., Rendigs R.R., Poppe L.J., and List J.H., 1999, Seafloor environments in the Long Island Sound estuarine system, Marine Geology, vol.5(3), p.277-318. L-3, 2000, Multibeam Sonar Theory of Operation, chapter 5 sidescan sonar, L-3 Communications SeaBeam Instruments. Lanckneus J., Moor G.D. and Stolk A., 1994, Environmental setting, morphology and volumetric evolution of the Middlekerke Bank(southern North Sea), Marine Geology., vol.121, p.1-21. Langhorne D.N., 1982, A study of the dynamics of a marine sandwave, Sedimentology, vol.29(4), p.571-594. Lianga W.D., Tang T.Y., Yangb Y.J., Koa M.T. and Chuanga W.S.,2003, Upper-ocean currents around Taiwan, Deep Sea Research Part II: Topical Studies in Oceanography, vol.50(6-7), p.1085-1105. Liu P.K. and Song G.S., 2006, Undersea LNG Pipeline Span Investigation, Sea Technology, vol.47(7), p.41-44. Mason D.C., Davenport I. J., Flather R.A. and Gurney C., 1998, A digital elevation model of the inter-tidal areas of the wash, England, produced by the waterline method. International Journal of Remote Sensing, vol.19(8), p.1455-1460. McCave I. N. and Langhorne D. N., 1982, Sand waves and sediment transport around the end of a tidal sand bank, Sedimentology, vol.29, p.95-110. McCave I., 1971, Sand waves in the North Sea off the coast of Holland,Marine Geology, vol.10(3), p.199-225. McLean S.R., 1981,The role of non-uniform roughness in the formation of sand ribbons, Marine Geology, vol.42(1-4), p.49-74. Nitsche F.O.,Bella R.,Carbottea S.M.,Ryana W.B.F.and Flood R.,2004, Process-related classification of acoustic data from the Hudson River Estuary, Marine Geology, vol.209, p.131-145. Park S.C. and Lee S.D., 1994, Depositional patterns of sans ridges in tide-dominated shallow water environments: Yellow Sea coast and South Sea of Korea, Marine Geology, vol.120, p.89-103. Ramsay P.J., Smith A.M., and Mason T.R., 1996, Geostrophic sand ridge, dune files and associated bedforms form the Northern KwaZulu-Natal shelf, south-east Africa, Sedimentology, vol.43, p.407-419. Reinson G.E., 1979, Longitudinal and transverse bedforms on a large tidal delta, Gulf of St. Lawrence, Canada, Marine Geology, vol.31(3-4), p.279-296. Ryan W.V.F. and Flood R.D., 1996, Side-looking sonar backscatter response at dual frequencies, Marine Geophysical Reserachs, vol.18(6), p.689-705. Shepherda S.A. and Hailsa J.R., 1984, The dynamics of a megaripple field in northern Spencer Gulf, South Australia, Marine Geology, vol.61(2-4), p.249-263. Song G.S., 2004, APCN2(Asia Pacific Cable Network 2) final report: Cable Re-route Desktop Study for Segment S6 & S7 off Northern Taiwan, Global Aqua Survey Inc. 22p. Song G.S., 2004, Quantification and mitigated strategy of sedimentation in the reservoir of the Wanda Hydroelectric Power Plant, TPC-546-91-3304-01, the Taiwan Power Company Final Report, 196p, in Chinese. Song G.S., 2005, Water Dams Scanned by Sidescan Sonar, Sea Technology, vol.46(12), p.57-60. Stanton T.K, 1984, Sonar estimates of seafloor microroughness, Journal of Acoustic Society of America, vol.75, p.809-818. Trevorrow M. and Claytor R., 1998, Detection of Atlantic herring (Clupea harengus) schools in shallow waters using high-frequency sidescan sonars, Canadian Journal of Fisheries and Aquatic Sciences, vol.55, p.1419-1429. Trevorrow M., 1997, Detection of migratory salmon in the fraser River using 100 kHz sidescan sonars, Canadian Journal of Fisheries and Aquatic Sciences, vol.54, p.1619-1629. Trevorrow M., 2001, An evaluation of a steerable sidescan sonar for surveys of near-surface fish, Fisheries Research, vol.50, p.221-234. Twichell D., Brooks G., Gelfenbaum G., Paskevich V. and Donahue B., 2003,Sand ridges off Sarasota, Florida: A complex facies boundary on a low-energy inner shelf environment,Marine Geology, vol.200(1-4), p.243-262. Urgeles R., Locat J. and Schmitt T., 2002, The July 1996 deposit in the Saguenay Fjord, Quebec, Canada: implications for sources of spatial and temporal backscatter variations, Marine Geology, vol.148, p.41-60. Urick R.J., 1983, Principles of underwater sound, 3rd edition, McGraw-Hill, New York, 423p. Yevtushenko A.A., Kulchytsky-Zhyhailo R.D., van de Meene J.W.H., Boersma J.R. and Terwindt J.H.J. 1996, Sedimentary structures of combined flow deposits from the shoreface-connected ridges along the central Dutch coast, Marine Geology, vol.131, p.151-175. Van Veen J., 1935. Sandwaves in the North Sea, The International Hydrographic Review, vol.12, p.21-29. Waite A.D., 2002, Sonar for Practising Engineers, 3rd edition, John Wiley and Sons, LTD. 231p. Werner F. and Newton R.S., 1975, The pattern of large-scale bed forms in the Langeland Belt (Baltic Sea), Marine Geology, vol.19(1), p.29-59. Werner F., Unsold G.,Koopmann B. and Stefanon A., 1980,Field observations and flume experiments on the nature of comet marks, Sedimentary Geology, vol.26(1-3), p.233-262. Wewetzer S.F.K., 1999, Side-scan sonar mapping of bedforms in the middle Tay Estuary, Scotland, International Journal of Remote Sensing, vol.20(3), p.511-522. William H.K., 2000, Side Scan Sonar Technology, Ocean 2000 MTS/IEEE conference and Exhibition, p.1029-1033. William J.F. and Johnnie N.M., 1988, Basics of Physical Stratigraphy and Sedimentology, John Wiley & Sons, 371p. Zarillo G.A., 1982, Stability of bedforms in a tidal environment, Marine Geology, vol.48, p.337-351. 全球測繪,2005,桃園砂崙及高雄大林外海海底管線外部檢查工程,永興海洋工程股份有限公司。 宋國士,1999,濁水溪流域水庫泥砂淤積效應及其水力發電再生能力評估(I),行政院,國科會,87年電力科技產學合作計畫報告書。 宋國士,2001,阿瑪斯號貨輪重油污染事件調查-墾丁國家公園龍坑及其周遭地區海域海床之地形地貌調查報告書,內政部營建署墾丁國家公園管理處。 宋國士,2002,八里海放管海床地形暨水下攝影調查季報告書,台北市衛生下水道工程處,中華工程顧問公司。 宋國士,2002,霧社水庫、明潭電廠上下池受921地震事件影響庫底淤積量測調查期末報告,台灣電力公司綜合研究所。 宋國士,2006,萬大發電廠霧社水庫淤積測量期末報告,台灣電力股份有限公司,47頁。 宋國士、邱協棟,1993,測深系統誤差效應之考量,海下技術季刊,第三卷,第四期,31-35頁。 李知苡、陳汝勤,2001,台灣附近海域表層沉積物之組織、礦物組成與化學特性,台灣海洋學刊,第39期,67-81頁。 周靜歆,2006,水下目標物的偵蒐與超短基線水下定位法,台灣大學海洋研究所碩士論文,67頁。 林俊賢,2001,海床影像側掃聲納之研究:併圖影像之修正,台灣大學海洋研究所碩士論文,76頁。 徐春田、宋國士、喬凌雲、俞何興、陳民本,1995,永安液化天然氣海上氣管敷設工程路徑海床調查,環海工程顧問有限公司。 連國珍,2002,數位影像處理,儒林圖書有限公司。 詹榮桂、邵廣昭、宋國士、王敏昌、林宏誠,1999,設置人工魚礁之最適飽和度評估,台灣省農林廳漁業局,100頁。 劉佩琨,2002,淺海海床地質及環境探勘之偵搜儀器設備簡介,海下技術季刊,第12卷,第3期,第15-25頁。 劉佩琨、宋國士,2007,側掃聲納用於海底管線探勘之研究,第九屆水下技術研討會暨國科會成果發表會,260-268頁。 劉佩琨、宋國士、李明龍與李建鋒,2006,淺水域地形測量之多音束測深資料處理,第八屆水下技術研討會暨國科會成果發表會,247-253頁。 戴昌鳳、宋國士,2000,核能四廠海域珊瑚分佈調查計劃期末報告,台灣電力股份有限公司,180頁。 電子資料 Communication Technology, 2007, Commtech Tutorials Series-Chirt Technology, http://www.comm-tec.com/Library/Tutorials/Geophysics/chirp.pdf Edgetech Inc., 2007, 4300-mpx high speed sidescan sonar system, http://www.edgetech.com/sidescanlevel3s4300mpx.html. NOAA, 2006, history of NOAA exploration, http://www.oceanexplorer.noaa.gov/history/history_oe.html. Werlin L., 1998, Operational Effectiveness of Unmanned Underwater System, Washington, DC: Marine Technology Society Remotely Operated Vehicle Committee, CD version. Wikipedia, 2006, sidescan sonar, http://en.wikipedia.org/wiki/Side-scan_sonar. Wikipedia, 2006, Sonar, http://en.wikipedia.org/wiki/Sonar. 維基百科,2006,李奧納多,達文西,http://zh.wikipedia.org。 | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/30233 | - |
dc.description.abstract | 僅利用側掃聲納影像強度,進行海床底質的判定有其限制。必須利用聲納在線形的優勢成像以及強度具有鑑別度的條件下,進行海床底質的推估,才具有較高的正確性。
在不考量側掃聲納儀器本身的誤差,海床影像的成像強度為相對性並非絕對。並且,同一處的海床,其回散射訊號的強度,因著聲納入射角、聲波頻率與傳遞距離而有不同的反應。 配合側掃聲納掃描之成像幾何,可顯示出海床微起伏的狀態,特別是紋理、線形、陰影帶以及具有鑑別性區塊,而這些特徵可以作為影像辨識屬性的依據,並大致分類出礁石、層狀節理、礫石、砂、泥等底質。 側掃聲納於偵測波形的最佳成像方位角,為拖魚指向與波脊平行,並且坐落在測距一半以上,可增加地形起伏的辨識率。 依據相對大尺度的砂波,在拖魚指向與砂波脊線成大角度斜交時,該波形可在拖魚正下方影像顯示,並且可以辨識該波長與坡傾角,以判定此砂波為對稱波形,或非對稱波形,來指示沉積物的淨搬運方向。在向面所發展的沙條紋或大波痕也可以同時顯示於影像上。尺度相對小的波形必須採用測距相對短、拖魚與波形脊線大致平行的條件方可增加顯像對比。 依據台灣近岸的砂波影像顯示,近岸地區水下砂波的脊線走向與水流方向斜交約30-45度;在梧棲附近的砂波發展以擺線狀與貓背狀波形為主,其中擺線狀波形波長大致在200-600公尺,而貓背狀波長在400-800公尺左右,並且貓背狀波形截面積較大與主要水流方向接近正交角度斜交。梧棲附近砂波分布密度在烏溪出海口最高,並往南往北遞減,表示在此沉積物供應與搬運營力相對大。 利用側掃聲納進行海床上管線狀態的探勘,經由成像幾何的計算,可以獲得管線空間的位置狀態,並且利用地形資料的輔助更可以增加判視的正確率。管線的影像計算可利用管線前端與後端推算模式,推估裸露管線高度;並且由前側、後側的推算,可以剝離地形效應,對比實際的地形資料,得到驗證。 旋轉拖魚掃描陡坡面,在地貌探勘應用上,從水平面擴展到陡坡面。依據地形資料或影像的逆坡面頻道,估算投影坡度,以標定到正確的平面座標或者垂直座標,來顯示正確的陡坡面影像位置。 在拖魚旋轉角度與地形坡度相同以及適當的拖魚高度條件下,可達到良好的順坡面與逆坡面影像效果。在沒有地形資料條件下,利用多種旋轉角度的聲納掃描,可以將不同角度的掃描影像進行融合拼圖,以更細膩地刻劃地貌。 | zh_TW |
dc.description.abstract | To discriminate seabed property has been limited by merely differentiating sonar strength of sidescan sonar. In order to achieve higher accuracy in probing seabed property, forming the image of lineation with higher sonar strength becomes a basic rule for judgment.
Disregarding systematic errors, acoustic intensity of sidescan sonar image shall be compared relatively. With different incident angles, frequency and propagation length of sound wave approaching to the sea floor, different reflected scattering intensity can be shown upon the sonar image. Micro-topography, including texture, lineation, shadow zones and discriminative blocks shown on the seafloor can be displayed with reasonable sonar scan geometry. Therefore, whether the seabed has been covered by mud, sands, pebbles, rocks or reef can be differentiated. To detect wave forms lineated on the seafloor, tow fish of sidescan sonar shall be towed in the direction parallel to their strike, and the image of hinge line of sand waves shall be located in the half way of the slant range being set. When towed fish is towed in the direction perpendicular with the lineation of hinge line of sand waves, the wave length and dipping angles, can be determined from the sonar image at nadir. Under the circumstance, whether the shape of the sand wave is symmetric or not can be shown and the main direction of sediment transportation can be pointed out. In addition, those sand ribbons and megaripples developed on flank of stoss side of sand waves can be easily identified. For those smaller wave forms, a comparatively short range with the fish towed parallel to the direction of hinge line will enhance the contrast shown on the image. Side scan images of sand waves developed offshore of western Taiwan show their hinge line intersecting at 30-45 degrees with the direction of current flow. Trochoidal sand waves and cat back sand waves has been developed offshore of Wuchi. Trochoidal sand waves are about 200-600 meters in the wave length, and cat back sand waves are 400-800 meters. Cat back sand waves show with the wider cross section that is approximately perpendicular to the direction of the current flow. The denser of sand waves distributed outside the Wuchi River mouth is shown, and their appearing becomes less further to the south or north, which implies sediment supplement and transport force are larger at this region. The attitude of pipelines lying on the sea floor can be obtained by knowing their geometrical arrangement of sonar images. In addition, the estimation can be more accurate by using multi-beam bathymetrical data in the region. Regarding to the estimation of the elevated together with suspended heights of pipeline above the sea floor, they can be calculated with the Frontward and Backward models derived in this dissertation. Models are tested, and indicated the calculations have been effective. The deployment of towed fish is designed to rotate its body to scan the slope instead of the flat bottom under the water. The purpose is to observe bottom details of the bank area. In the processes, gradient of the slope can be obtained from the digital bathymetrical data or estimated from the sonar image, so that they can be projected and mapped in a space with the Cartesian coordinates. The best image to a slope area can be achieved by rotating tow fish with suitable fish heights at an angle identical with the gradient angle of the slope. Without the help of bathymetrical data, we can observe the slope by using different rotated angles, and do the mosaicking and fusion to those sonar images under the proper projection process. It can carve more detailed aspects of the slope image. | en |
dc.description.provenance | Made available in DSpace on 2021-06-13T01:45:20Z (GMT). No. of bitstreams: 1 ntu-96-D87241006-1.pdf: 18304600 bytes, checksum: b74b01cc5730bf8abb8171b3358f1609 (MD5) Previous issue date: 2007 | en |
dc.description.tableofcontents | 口試委員會審定書 I
謝辭 III 摘要 V Abstract VII 目錄 i 圖目錄 v 表目錄 xiii 第1章 序論 1 1.1 側掃聲納發展簡史 2 1.2 側掃聲納系統 4 1.3 側掃聲納種類 8 1.4 側掃聲納成像解釋的限制性 12 1.4.1 相對性的回散射訊號 12 1.4.2 空間解析的不均勻性 13 1.4.3 側掃聲納束寬的影像變形 14 1.4.4 線形地貌過濾現象 15 1.4.5 地貌分類的代表性 16 1.4.6 地形起伏問題 18 1.4.7 坡度問題 20 1.4.8 掃描速度的問題 21 1.4.9 空間錯位 22 1.4.10 目標物的辨識 23 1.5 研究目的與成果呈現 25 1.5.1 研究目的 25 1.5.2 成果呈現 25 第2章 海床影像與底質判讀 27 2.1 引言 27 2.2 礁岩底質 32 2.2.1 成像原理與特徵 32 2.2.2 影像成像空間效果 34 2.2.3 礁石影像(reef/rock image) 39 2.2.4 層理影像(stratification image) 42 2.2.5 節理影像(joint image) 45 2.3 均勻底質 50 2.3.1 底質聲波回散射特性 50 2.3.2 強度對比 55 2.3.3 採樣分析 59 2.3.4 紋理/底痕分析 64 2.4 判定限制 68 第3章 海床波狀底痕 71 3.1 橫向構造(Transverse structure) 73 3.1.1 波痕(ripple) 73 3.1.2 大波痕(megaripple) 75 3.1.3 砂波(sandwave) 75 3.2 縱向構造(longitudinal structure) 77 3.2.1 沙條紋(sand ribbon) 77 3.2.2 彗星跡(comet mark) 77 3.2.3 砂脊(sand ridge) 77 3.3 底痕觀測方法 80 3.3.1 水下地形測量 80 3.3.2 地貌測量 82 3.3.3 水下攝影 83 3.3.4 衛星/空載遙測 83 3.4 波狀底痕之側掃聲納影像 85 3.4.1 對稱型波狀地形 85 3.4.2 非對稱波狀地形 90 3.4.3 貓背波形(cat back wave form) 96 3.4.4 下凹波形(concave wave form) 97 3.4.5 斜向成像 99 3.5 實例說明 104 3.5.1 航線與脊線斜交砂波影像 104 3.5.2 沙條紋影像 108 3.5.3 彎曲砂波影像 111 3.5.4 大波痕影像 115 3.5.5 波痕 120 3.6 台灣近岸的砂波地形 123 3.6.1 台灣附近海流狀態 123 3.6.2 台灣西岸 125 3.6.3 台灣北岸 133 3.7 討論與小結 139 第4章 海床目標影像辨識-以管線為例 143 4.1 引言 143 4.2 管線成像原理 149 4.3 管線空間計算 154 4.3.1 懸空計算 154 4.3.2 管壁漸變區 157 4.3.3 聲速影響 160 4.3.4 地形效應 164 4.3.5 管線高度估算策略 169 4.4 實例說明 171 4.4.1 管線平躺海床 173 4.4.2 管線懸空 177 4.4.3 管線懸空與凹陷地形 181 4.4.4 管線前端強反射 185 4.4.5 下凹地形陰影帶 190 4.4.6 管線後方目標物反射 191 4.4.7 其它 194 4.4.7.1 管線掩埋尾端成像 194 4.4.7.2 非平行管線航線之成像 194 4.4.7.3 航線正下方管線影像 195 4.4.7.4 管線空間上彎曲影像 196 4.5 小結 199 第5章 斜坡地帶的影像修正 201 5.1 斜坡面上之地貌探勘 202 5.2 坡面測量法 205 5.2.1 成像幾何差異 205 5.2.2 聲納指向特性與探勘適當旋轉範圍 206 5.2.3 拖魚旋轉與高度控制 209 5.3 斜坡面影像校正 213 5.3.1 順向坡平面投影校正 213 5.3.2 地形坡度計算 216 5.3.3 影像連續坡度計算方法 217 5.3.4 逆向坡投影校正 219 5.4 影像垂直投影 223 5.5 坡面影像成像效果與討論 226 5.5.1 平面投影與地形對比 226 5.5.2 坡度代表性 230 5.5.3 垂直地形與影像對比 231 5.5.4 拖魚旋轉指向的效果 234 5.5.5 不同旋轉角度影像併圖 236 5.6 小結 238 第6章 結論 239 參考文獻 243 | |
dc.language.iso | zh-TW | |
dc.title | 側掃聲納數位影像之解析與辨識分析研究 | zh_TW |
dc.title | Target Recognition and Image Resolution of the Digital Sidescan Sonar Image | en |
dc.type | Thesis | |
dc.date.schoolyear | 95-2 | |
dc.description.degree | 博士 | |
dc.contributor.oralexamcommittee | 陳汝勤(Ju-chin Chen),徐春田(Chuen-Tien Shyu),陳民本,陳琪芳,田文敏,羅聖宗 | |
dc.subject.keyword | 側掃聲納影像,地貌,海床判讀,目標物估算,影像投影, | zh_TW |
dc.subject.keyword | sidescan sonar image,morphology,seafloor judement,target estimation,image projection, | en |
dc.relation.page | 253 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2007-07-11 | |
dc.contributor.author-college | 理學院 | zh_TW |
dc.contributor.author-dept | 海洋研究所 | zh_TW |
顯示於系所單位: | 海洋研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-96-1.pdf 目前未授權公開取用 | 17.88 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。