Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 物理學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/30217
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor梁啟德
dc.contributor.authorZhi-Hao Sunen
dc.contributor.author孫志豪zh_TW
dc.date.accessioned2021-06-13T01:44:16Z-
dc.date.available2008-07-16
dc.date.copyright2007-07-16
dc.date.issued2007
dc.date.submitted2007-07-10
dc.identifier.citationchapter1:
[1] Donald A. Neamen, Semiconductor Physics and Devices, 3 rd edition (2003).
[2] Y. -H. Chiu, Master Thesis, National Taiwan University (2004).
chapter2:
[1] J. Y. Lin, Master Thesis, National Taiwan University (2006).
[2] J. R. Juang, Master Thesis, National Taiwan University (2003).
[3] Ikai Lo, J. K. Tsai, W. J. Yao, P. C. Ho, Li-Wei Tu, T. C. Chang, S. Elhamri, W. C. Mitchel, K. Y. Hsieh, J. H. Huang, H. L. Huang, and Wen-Chung Tsai, Phys. Rev. B 65, 161306(R) (2002).
[4] C.W. J. Beenakker and H. van Houten, Solid State Phys. 44, 1 (1991).
[5] Gábor Zala, B. N. Narozhny, and I. L. Aleiner, Phys. Rev. B 64, 214204 (2001).
[6] I. V. Gornyi and A. D. Mirlin, Phys. Rev. B 69 045313 (2004).
[7] S. A. Tarasenko and N. S. Averkiev, JETP Lett. 75, 552 (2002).
[8] S. D. Ganichev, V. V. Bel'kov, L. E. Golub, E. L. Ivchenko, Petra Schneider, S. Giglberger, J. Eroms, J. De Boeck, G. Borghs, W. Wegscheider, D. Weiss, and W. Prettl, Phys. Rev. Lett. 92, 256601 (2004).
[9] N.S. Averkiev, M.M. Glazov and S.A. Tarasenko, Solid State Commun. 133, 543 (2005).
[10] K. S. Cho, C.-T. Liang, Y. F. Chen, Y. Q. Tang, and B. Shen, Phys. Rev. B 75, 085327 (2007).
chapter3:
[1] http://en.wikipedia.org/wiki/Wurtzite
[2] http://www.nju.edu.cn/cps/site/pemst/Download/LuHai_Lecture
[3] E. T. Yu and O. Manasreh, eds, III-V Nitride Semiconductors: Applications and Devices.
[4] Fabio Bernardini, Vincenzo Fiorentini, and David Vanderbilt, Phys. Rev. B, 87, R10024.
[5] P. M. Asbeck, E.T. Yu, S.S Lau, G. J. Sullivan, J. Van Hove and J. Redwing, Electron. Lett. 33, 1230 (1997).
[6] L. Hsu and W. Walukiewicz, J. Appl. Phys. 89, 1783 (2001).
[7] Debdeep Jena, Yulia Smorchkova, Chris Elsass, Arthur C. Gossard, and Umesh K. Mishra, arXiv:cond-mat/0103461v1 [cond-mat.mtrl-sci] (2001).
[8] D. Zanato, S. Gokden, N. Balkan, B. K. Ridley, and W. J. Schaff, Semicond. Sci. Technol. 19, 427 (2004).
[9] L. Hsu and W. Walukiewicz, Appl. Phys. Lett. 80, 2508 (2002).
chapter 4:
1. P. T. Coleridge, R. Stoner, and R. Fletcher, Phys. Rev. B 39, 1120 (1989).
2. S. H. Song, D. Shahar, D.C. Tsui, Y.H. Xie, and Don Monroe, Phys. Rev. Lett. 78, 2200 (1997).
3. C. H. Lee, Y. H. Chang, Y. W. Suen, and H. H. Lin, Phys. Rev. B 58, 10629 (1998).
4. C. F. Huang, Y. H. Chang, C. H. Lee, H.T. Chou, H. D. Yeh, C.-T. Liang, Y. F. Chen, H. H. Lin, H. H. Cheng, and G.. J. Hwang, Phys. Rev. B 65, 045303 (2002).
5. Bodo Huckestein, Phys. Rev. Lett. 84, 3141 (2000).
6. G. M. Minkov, O. E. Rut, A. V. Germanenko, and A. A. Sherstobitov, B. N. Zvonkov, E. A. Uskova, and A. A. Birukov, Phys. Rev. B 65, 235322 (2002).
7. G. M. Minkov, A.V. Germanenko, O. E. Rut, A. A. Sherstobitov, V. A. Larionova, A. K. Bakarov, and B. N. Zvonkov, Phys. Rev. B 74, 045314 (2006).
8. Jyun-Ying Lin, Jing-Han Chen, Gil-Ho Kim, Hun Park, D. H. Youn, Chang Min Jeon, Jeong Min Baik, Jong-Lam Lee, C.-T. Liang, and Y. F. Chen, J. Korean Phys. Soc. 49, 1130 (2006).
9. By analyzing the amplitudes of SdH oscillations reported in G. M. Minkov, O. E. Rut, A. V. Germanenko, A. A. Sherstobitov, V. I. Shashkin, O. I. Khrykin, and V. M. Daniltsev, Phys. Rev. B 64, 235327 (2001).
10. Hyun-Ick Cho, G. M. Gusev, Z. D. Kvon, V. T. Renard, Jung-Hee Lee, and J-C. Portal, Phys. Rev. B 71, 245323 (2005).
chapter 5:
[1] F. A. Ponce and D. P. Bour, Nature (London) 386, 351 (1997).
[2] M. J. Manfra, L. N. Pfeiffer, K. W. West, H. L. Stormer, K. W. Baldwin, J. W. P. Hsu, D. V. Lang, and R. J. Molnar, Appl. Phys. Lett. 77, 2888 (2000).
[3] M. A. Khan, Q. Chen, M. S. Shur, B. T. Dermott, J. A. Higgins, J. Burm, W. J. Schaff, and L. F. Eastman, IEEE Electron Device Lett. 17, 584 (1996).
[4] Y. F. Wu, B. P. Keller, S. Keller, D. Kapolnek, P. Kozodoy, S. P. Denbaars, and U. K. Mishra, Appl. Phys. Lett. 69, 1438 (1996).
[5] For a review, see A. G. Bhuiyan, A. Hashimoto, and A. Yamamoto, J. Appl. Phys. 94, 2779 (2003) and references therein.
[6] J. Wu, W. Walukiewicz, K. M. Yu, J. W. Ager III, E. E. Haller, H. Lu, W. J. Schaff, Y. Saito, and Y. Nanishi, Appl. Phys. Lett. 80, 3967 (2002).
[7] J. Wu, W. Walukiewicz, K. M. Yu, J. W. Ager III, E. E. Haller, H. Lu, and W. J. Schaff, Appl. Phys. Lett. 80, 4741 (2002).
[8] H. Lu, W. J. Schaff, L. F. Eastman, and C. E. Stutz, Appl. Phys. Lett. 82, 1736 (2003).
[9] K. A. Rickert, A. B. Ellis, F. J. Himpsel, H. Lu, W. Schaff, J. M. Redwing, F. Dwikusuma and T. F. Kuech, Appl. Phys. Lett. 82, 3254 (2003).
[10] I. Mahboob, T. D. Veal, C. F. McConville, H. Lu, and W. J. Schaff, Phys. Rev. Lett. 92, 036804 (2004).
[11] L. Colakerol, T. D. Veal, H.-K. Jeong, L. Plucinski, A. DeMasi, T. Learmonth, P.-A. Glans, S. Wang, Y. Zhang, L. F. J. Piper, P. H. Jefferson, A. Fedorov, T.-C. Chen, T. D. Moustakas, C. F. McConville, and K. E. Smith, Phys. Rev. Lett. 97, 237601 (2006).
[12] For a review, see P. M. Levy, Solid State Phys. 47, 367 (1994).
[13] J. S. Moodera, L. Kinder, T. Wong, and R. Meservey, Phys. Rev. Lett. 74, 3273 (1995).
[14] T. D. Boone, L. Folks, J. A. Katine, S. Maat, E. Marinero, S. Nicoletti, M. Field, G. J. Sullivan, A. Ikhlassi, B. Brar, and B. A. Gurney, IEEE Trans. Magn. 42, 3270 (2006).
[15] S. A. Solin, D. R. Hines, A. C. H. Rowe, J. S. Tsai, Yu. A. Pashkin, S. J. Chung, N. Goel, and M. B. Santos, Appl. Phys. Lett. 80, 4012 (2002).
[16] T. Inushima, V. V. Vecksin, S. V. Ivanov, V. Y. Davydov, T. Sakon, and M. Motokawa. Phys. Stat. Sol. (b) 228, 9 (2001).
[17] T. Inushima, N. Kato, D. K. Maude, H. Lu, W. J. Schaff, R. Tauk, Y. Meziani, S. Ruffenack, O. Briot, W. Knap, B. Gil, H. Miwa, A. Yamamoto, D. Muto, Y. Nanishi, M. Higashiwaki, and T. Matsui, Phys. Stat. Sol. (b) 243, 1679 (2006).
[18] T. Inushima, N. Kato, Y. Sasaki, T. Takenobu, M. Motokawa, Phys. Stat. Sol. (c) 2, 2271 (2005).
[19] C. L. Hsiao, L. W. Tu, T. W. Chi, H. W. Seo, Q. Y. Chen, and W. K. Chu, J. Vac. Sci. Technol. B 24, 845 (2006).
[20] S. Gwo, C.-L. Wu, C.-H. Shen, W.-H. Chang, T. M. Hsu, J.-S. Wang and J.-T. Hsu, Appl. Phys. Lett. 84 3765 (2004).
[21] P. H. Chang, C.-T. Liang, N. C. Chen, T.-Y. Huang, and Y. F. Chen, Diamond Relat. Mater. 15, 1179 (2006).
[22] C. L. Hsiao, L. W. Tu, M. Chen. Z. W. Jiang, N. W. Fan, Y. J. Tu, and K. R. Wang, Jpn. J. Appl. Phys., Part 2 44, L1076 (2005).
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/30217-
dc.description.abstractIt is well known that III-nitride semiconductors have many applications in optoelectronic devices. We hope that a possible integration of magnetic storage or magnetic sensors with optoelectronic devices can be realized on the same material system. Therefore we studied the electrical properties of an InN film in the presence of magnetic fields through magneto-resistivity. In addition, a high electron mobility transistor (HEMT) structure not only has many applications such as cellphones, radar, satellite communication, but also is a suitable system to study low-dimensional physics such as the magnetic-field-induced transition from an insulator (I) to a quantum Hall (QH) state observed in a two-dimensional electron system (2DES). A comprehensive understanding of physics of HEMTs is helpful to improve the performance of HEMT based devices. Thus we studied the I-QH transition in low magnetic fields in an AlGaN/GaN HEMT structure.
At first, we characterized the structure of the InN film by the high-resolution X-ray diffraction (XRD) analysis (Bede D1 system) and Transmission electron microscopy (TEM) (JEOL JEM-2000FX). The XRD q/2q-scan pattern of our InN film shows three obviously sharp peaks corresponding to Al2O3(0006), GaN(0002), and InN(0002), respectively. No obvious off-axis crystal plane and metallic In(101) peak can be found in the pattern, suggesting that our InN film is of high purity and has an epitaxial relation of InN(0002)//GaN(0002)//Al2O3(0006). The TEM image of the InN film indicates that both the InN and the GaN layer were grown continuously from the interface without any voids and that most dislocations in the InN film originate in the GaN buffer layer and gradually disappear toward to the surface. No obvious In droplet is found in the image, consistent with the XRD results. The corresponding selected-area electron diffraction (SAED) pattern taken at the interface of InN and GaN only shows clear InN and GaN diffraction spots in the pattern, suggesting the epitaxial relationship between InN(0001) and GaN(0001) and the thin film with high purity and single wurtzite phase even at the interface. Although the XRD and TEM analyses have no clue to the appearance of metallic indium droplets or a thin indium layer in the InN film, minute metallic indium in the sample is still possible.

In the study of the InN film, we observed huge positive magnetoresistance ( %) at low temperatures as a very low magnetic field is applied (B~0.15 T). The huge PMR shows a strong dependence on temperature and dies out as the temperature is increased above 4 K. From the temperature and magnetic-field dependence of the resistance, we inferred that the huge PMR may be related to superconductivity. However, we can not make sure whether superconductivity is an intrinsic property of our InN film because of the possible existence of minute metallic indium (type I superconductivity).
Magnetoresistivity measurements performed on the AlGaN/GaN heterostructure at various temperatures ranging between 0.27 K and 2.2 K. An approximately T -independent point is observed in for which ~ . We can see that increases with decreasing T at B < while it decreases with decreasing T at B > , consistent with a direct I-QH transition point at low B . When the perpendicular magnetic field is larger than , the SdH oscillations begin to appear, inconsistent with Huckestein’s argument that should coincide with . In addition, his argument also implies that the quantum mobility must be approximately equal to electron mobility μ, where quantum mobility , is the quantum lifetime corresponding to Landau level broadening, and is the effective mass. We can inspect this implication by comparison among various mobilities. The magnetoresistivity data can be used to obtain different mobilities from the following ways:
1. m0 = 1/(ner0) from the zero-field resistivity r0.
2. mR = rxy/(rxxB) at B =Bcr [4].
3. mcr = 1/Bcr from the approximately T-independent point in the I-QH transition.
4. me = 1/B, where B is the magnetic field at which ρxx ~ρxy.
5. The renormalized mobility m΄ is obtained by fitting .
6. The quantum mobility mq is determined from SdH oscillations.
We found that the quantum mobility is much lower than other mobilities, inconsistent with Huckestein’s arguments. The same results are found in other two samples. For the whole temperature range (0.27 K T 80 K), the temperature dependence of the renormalized mobility m΄ obtained from the information in low magnetic fields is approximately the same as that of m0 determined from zero-field information. The result implies that the strength of the weak localization effect is smaller than that of Electron-electron-interaction (EEI) effects at zero field.
By the huge PMR observed in our non-magnetic InN film, magnetic sensing and recording devices, which are not susceptible to ferromagnetic noise, can be achieved. Furthermore, an advantage of InN is that InN can be grown on Si which is fully compatible with the silicon CMOS technology. Most importantly, it is deserved to mention that III-nitride semiconductors are promising material for optoelectronic devices such as LED and solar cells, therefore the experimental results inspire the integration of magnetic sensing and recording devices with optoelectronic devices using the same nitride material system. For the AlGaN/GaN heterostructure, we conclude that the corrections to Huckestein’s arguments are necessary to understand the direct I-QH transitions because and . In addition, the coincidence of m0 and m΄ implies that the zero-field mobility may be dominated by EEI in our study. The results together with the observed logarithmic T dependence of the Hall slope and the linear T dependence of the renormalized mobility, the characteristic of EEI effects, are the experimental evidence of EEI effects in our AlGaN/GaN HEMT structure.
en
dc.description.provenanceMade available in DSpace on 2021-06-13T01:44:16Z (GMT). No. of bitstreams: 1
ntu-96-R94222041-1.pdf: 2337894 bytes, checksum: 26545bfa40ecc0cca00b7cc4b5bfc163 (MD5)
Previous issue date: 2007
en
dc.description.tableofcontentsChapter 1
Introduction to two-dimensional electron system 1
1.1 Introduction ……………………………………………………………………….1
1.2 Electrons in a two-dimensional system……………………………………………2
1.3 Density of states…………………………………………………………………...6
1.4 References…………………………………………………………………………9

Chapter 2
Electron transport in a two-dimensional electron system 10
2.1 Classical Hall effect…………………………………………………………..…..10
2.2 Quantum Hall effect………………………...………………………………..…..13
2.3 corrections to the magnetoresistivity….…………………………………………18
2.3.1 Shubnikov-de Haas (SdH) effect………………………………………….18
2.3.2 Weak localization…………………………………………..…………..….20
2.3.3 Electron-electron interaction (EEI)………………………………………..22
2.3.4 Weak anti-localization and spin beats in magneto-oscillations…………….25
2.4 References……………………………………………………………………28

Chapter 3
Introduction to AlGaN/GaN heterostructures 29
3.1 Polarization in III-nitride semiconductors……………………………………….29
3.1.1 Spontaneous polarization…………………………………………………..29
3.1.2 Piezoelectric polarization…………………………………………………..31
3.1.3 The orientation of polarizations……………………………………………34
3.2 2DEG in AlGaN/GaN heterostructures…………………………………………..38
3.3 Scattering in AlGaN/GaN heterostructures………………………………………40
3.4 The ratio of transport to quantum lifetime for AlGaN/GaN heterostructures……48
3.5 References………………………………………………………………………..51

Chapter 4
On different mobilities in the low-field insulator-quantum Hall transition 52
4.1 Introduction ……………………………………………………………………...52
4.2 Experiment…………………………………………………………………….....54
4.3 Results and discussion………………………………………………………..….55
4.4 Conclusions……………………………………………………………………..63
4.5 References…………………………………………………………………….….64

Chapter 5
Huge positive magnetoresistance in an InN film 65
5.1 Introduction ……………………………………………………………………...65
51.1 Introduction to InN……………………………………………………...…65
5.1.2 Application of large magnetoresistance…………………………………....66
5.1.3 Source of PMR in InN films…………………………………………….…67
5.2 Experiment………………………………………………………………….……68
5.3 Results and discussion………………………………………………………...…68
5.4 Conclusions…………………………………………………………………….73
5.5 References……………………………………………………………………….74

Chapter 6
Conclusions 76
dc.language.isoen
dc.title二維氮化鎵電子系統與氮化銦之磁阻研究zh_TW
dc.titleMagnetoresistance Studies of Two-Dimensional GaN Electron System and InN Filmen
dc.typeThesis
dc.date.schoolyear95-2
dc.description.degree碩士
dc.contributor.oralexamcommittee林立宏,張本秀
dc.subject.keyword氮化銦,氮化鎵,異質結構,二維電子氣,磁阻,zh_TW
dc.subject.keywordInN,GaN,heterostructure,two-dimensional electron gas,magnetoresistivity,en
dc.relation.page77
dc.rights.note有償授權
dc.date.accepted2007-07-11
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept物理研究所zh_TW
顯示於系所單位:物理學系

文件中的檔案:
檔案 大小格式 
ntu-96-1.pdf
  目前未授權公開取用
2.28 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved