請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/30213完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 劉如熹 | |
| dc.contributor.author | Jing-Hong Huang | en |
| dc.contributor.author | 黃景弘 | zh_TW |
| dc.date.accessioned | 2021-06-13T01:44:01Z | - |
| dc.date.available | 2007-07-30 | |
| dc.date.copyright | 2007-07-30 | |
| dc.date.issued | 2007 | |
| dc.date.submitted | 2007-07-10 | |
| dc.identifier.citation | 1.王崇人,神奇的奈米科學,科學發展,第345期,48,民91。
2.溫明鏡,氧化鐵磁性奈米粒子之合成與特性研究;中正大學碩士論文:嘉義,民92。 3.劉伊郎與陳恭,氧化鐵薄膜與超晶格,物理雙月刊,第22期,592,民89。 4.張煦,磁性物理學,聯經出版社,台北。 5.李昆峰、高肇鴻、陳錚誼、趙啟民、卓慧如與林玉娟,磁性奈米粒子於生醫領域之應用,科儀新知,第153期,61,民95 6.Y. R. Chemla, H. L. Grossman, Y. Poon, R. Mcdermott, R. Stevensi, M. D. Alper and J. Clarke, PNAS, 97, 364 (2003). 7.楊文勝、高明遠與白玉白,納米材料與生物技術;化學工業出版社:北京,民94。 8.S. S. Papell, US patent, 3215572 (1965). 9.J. M. D. Coey and D. Khalafalla, Phys. Stat. Sol. 11, 229 (1972). 10.J. Gass, P Poddar, J Almand, S Srinath and H. Srikanth , Adv. Funct. Mater. 16, 71 (2006). 11.K. Woo, H. J. Lee, J. - P. Ahn and Y. S. Park, Chem. Mater. 18, 4399 (2006). 12.T. J. Daou, G. Pourroy, S. Begin-Colin, J. M. Greneche, C. Ulhaq-Bouillet, P. Legare, P. Bernhardt, C. Leuvrey and G. Rogez, Chem. Mater. 18, 4399 (2006). 13.T. Hyeon, S. S. Lee, J. Park, Y. Chung and H. B. Na, J. Am. Chem. Soc. 123, 12798 (2001). 14.J. Park, K. An, Y. Hwang, J.-G. Park, H.-J. Noh, J.-Y. Kim, J.-H. Park, N.-M. Hwang and T. Hyeon, Nature Materials 3, 891 (2004). 15.伍秀菁、汪若文與林美吟,儀器總覽;國科會精儀中心:新竹,民87。 16.林孟儒,X 光吸收光譜對金奈米微粒之研究;淡江大學碩士論文:台北,民92。 17.I. J. Hsu, R. S. Liu, J. M. Chen, R. G. Liu, L. Y. Jang, J. F. Lee and K. D. M. Harris, Chem. Mater. 12, 1115 (2000). 18.A. Bianconi, X-Ray Absorption: Principles, Applications, Techniques of EXAFS, SEXAFS and XANES, ed. By D. C. Koningsberger and R. Prins, John Wiley & Sons, New York, 573 (1988). 19.E. A. Stern, X-Ray Absorption: Principles, Applications, Techniques of EXAFS, SEXAFS and XANES, eds. by D. C. Koningsberger and R. Prins, John Wiley & Sons, New York, 3 (1988). 20.A. R. West, Basic Solid State Chemistry; John Wiley & Sons: Singapore, 120, 1991. 21.汪建民,材料分析;中國材料科學學會:新竹,民87。 22.楊鴻昌,科儀新知,12期,72 (1991)。 23.A. Stern, Phys. Rev. B 12, 5016 (1975). 24.J. Chen, D. J. Huang, A. Tanaka, C. F. Chang, S. C. Chung, W. B. Wu and C. T. Chen, Phys. Rev. B 69, 085107 (2004). 25.J. Stohr, J. Magn. Magn, Mater. 200, 470 (1999). 26.李宜芳,利用X光吸收及磁圓偏振二向性研究NiFe/TM/NiFe (TM: Cr, Ru);淡江大學碩士論文:台北,民91。 27.杜正恭,儀器總覽;國科會精儀中心:新竹,民87。 28.J. W. Mullin, Crystallization, Butterworth-Heinemann, 172 (1993). 29.J. Huber, Organic Chemistry, CA USA ,440 (2000). 30.G. L. Miessler, Inorganic Chemistry, USA (2004). 31.J. Park, E. Lee, N.-M. Hwang, M. Kang, S. C. Kim, Y. Hwang, J.-G. Park, H.-J. Noh, J.-Y. Kim, J.-H. Park and T. Hyeon, Angew. Chem. Int. Ed., 44, 2872(2005). 32.S. H. Liu, H. M. Tsai, C. W. Pao, J. W. Chiou, D. C. Ling, W. F. Pong, M.-H. Tsai, H. J. Lin, L. Y. Jang, J. F. Lee, J. H. Hsu, W. J. Wang and C. J. Hsu, Appl. Phys. Lett. 89, 092112 (2006). 33.C. K. Yang, J. W. Chiou, H. M. Tsai, C. W. Pao, J. C. Jan, S. C. Ray, C. L. Yeh, K. C. Huang, H. C. Hsueh, W. F. Ponga, M.-H. Tsai, H. H. Hsieh, H. J. Lin, T. Y. Hou, J. H. Hsun, Appl. Phys. Lett. 86, 062504 (2005). 34.X. Peng, J. Wickham and A. P. Alivisatos, J. Am. Chem. Soc.120, 5343 (1999). 35.D. Ma, T. Veres, L. Clime, F. Normandin, J. Guan, D. Kingston and B. Simard, J. Phys. Chem. C 111, 1999 (2007). 36.F. Bodker, S. Morup and Linderoth, Phys. Rev.Lett. 72, 282 (1994). 37.金重勳,磁性技術手冊;中華民國磁性技術學會:新竹,民91。 38.張仕欣與王崇人, 化學 56, 209 (1998). 39.L. Wang, J. Luo, Q. Fan, M. Suzuki, I. S. Suzuki, M. H. Engelhard, Y Lin, N. Kim, J. Q. Wang and C.-J. Zhong, J. Phys. Chem. B, 109, 21593 (2005). 40.H. Fang, C.-Y. Ma, T.-L. Wan, M. Zhang and We.-H. Shi, J. Phys. Chem. C, 111, 1065 (2007). | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/30213 | - |
| dc.description.abstract | 近年來各種領域之科學家更加重視粒子之多功能化,例如於粒子表面建構不同之金屬或非金屬化合物之殼,以增加不同之性質,甚至進而促使兩物質作用,改變兩者之物性或化性形成特殊之核-殼(core-shell)結構。奈米粒子之表面修飾之應用,於生物醫學領域之使用相對重要,為提升奈米粒子對於生物之相容性與對生物之無毒性,使本質為無機材料之奈米粒子能於人體內之生存期可更久並不遭排斥,故奈米粒子表面修飾使多功能化與生物體之相容性更為當務之急。
本研究乃利用化學之高溫分解法還原部份之三價鐵離子,於高溫環境下經由溫和之還原作用,促使起始物進行核化與成長之反應而形成奈米粒子,過程中調控其生長溶液離子濃度與反應時間,利用穿透式電子顯微鏡觀察其成長過程之機制,並藉由控制成長溶液之濃度與成長溫度,進而合成出不同尺寸與狹窄粒徑分布之四氧化三鐵奈米粒子,最後將合成於有機相中之奈米粒子經由交換配位基之相轉移(phase transfer)方法將奈米粒子轉至水相中,一方面應用於生物化學方面之測試,便經過生物之細胞毒性測試(cytotoxic test),探討其奈米粒子之尺寸效應(size effect)是否對生物體有所毒害,另一方面使四氧化三鐵表面包覆金之金屬殼,使得粒子具有磁性並有光學之雙重性質,所合成之產物均經由穿透式電子顯微鏡觀察其型態及粒徑、超導量子干涉磁量儀獲得粒子之磁特性與粒徑分佈之關係、利用同步輻射之光源測得粉體繞射之圖譜並分析其粒徑及結構與利用熱重分析、紅 外線光譜了解其不同粒子之粒徑組成等。 | zh_TW |
| dc.description.abstract | In this regard, there has been much interest among the scientists towards the synthesis of multifunctional composite materials using two or more materials e.g. core-shell particles. The core shell nanoparticles have been of great potential in bionanotechnology due to improvement in its biocompatibility and decreased toxicity on account of surface modification of core shell nanomaterials. The prolonged circulation time of inorganic nanomaterials in our body is important task in front of the scientists, which also needs surface modification.
In the present thesis, the syntheses of Fe3O4 (magnetite) nanoparticles were carried out by controlling the reaction time and concentration of ferric cation using high temperature decomposition method. The morphology of nanoparticles was analyzed by transmission electron microscopy (TEM). The magnetic properties were measured by superconducting quantum interference device (SQUID) and X-ray magnetic circular dichrism (XMCD). The crystal structure of nanoparticles was explored by X-ray diffraction (XRD). The composition of nanoparticles were analyzed by thermal gravimetric analysis (TGA) and Infrared spectrum (IR). We have successfully prepared magnetite nanoparticles of different sizes which were then transferred from oil phase to aqueous phase for carrying out cytotoxicity studies on cancer cells. The part of the research also involves synthesis of core-shell Fe3O4@Au nanoparticles to exploit magnetic properties of core and optical properties of shell in diagnostic and hyperthermia of cancer. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-13T01:44:01Z (GMT). No. of bitstreams: 1 ntu-96-R94223064-1.pdf: 6009566 bytes, checksum: 6411a4779c7c26915c2db771abeedde1 (MD5) Previous issue date: 2007 | en |
| dc.description.tableofcontents | 目錄
目錄......................................................I 表目錄....................................................V 圖目錄...................................................VI 第一章 緒論...............................................1 1.1奈米材料之特性.........................................1 1.1.1奈米材料之基本定義...................................1 1.1.2奈米效應.............................................2 1.2氧化鐵之介紹...........................................5 1.2.1氧化鐵...............................................5 1.2.2四氧化三鐵之結構.....................................6 1.2.3超交換作用力.........................................7 1.2.4四氧化三鐵之自旋排列.................................8 1.3奈米科技於生醫上之應用.................................9 1.3.1磁性分離.............................................9 1.3.2藥物導引............................................10 1.3.3核磁共振造影........................................10 1.3.4磁流體溫熱療........................................11 1.3.5生化感測............................................12 1.4鐵氧體之合成法........................................13 1.4.1機悈研磨法..........................................13 1.4.2化學共沉法..........................................13 1.4.3微乳(微胞)與溶膠凝膠法..............................15 1.4.4水熱法..............................................16 1.4.5高溫分解法..........................................16 1.4.6超聲化學法..........................................18 第二章 實驗步驟與儀器分析原理............................19 2.1 化學藥品.............................................19 2.2奈米粒子之製備........................................21 2.2.1鐵氧體奈米粒子之晶種製備............................21 2.2.2晶種於高溫溶液下之成長..............................23 2.2.3油相中之奈米粒子轉移至水相中........................25 2.2.4分散於水中之奈米粒子毒性測試........................27 2.2.5金-鐵氧體之殼-核結構................................28 2.3儀器分析原理..........................................30 2.3.1穿透式電子顯微鏡....................................30 (Transmission electron microscope;TEM) 2.3.2 X光吸收光譜........................................33 (X-ray absorption spectroscopy;XAS) 2.3.3 X光粉末繞射儀......................................35 (X-ray powder diffractometer;XRD) 2.3.4超導量子干涉磁量儀..................................39 (Superconducting quantum interference device magnetometer; SQUID magnetometer) 2.3.5熱分析原理..........................................40 (Thermal gravimetric analysis;TGA) 2.3.6紅外線光譜..........................................42 (Infrared spectrum;IR) 2.3.7 X光磁圓偏振二向性..................................46 (X-ray magnetic circular dichrism;XMCD) 2.3.8紫外光/可見光吸收光譜儀.............................48 (Ultraviolet/visible absorption spectrometer;UV/vis) 第三章 結果與討論........................................52 3.1奈米粒子成長之過程....................................52 3.1.1穿透式電子顯微鏡分析-晶種於二苯基醚中成長過程.......53 3.1.2奧斯華成熟過程......................................58 3.1.3奈米粒子成長之過程-統計學之分析.....................61 3.1.4穿透式電子顯微鏡分析-晶種於二苯甲基醚中成長.........66 3.1.5比較於二苯基醚與二苯甲基醚中之成長..................69 3.2奈米粒子晶體結構之分析................................71 3.2.1不同粒徑之晶體結構分析..............................71 3.2.2熱重分析-對不同粒徑奈米粒子之剖面分析...............73 3.2.3熱處理後之奈米粒子之結晶相..........................75 3.2.4熱處理後之奈米粒子表面官能基之分析..................77 3.2.5 X光吸收光譜-不同粒徑之氧化數分析...................79 3.3奈米粒子尺寸對磁性之效應..............................83 3.3.1藉X光磁圓偏振二向性討論磁性.........................83 3.3.2測量不同粒徑之奈米粒子其磁性性質....................87 3.3.3磁性奈米物質之單一磁區..............................93 3.4合成金Fe3O4@Au之分析..................................98 3.4.1穿透式電子顯微鏡之影像分析..........................98 3.4.2 Fe3O4@Au晶體結構分析..............................100 3.4.3藉紫外可見光光譜對Fe3O4@Au結構之分析...............101 3.4.4藉TEM-EDS對Fe3O4@Au之定性分析......................105 3.4.5合成殼核結構之金包四氧化三鐵之結論.................107 3.5生化之分析與應用.....................................108 3.5.1奈米粒子由油相轉移至水相之分析.....................108 3.5.2毒性測試...........................................111 第四章 結論.............................................115 參考文獻................................................118 | |
| dc.language.iso | zh-TW | |
| dc.subject | 奈米粒子 | zh_TW |
| dc.subject | 四氧化三鐵 | zh_TW |
| dc.subject | magnetite | en |
| dc.subject | nanoparticles | en |
| dc.title | 四氧化三鐵奈米粒子之合成及應用研究 | zh_TW |
| dc.title | Synthesis of Magnetite Nanoparticles and Their Applications | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 95-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 鄭淑芬,蕭宏昇,黃鵬林,彭維峰 | |
| dc.subject.keyword | 四氧化三鐵,奈米粒子, | zh_TW |
| dc.subject.keyword | magnetite,nanoparticles, | en |
| dc.relation.page | 120 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2007-07-11 | |
| dc.contributor.author-college | 理學院 | zh_TW |
| dc.contributor.author-dept | 化學研究所 | zh_TW |
| 顯示於系所單位: | 化學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-96-1.pdf 未授權公開取用 | 5.87 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
