請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/30201完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 羅俊雄(Chin-Hsiung Loh) | |
| dc.contributor.author | Yu-Chia Lin | en |
| dc.contributor.author | 林裕家 | zh_TW |
| dc.date.accessioned | 2021-06-13T01:43:12Z | - |
| dc.date.available | 2007-07-19 | |
| dc.date.copyright | 2007-07-19 | |
| dc.date.issued | 2007 | |
| dc.date.submitted | 2007-07-10 | |
| dc.identifier.citation | [1] Alvin, K. F., and Park, K. C., ‘‘Second-Order Structural Identification Procedure Via State-Space-Based System Identification,’’ AIAA J., Vol. 32, No. 2, pp. 397–406. 1994.
[2] Alvandi, A., and Cremona, C., “Assessment of vibration-based damage identification techniques,” Journal of Sound and Vibration Vol. 292, pp. 179–202, 2006. [3] Betti, R., Lus, H., Franco, G., Imbimbo, M., and Yu, Y., “Identification of strucural damage using dynamic input-output measurements,” Proc. of SPIE, Vol. 6174, 61741K, 2006. [4] Bernal, D., “Load Vector for Damage Localization,” Journal of Engineering Mechanics, Vol. 128, No. 1, pp. 7-14, 2002. [5] Bernal, D., and Gunes, B., “Flexibility Based Approach for Damage Characterization: Benchmark Application,” Journal of Engineering Mechanics., Vol. 130, No.1, pp.61-70, 2004, [6] Catbas, F. N., Brown, D. L., Aktan, A. E., “Use of Modal Flexibility for Damage Detection and Condition Assessment: Case Studies and Demonstrations on Large Structures,” Journal of Structural Engineering, Vol. 132, No. 11, pp.1699-1712, 2006. [7] DeAngelis, M., Lus, H., Betti, R., and Longman, R.W., “Extracting physical parameters of mechanical models from identified state space representations,” Journal of Applied Mechanics, Vol. 69, No. 5, pp. 617–625, 2002. [8] Doebling, S. W., Farrar, C. R., Prime, M. B., and Shevitz, D. W., ‘‘Damage identification and health monitoring of structural and mechanical systems from changes in their vibration characteristics: A literature review.’’ Tech. Rep. LA-13070-MS, Los Alamos National Laboratory, Los Alamos, N.M., 1996. [9] Fukunaga, K., “Introduction to Statistical Pattern Recognition,” New York: Academic Press, 1990. [10] Gao, Y., Spencer, B.F. Jr., and Ruiz-Sandoval, M., “Distributed computing strategy for structural health monitoring,” Structural Control and Health Monitoring, 13, pp. 488-507, 2006. [11] Juang, J. N., and Pappa, R. S., “An eigensystem realization algorithm foe modal parameter identification and model reduction,” Journal of Guidance, Control, and Dynamics, Vol. 8, No. 5, pp. 610-627, 1985. [12] Juang, J. N.,Cooper, J. E., and Wright, J. R., “An Eigensystem Realization Algorithm Using Data Correlations (ERA/DC) for Modal Parameter Identification,” Control-Theory and Advanced Technology, Vol. 4, No.1, pp. 5-14, 1988. [13] Juang, J. N., “Applied System Identification,” Prentice-Hall, Englewood Cliffs, New Jersey, 1994. [14] Juang, J. N., “System Realization Using Information Matrix,” Journal of Guidance, Control, and Dynamics, Vol. 20, No. 3, pp. 492-500, 1997. [15] Kim, J. T., and Stubbs, N., “Model-uncertainty impact and damage-detection accuracy in plate girder,” Journal of Structural Engineering, Vol. 121, pp. 1409-1417., 1995. [16] Loh, C.H., C.C. Huang and C.Y. Lin, “Time Domain Identification of Frames under Earthquake Loading,” Journal of Engineering Mechanics, Vol.126, No.7, pp. 693-703, 2000. [17] Lus, H., Betti, R., and Longman, R. W., “Obtaining refined first-order predictive models of linear structural systems,” Earthquake Engineering and Structural dynamics, Vol. 31, pp. 1413–1440, 2002. [18] Pandey, A. K., and Biswas, M., “Damage detection in structures using changes in flexibility,” Journal of Sound and Vibration, Vol. 169, No. 1, pp. 3-17, 1994. [19] Reith, G. W., and Park K. C., 2001, “A Theory for Strain-Based Structural System Identification,” Journal of Applied Mechanics, vol. 68, No. 4, pp. 521-527 [20] Stubbs, N., and Kim, J. T., “Damage localization in structures without baseline modal parameters,” American Institute of Aeronautics and Astronautics Journal, Vol. 34, pp. 1644-1649, 1996. [21] Spencer, B.F. Jr., and Gao, Y., “Experimental verification of a distributed computing strategy for structural health monitoring,” Proc. of SPIE Vol. 6174, 617403, 2006. [22] Tseng, D. H., Longman, R. W., and Juang, J. N., “Identification of the structure of the damping matrix in second order mechanical systems,” Advances in the Astronautical Sciences, AAS 94-152, pp. 167-190. [23] Tseng, D. H., Longman, R. W., and Juang, J. N., “Identification of gyroscopic and nongyroscopic second oreder mechanical systems including repeated root problems,” Advances in the Astronautical Sciences, AAS 94-151, pp. 145-165. [24] Yan, A., and Golinval, J. C., “Structural damage localization by combining flexibility and stiffness methods,” Engineering Structures, Vol. 27, pp. 1752-1761, 2005. [25] 簡士爵,“ERA 及 SRIM 系統識別技巧之研究”,國立台灣大學土木工程研究所碩士論文, 2000 年六月 [26] 劉建賢,“結合FEM與系統量測反應之結構損害偵測”,國立台灣大學土木工程研究所碩士論文, 2005 年六月 [27] 溫俊明, “類神經網路結構健康監測及破壞診斷之分析與實驗研究”,國立交通大學土木工程學系博士論文, 2004 年六月 | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/30201 | - |
| dc.description.abstract | 這篇論文主要在探討兩種不同的損害檢測方法評估全域性和局部性結構損害。本文中的傷害評估方法大致可分三個步驟:第一是利用量測資料識別狀態空間的結構系統矩陣,並利用結構系統矩陣轉換出動態的物理參數,第二是利用 DLV方法進行全域性損害檢測,第三是使用模態振形曲率的變化量並定義傷害指數評估局部性結構性損害。
狀態空間識別( SRIM )是利用量測資料識別結構系統矩陣,並且利用識別的結構系統矩陣識別二階系統的動態結構矩陣。就傷害檢測而言,結構物( 線性系統 )常被分為破壞前與破壞後兩階段。本論文首先利用四個數值模型為例進行全域性與局部性結構損害檢測,這四個例子分別為:( 1 )三個自由度的剪力構架,( 2 )二維桁架結構,( 3 )兩跨度梁的有限元素模型及( 4 )三層樓房屋構架的有限元素模型。 此外,上述方法也應用於實驗資料。本篇論文選用在國家地震中心的實尺寸三層樓結構進行實驗資料分析,此結構可分為兩種不同的型態:一個是在基準結構一樓加設支撐模擬健康狀態並且移除支撐模擬破壞狀態;另一種是基準結構一樓的柱子進行翼板切削以模擬破壞狀態。由於感測器安裝與數量上的限制,損壞樓層的位移和應變測量資料也被用來識別系統模態振形以進行局部性結構損傷檢測。 | zh_TW |
| dc.description.abstract | This study presents two different damage detection algorithms: one is for global damage detection and the other is for local damage detection. For damage detection three steps are proposed: (1) the state-space model identification from input-output measurements to extract the physical parameters, (2) global damage detection using damage locating vector (DLV) method, (3) using the changes of curvature of mode shapes as damage index to localize the position of structural damage for more detail local damage detection.
For state space identification, SRIM method is used to identify the system matrix from input-output measurements and the second-order structural system matrix are also identified from realization model. For damage detection, the pre- and post- damaged structures are identified using the two separate equivalent linear models. In this study four numerical models are selected: (1) a three degree of freedom shear-type Structure, (2) a two-dimensional truss structure, (3) a two span continuous beam represented by finite element model and (4) a three-story finite element model, as examples for global and local damage detection in this study. Besides, these damage detection methods are also applied to experimental data. Shaking table test of two different benchmark models for SHM research in NCREE is selected for the experimental study. One of the benchmark models is the 3-story steel frame with adding brace at its first floor to simulate the healthy state and removing bracing to simulate the damaged state; the other is the wedge-type cut on the flange of the column at first floor to simulate the damaged state. Because of the limit number of sensors in the implementation, the displacement and strain measurements are also used to extract the mode shape of damaged floor for local damage detection through the usage of damage index. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-13T01:43:12Z (GMT). No. of bitstreams: 1 ntu-96-R94521230-1.pdf: 1792149 bytes, checksum: b9e075895651654aa3e295b973eb137d (MD5) Previous issue date: 2007 | en |
| dc.description.tableofcontents | ABSTRACT (IN CHINESE) I
ABSTRACT (IN ENGLISH) II CONTENTS IV LIST OF TABLES VI LIST OF FIGURES VII Chapter 1: Introduction 1.1 Background and Motivation 1 1.2 Literature Review 1 1.3 Summary 3 Chapter 2: Extracting Physical Parameters using Both Input-Output Measurements 2.1 System Realization Using Information Matrix (SRIM) 7 2.2 Extracting Physical Parameters 14 2.2.1 Theoretical Shear-Type Structural Model 14 2.2.2 Comparing System Realization Model and Theoretical Model 16 2.2.3 Exaction of physical parameters 21 Chapter 3: Damage Detection Techniques 3.1 Global Damage Detection by Using Damage Locating Vector 23 3.1.1 Damage Locating Vector 23 3.1.2 Construction of Flexibility Matrix 26 3.2 Local Damage Detection by Using Damage Indices 27 3.2.1 Damage Index A 28 3.2.2 Damage Index B 29 3.2.3 Estimate nodal response for substructure using strain data 32 Chapter 4: Applications: Numerical Results and Experimental Test 4.1 Numerical Results 34 4.1.1 Example 1: a 3-DOFs Shear-Type Structure 34 4.1.2 Example 2: a Two-Dimensional Truss Structure 36 4.1.3 Example 3: a Two Span Continuous Beam Finite Element Model 39 4.1.4 Example 4: a Three-Story Finite Element Model 40 4.2 Experimental Results 43 4.2.1 Introduction of the Experimental Model and Shaking Table Test 43 4.2.2 Extracting Structural System Parameter 44 4.2.3 Global and Local Damage Detection 45 Chapter 5: Conclusions and Future Works 5.1 Conclusions 49 5.2 Future Works 50 References | |
| dc.language.iso | en | |
| dc.subject | 系統識別 | zh_TW |
| dc.subject | 傷害檢測 | zh_TW |
| dc.subject | Damage Detection | en |
| dc.subject | System Identification | en |
| dc.title | 利用地震反應資料進行結構全域及局部性損害評估 | zh_TW |
| dc.title | Global and Local Damage Assessment of Structures by Seismic Response Data | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 95-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 蔡益超(I-Chau Tsai),吳文華 | |
| dc.subject.keyword | 系統識別,傷害檢測, | zh_TW |
| dc.subject.keyword | System Identification,Damage Detection, | en |
| dc.relation.page | 96 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2007-07-11 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 土木工程學研究所 | zh_TW |
| 顯示於系所單位: | 土木工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-96-1.pdf 未授權公開取用 | 1.75 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
