請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/30171完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 顏溪成 | |
| dc.contributor.author | Ying-Cheng Lan | en |
| dc.contributor.author | 藍英正 | zh_TW |
| dc.date.accessioned | 2021-06-13T01:41:05Z | - |
| dc.date.available | 2010-07-16 | |
| dc.date.copyright | 2007-07-16 | |
| dc.date.issued | 2007 | |
| dc.date.submitted | 2007-07-11 | |
| dc.identifier.citation | Bacon J. and Adams R. N.(1968), J. Am. Chem. Soc.,90,6596.
Bolger,J. C. and Moraro, S. L. (1984), “Conductive adhesives: how and where they work”, Adhesives Age, 27, 17. Kang SK, Rajinder SR, Purushothaman S(1998). Development of high conductivity lead(Pb)-free conducting adhesives. IEEE Trans Component Packag Technol, 21(1) ,18–22. Kang, S. K. , Thomas, J. (1998), “Thermocompression Bonding of Aluminum Bumps in TAB Application”, Electronic Components & Technology Conference, 48th IEEE, New York, 1305-1310. Kevin Bautista(2004), Four-Point Probe Operation. Kim, H.K. and Shi, F.G. (2001), ” Electrical reliability of electrically conductive adhesive joints:dependence on curing condition and current density”, Microelectronics Journal , 32, 315 . Lau, J. H. (1996), Flip Chip Technologies, New York , McGraw-Hill, pp.25-29. Lau, J. H. (1995), Flip Chip Technologies, New York, McGraw-Hill, Chapter 1. Lau, J. H. (1992), Handbook of Tape Automated Bonding, New York, Van Nostrand Reinhold, Chapter 17. Lee Hsien-Hsuen, Chou Kan-Sen, Shih Zong-Whie(2005), International Journal of Adhesion & Adhesives ,25, 437–441 Leon C. A. and Drew R. A. L. (2000), Journal of Materials Science, 35, 4763-4768. Loos, A. C. and Springer G. S.(1983), “Curing of Epoxy Matrix Composites”, Journal of Composite Materials, 17, 135-169. Lovinger, A. J.(1979), “Development of Electrical Conduction in Silver-filled Epoxy Adhesives”, Journal of Adhesion, 10, 1-15. Lu Daoqiang, Wong C.P. (2000), International Journal of Adhesion & Adhesives, 20, 189-193 Lu, D., Wong, C. P.(2000), “Effects of Shrinkage on Conductivity of Isotropic Conductive Adhesives,” International Journal of Adhesion & Adhesives,20, 189. MacDiarmid A.G., Epstein A. J (1989) Faraday Discuss. Chem. Soc. 88, 317. MacDiarmid A. G. (2001),Current Applied Physics 1, 269-279. MacDiarmid, A. G.; Chiang, J. H.; Huang, W.; Humphery, B. D.; Somasiri, N. L. (1985) Mol. Cryst. Liq. Cryst., 125, 309. MacDiarmid A. G., Chiang J. C., Richter A. F., Somasiri N. L. D. and Epstein A. J. (1987), “polyaniline: Synthesis and Characterization of the Emeraldine Oxidation State by Elemental Analysis” in L.Alca’cer(ed.) “Conducting Polymer” D. Reidel Pub. Comp. Dordrecht, Holland, , 105. McLachlan, D. S., M. Blaszkiewics and R. E. Newnham(1990), “Electrical Resistivity of Composites”, Journal of American Ceramic Society, 73, 8, 2187-2203. Mohilner D. M., Adams R. N., Argersinger W. J. (1962), J. Am. Chem., Soc. 84, 3618. Mordechay S., Milan P.,Modern Electroplating, John Wiley& Sons,INC. Patil A. O., Ikenoue Y., Would F. and Heeger A. J. (1987), J. Am. Chem. Soc., 109, 1858. Novak. I., Krupa. I., Chodak. I. (2002), Investigation of the correlation between electrical conductivity and elongation at break in polyurethane-based adhesives, Synthetic Metals, 31, 93~98. Schimid,G. (1994),“ Clusters and Colloids,Theroy to Application”, New York . Sevil U. A., Guven O., Birer O., Suzer S. (2000), Synthetic Metals, 110, 175-179. Seymour R. B., Plenum Press, Conductive polymers, New York 171-180. Seymour R. B., Plenum Press, Conductive Polymers, New York 227-233. Shirakawa, H.,Keda, S. (1971), Polym.J., 2, 231. Stejskal J. and Kratochvil P. (1996), Polymer, 37 (2), 367-369. Stejskal J., Riede A., Hlavata D., Prokes J., Helmstedt M., Holler P. (1998), Synth. Met., 96, 55. Stejskal J. (2002), Polyaniline, Preparation of a conducting polymer, Pure Appl. Chem., 74, 857–867. Tlarke T.C., Krounbi M. T., Lee V. Y., (1981), J. Chem. Soc. 384. Uemura S., Teshima K. (1999), Synth. Met., 101, 701-702. Venancio E. C., Costa C. A. R., Machado S.A.S., Motheo A.J. (2001), Electrochemistry Communications, 3, 229-233. Wessling B. (1991), Synth. Met. ,44, 119. Wood A. S. (1991), “Tapping the power of intrinsic conductivity”, Modern Plastic Int., Aug, , 33. Wu H.P., Liu J.F., Wu X.J., Ge M.Y., Wang Y.W., Zhang G.Q., Jiang J.Z. (2006), International Journal of Adhesion & Adhesives, 26, 617–621 Ye L., Lai Z., Liu J. (1999),” Effect of Ag Particle Size on Electrical Conductivity of Isotropically Conductive Adhesives”, IEEE Transactions on Electronics Packaging Manufacturing, 22. 神戶得藏著, 莊萬發譯(1989), “無電解鍍金 : 化學鍍金術” ,復漢出版社 陳偉亮(2000),”異方向性導電膠覆晶接合之研究”,成功大學碩士論文 陳嘉崙(1996),'導電性聚苯胺高分子材料製造氯離子感測器之研究',成功大學化工碩士論文 郭志浩(2006),” 無電鍍銀微粒應用於導電膠及烷基硫醇對導電度效應之研究”,台灣大學碩士論文 | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/30171 | - |
| dc.description.abstract | 本實驗分成三個部分討論:第一部分為製備聚苯胺的研究,第二部分為製備導電粒子的研究,第三部份為製備導電膠的研究。藉由GPC與UV-Vis儀測量聚苯胺的分子量與特徵峰;藉由粒徑分析儀與SEM觀察顆粒尺寸與顆粒形貌;而藉由XRD及ICP觀察無電鍍銀後,銀是否有鍍著在微粒表面與銀鍍上去的量。第三部份為製備導電膠的研究
實驗結果發現在製備聚苯胺實驗方面,在0˚C下化學合成的聚苯胺,由GPC測量其平均分子量為3756; 由UV-vis儀觀察去摻雜態聚苯胺,其UV-vis光譜波長在320nm及640nm左右有吸收,這分別是由苯環的π-π*吸收的exciton吸收所造成的。製備得到的去摻雜態聚苯胺用不同的摻雜酸(HCl、HBr、HNO3、H3PO4、DBSA)摻雜,以DMSO做為溶劑,可得到最高導電度為硝酸摻雜態聚苯胺溶液,其值為164.33μs/cm;而以DBSA為摻雜酸的摻雜態聚苯胺在DMSO溶劑中有最大的溶解度6.43mg/ml。 製備導電粒子實驗方面先將平均粒徑為0.982 μm的扁平雪片狀石墨粉GS-75與平均粒徑為4.292 μm的扁平雪片狀石墨粉GP-44無電鍍銀;由XRD觀察無電鍍銀後的微粒可知鍍銀石墨粉GS-75/Ag與GP-44/Ag表面皆產生Ag與幫助電性導通的Ag2O。由ICP觀察石墨粉無電鍍銀十分鐘後,鍍上銀的量,而且比表面積較大的小顆粒石墨粉GS-75吸附銀的量會比大顆粒石墨粉GP-44吸附銀的量較多。 在製備導電膠實驗方面,發現石墨微粒在無電鍍銀之後,電阻係數ρ必定會下降;而且微粒在加入聚苯胺溶液之後,電阻係數ρ也必定會下降;而當再加入硫醇當分散劑之後,電阻係數ρ又稍微下降,故GS-75,GP-44在鍍銀且加入聚苯胺溶液與分散劑硫醇之後,電阻係數ρ會比原本不鍍銀且不加入分散劑硫醇下降約三個order。固化溫度在200°C之後,電阻係數便不會在下降。GS-75/Ag加入聚苯胺溶液之後且在200°C固化,其電阻係數ρ為0.000421ohm-cm,此值為本論文所作出來的最佳且最低的電阻係數值。 | zh_TW |
| dc.description.abstract | The thesis was divided into three parts. The first part of study was preparing polyaniline. The second part of study was preparing conductive particles. The third part of study was preparing electrically conductive adhesives (ECAs). In the experiments, we measured the molecular weight of polyaniline by GPC and polyaniline was characterized by ultraviolet-visible spectroscopy. We observed particle size and surface morphology by particle size instrument and SEM. We also analyzed if silver was electroless plated on particles surface and plated weight by XRD and ICP.
In the study of preparing polyaniline, we synthesize it at 0°C. We find its molecular weight is 3756. UV–vis spectra of the emeraldine form of polyanoline shows two peaks, 320nm and 640nm.They are the characteristic peaks of he emeraldine form of PANI. After we synthesize the emeraldine form of polyaniline, we dope it by using different doping acids(HCl、HBr、HNO3、H3PO4、DBSA) and then we solve it in DMSO to measure its conductivity and solubility. In the study of preparing conductive particles, we take the 0.982 μm flake graphite(GS-75) and the 4.292 μm flake graphite(GP-44) to plate silver electroless. We can find there are Ag and Ag2O on GS-75/Ag and GP-44/Ag particles surface by XRD. We also find small particle graphite (GS-75) electroless plated more silver weight than big particle graphite (GP-44),because the specific surface area of small particle graphite (GS-75) was bigger. In the study of preparing electrically conductive adhesives, we can find resistivity ρ must decline after electroless plating silver. We also find resistivity ρ must decline after adding polyaniline solution, so resistivity ρ of ECAs of particles GS-75、 GP-44 decline about three order after plating silver and adding polyaniline solution. The best cruing temperature of ECAs was 200°C. In this thesis, the best resistivity ρ of ECAs was 0.000421 ohm-cm, and it was the ECAs of GS-75/Ag cured at 200°C. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-13T01:41:05Z (GMT). No. of bitstreams: 1 ntu-96-R94549030-1.pdf: 2828570 bytes, checksum: 4ba6210da250c5fc73eeb5cd1c5d0ef4 (MD5) Previous issue date: 2007 | en |
| dc.description.tableofcontents | 中文摘要 I
英文摘要 II 目錄 IV 圖表目錄 VI 第一章 緒論 1 1-1 研究動機與目標 2 第二章 文獻回顧與導電機制 3 2-1 導電性高分子 3 簡介 3 導電性高分子的導電機構 5 導電性高分子的聚合方式 7 導電性高分子的摻雜 8 2-2 聚苯胺 9 聚苯胺化學結構 9 聚苯胺之合成方法及合成機構 11 2-3 導電膠 14 導電膠的導電形式 15 導電膠的組成 17 導電膠的導電機構 22 影響導電膠導電度的因素 25 無電鍍的介紹 28 第三章 實驗內容 30 3-1 實驗藥品與材料 30 3-2 實驗設備與儀器 32 3-3 實驗流程圖 38 3-4 實驗方法 42 第四章 結果與討論 48 4-1 聚苯胺分析 48 UV-vis分析 48 GPC分析 50 4-2 聚苯胺溶液導電度及溶解度 51 4-3 導電粒子分析 54 粒徑分析 54 SEM分析 56 鍍銀後石墨粒子之XRD分析 58 ICP分析鍍銀石墨粒子之銀含量 60 4-4 導電膠分析 62 DSC分析 62 加入聚苯胺對導電膠導電度的影響 64 加入硫醇當分散劑對導電度的影響 71 聚苯胺溶液用量對導電度的影響 73 不同摻雜酸聚苯胺溶液對導電度的影響 76 粒徑大小對導電度的影響 78 固化溫度對導電度的影響 80 第五章 結論 81 參考文獻 83 | |
| dc.language.iso | zh-TW | |
| dc.subject | 無電鍍銀 | zh_TW |
| dc.subject | 聚苯胺 | zh_TW |
| dc.subject | 導電膠 | zh_TW |
| dc.subject | conductive adhesive | en |
| dc.subject | electroless plating | en |
| dc.subject | polyaniline | en |
| dc.title | 聚苯胺對無電鍍銀微粒導電膠電阻效應之研究 | zh_TW |
| dc.title | The Effect of Polyaniline on Resistivity of Conducting Adhesives Containing Silver-Plated Particles | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 95-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 高振宏,蔡子萱 | |
| dc.subject.keyword | 聚苯胺,無電鍍銀,導電膠, | zh_TW |
| dc.subject.keyword | polyaniline,electroless plating,conductive adhesive, | en |
| dc.relation.page | 85 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2007-07-12 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 高分子科學與工程學研究所 | zh_TW |
| 顯示於系所單位: | 高分子科學與工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-96-1.pdf 未授權公開取用 | 2.76 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
