請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/30165完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 林仁混(Jen-Kun Lin) | |
| dc.contributor.author | Chih-Li Lin | en |
| dc.contributor.author | 林志立 | zh_TW |
| dc.date.accessioned | 2021-06-13T01:40:40Z | - |
| dc.date.available | 2008-07-20 | |
| dc.date.copyright | 2007-07-20 | |
| dc.date.issued | 2007 | |
| dc.date.submitted | 2007-07-12 | |
| dc.identifier.citation | General Introduction
[1] Bokuchava MA, Skobeleva NI. The biochemistry and technology of tea manufacture. Crit Rev Food Sci Nutr 1980;12(4):303-70. [2] Brune B, Gotz C, Messmer UK, Sandau K, Hirvonen MR, Lapetina EG. Superoxide formation and macrophage resistance to nitric oxide-mediated apoptosis. J Biol Chem 1997;272(11):7253-8. [3] Doucas H, Garcea G, Neal CP, Manson MM, Berry DP. Chemoprevention of pancreatic cancer: a review of the molecular pathways involved, and evidence for the potential for chemoprevention. Pancreatology 2006;6(5):429-39. [4] Frank B, Gupta S. A review of antioxidants and Alzheimer's disease. Ann Clin Psychiatry 2005;17(4):269-86. [5] Fraser ML, Mok GS, Lee AH. Green tea and stroke prevention: emerging evidence. Complement Ther Med 2007;15(1):46-53. [6] Greenberg JA, Axen KV, Schnoll R, Boozer CN. Coffee, tea and diabetes: the role of weight loss and caffeine. Int J Obes (Lond) 2005;29(9):1121-9. [7] Lee HH, Ho CT, Lin JK. Theaflavin-3,3'-digallate and penta-O-galloyl-beta-D-glucose inhibit rat liver microsomal 5alpha-reductase activity and the expression of androgen receptor in LNCaP prostate cancer cells. Carcinogenesis 2004;25(7):1109-18. [8] Liang YC, Lin-shiau SY, Chen CF, Lin JK. Suppression of extracellular signals and cell proliferation through EGF receptor binding by (-)-epigallocatechin gallate in human A431 epidermoid carcinoma cells. J Cell Biochem 1997;67(1):55-65. [9] Lin YL, Lin JK. (-)-Epigallocatechin-3-gallate blocks the induction of nitric oxide synthase by down-regulating lipopolysaccharide-induced activity of transcription factor nuclear factor-kappaB. Mol Pharmacol 1997;52(3):465-72. [10] Ramassamy C. Emerging role of polyphenolic compounds in the treatment of neurodegenerative diseases: a review of their intracellular targets. Eur J Pharmacol 2006;545(1):51-64. [11] Valko M, Leibfritz D, Moncol J, Cronin MT, Mazur M, Telser J. Free radicals and antioxidants in normal physiological functions and human disease. Int J Biochem Cell Biol 2007;39(1):44-84. [12] Way TD, Kao MC, Lin JK. Apigenin induces apoptosis through proteasomal degradation of HER2/neu in HER2/neu-overexpressing breast cancer cells via the phosphatidylinositol 3-kinase/Akt-dependent pathway. J Biol Chem 2004;279(6):4479-89. [13] Way TD, Lee HH, Kao MC, Lin JK. Black tea polyphenol theaflavins inhibit aromatase activity and attenuate tamoxifen resistance in HER2/neu-transfected human breast cancer cells through tyrosine kinase suppression. Eur J Cancer 2004;40(14):2165-74. [14] Weng MS, Ho YS, Lin JK. Chrysin induces G1 phase cell cycle arrest in C6 glioma cells through inducing p21Waf1/Cip1 expression: involvement of p38 mitogen-activated protein kinase. Biochem Pharmacol 2005;69(12):1815-27. [15] Wolfram S, Wang Y, Thielecke F. Anti-obesity effects of green tea: from bedside to bench. Mol Nutr Food Res 2006;50(2):176-87. [16] Yeh CW, Chen WJ, Chiang CT, Lin-Shiau SY, Lin JK. Suppression of fatty acid synthase in MCF-7 breast cancer cells by tea and tea polyphenols: a possible mechanism for their hypolipidemic effects. Pharmacogenomics J 2003;3(5):267-76. Part I [1] Alvarez AR, Sandoval PC, Leal NR, Castro PU, Kosik KS. Activation of the neuronal c-Abl tyrosine kinase by amyloid-beta-peptide and reactive oxygen species. Neurobiol Dis 2004;17(2):326-36. [2] Blass JP. Alzheimer's disease and Alzheimer's dementia: distinct but overlapping entities. Neurobiol Aging 2002;23(6):1077-84. [3] Buxbaum JD, Liu KN, Luo Y, Slack JL, Stocking KL, Peschon JJ, Johnson RS, Castner BJ, Cerretti DP, Black RA. Evidence that tumor necrosis factor alpha converting enzyme is involved in regulated alpha-secretase cleavage of the Alzheimer amyloid protein precursor. J Biol Chem 1998;273(43):27765-7. [4] Choi YT, Jung CH, Lee SR, Bae JH, Baek WK, Suh MH, Park J, Park CW, Suh SI. The green tea polyphenol (-)-epigallocatechin gallate attenuates beta-amyloid-induced neurotoxicity in cultured hippocampal neurons. Life Sci 2001;70(5):603-14. [5] Dai Q, Borenstein AR, Wu Y, Jackson JC, Larson EB. Fruit and vegetable juices and Alzheimer's disease: the Kame Project. Am J Med 2006;119(9):751-9. [6] De Felice FG, Wu D, Lambert MP, Fernandez SJ, Velasco PT, Lacor PN, Bigio EH, Jerecic J, Acton PJ, Shughrue PJ, Chen-Dodson E, Kinney GG, Klein WL. Alzheimer's disease-type neuronal tau hyperphosphorylation induced by Abeta oligomers. Neurobiol Aging 2007. (In press) [7] Drachman DA. Aging of the brain, entropy, and Alzheimer disease. Neurology 2006;67(8):1340-52. [8] Esposito E, Rotilio D, Di M, V, Di GC, Cacchio M, Algeri S. A review of specific dietary antioxidants and the effects on biochemical mechanisms related to neurodegenerative processes. Neurobiol Aging 2002;23(5):719-35. [9] Floyd RA, Hensley K. Oxidative stress in brain aging. Implications for therapeutics of neurodegenerative diseases. Neurobiol Aging 2002;23(5):795-807. [10] Hardy JA, Higgins GA. Alzheimer's disease: the amyloid cascade hypothesis. Science 1992;256(5054):184-5. [11] Hong M, Chen DC, Klein PS, Lee VM. Lithium reduces tau phosphorylation by inhibition of glycogen synthase kinase-3. J Biol Chem 1997;272(40):25326-32. [12] Hsiao K, Chapman P, Nilsen S, Eckman C, Harigaya Y, Younkin S, Yang F, Cole G. Correlative memory deficits, Abeta elevation, and amyloid plaques in transgenic mice. Science 1996;274(5284):99-102. [13] Iqbal K, Grundke-Iqbal I. Discoveries of tau, abnormally hyperphosphorylated tau and others of neurofibrillary degeneration: a personal historical perspective. J Alzheimers Dis 2006;9(3 Suppl):219-42. [14] Lau KF, Miller CC, Anderton BH, Shaw PC. Molecular cloning and characterization of the human glycogen synthase kinase-3beta promoter. Genomics 1999;60(2):121-8. [15] Levites Y, Amit T, Mandel S, Youdim MB. Neuroprotection and neurorescue against Abeta toxicity and PKC-dependent release of nonamyloidogenic soluble precursor protein by green tea polyphenol (-)-epigallocatechin-3-gallate. FASEB J 2003;17(8):952-4. [16] Lovestone S, Hartley CL, Pearce J, Anderton BH. Phosphorylation of tau by glycogen synthase kinase-3 beta in intact mammalian cells: the effects on the organization and stability of microtubules. Neuroscience 1996;73(4):1145-57. [17] Ma QL, Lim GP, Harris-White ME, Yang F, Ambegaokar SS, Ubeda OJ, Glabe CG, Teter B, Frautschy SA, Cole GM. Antibodies against beta-amyloid reduce Abeta oligomers, glycogen synthase kinase-3beta activation and tau phosphorylation in vivo and in vitro. J Neurosci Res 2006;83(3):374-84. [18] Mandel S, Amit T, Reznichenko L, Weinreb O, Youdim MB. Green tea catechins as brain-permeable, natural iron chelators-antioxidants for the treatment of neurodegenerative disorders. Mol Nutr Food Res 2006;50(2):229-34. [19] Mandel S, Reznichenko L, Amit T, Youdim MB. Green tea polyphenol (-)-epigallocatechin-3-gallate protects rat PC12 cells from apoptosis induced by serum withdrawal independent of P13-Akt pathway. Neurotox Res 2003;5(6):419-24. [20] Miranda S, Opazo C, Larrondo LF, Munoz FJ, Ruiz F, Leighton F, Inestrosa NC. The role of oxidative stress in the toxicity induced by amyloid beta-peptide in Alzheimer's disease. Prog Neurobiol 2000;62(6):633-48. [21] Mosmann T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods 1983;65(1-2):55-63. [22] Munoz-Montano JR, Moreno FJ, Avila J, az-Nido J. Lithium inhibits Alzheimer's disease-like tau protein phosphorylation in neurons. FEBS Lett 1997;411(2-3):183-8. [23] Nakaya T, Suzuki T. Role of APP phosphorylation in FE65-dependent gene transactivation mediated by AICD. Genes Cells 2006;11(6):633-45. [24] Obregon DF, Rezai-Zadeh K, Bai Y, Sun N, Hou H, Ehrhart J, Zeng J, Mori T, Arendash GW, Shytle D, Town T, Tan J. ADAM10 activation is required for green tea (-)-epigallocatechin-3-gallate-induced alpha-secretase cleavage of amyloid precursor protein. J Biol Chem 2006;281(24):16419-27. [25] Perkinton MS, Standen CL, Lau KF, Kesavapany S, Byers HL, Ward M, McLoughlin DM, Miller CC. The c-Abl tyrosine kinase phosphorylates the Fe65 adaptor protein to stimulate Fe65/amyloid precursor protein nuclear signaling. J Biol Chem 2004;279(21):22084-91. [26] Rezai-Zadeh K, Shytle D, Sun N, Mori T, Hou H, Jeanniton D, Ehrhart J, Townsend K, Zeng J, Morgan D, Hardy J, Town T, Tan J. Green tea epigallocatechin-3-gallate (EGCG) modulates amyloid precursor protein cleavage and reduces cerebral amyloidosis in Alzheimer transgenic mice. J Neurosci 2005;25(38):8807-14. [27] Sabo SL, Lanier LM, Ikin AF, Khorkova O, Sahasrabudhe S, Greengard P, Buxbaum JD. Regulation of beta-amyloid secretion by FE65, an amyloid protein precursor-binding protein. J Biol Chem 1999;274(12):7952-7. [28] Selkoe DJ. Alzheimer disease: mechanistic understanding predicts novel therapies. Ann Intern Med 2004;140(8):627-38. [29] Sinha S, Lieberburg I. Cellular mechanisms of beta-amyloid production and secretion. Proc Natl Acad Sci U S A 1999;96(20):11049-53. [30] Smith MA, Perry G, Richey PL, Sayre LM, Anderson VE, Beal MF, Kowall N. Oxidative damage in Alzheimer's. Nature 1996;382(6587):120-1. [31] Sopher BL, Fukuchi K, Smith AC, Leppig KA, Furlong CE, Martin GM. Cytotoxicity mediated by conditional expression of a carboxyl-terminal derivative of the beta-amyloid precursor protein. Brain Res Mol Brain Res 1994;26(1-2):207-17. [32] Suganuma M, Okabe S, Oniyama M, Tada Y, Ito H, Fujiki H. Wide distribution of [3H](-)-epigallocatechin gallate, a cancer preventive tea polyphenol, in mouse tissue. Carcinogenesis 1998;19(10):1771-6. [33] Takashima A. GSK-3 is essential in the pathogenesis of Alzheimer's disease. J Alzheimers Dis 2006;9(3 Suppl):309-17. [34] Van Etten RA. Cycling, stressed-out and nervous: cellular functions of c-Abl. Trends Cell Biol 1999;9(5):179-86. [35] Wang JY. Nucleo-cytoplasmic communication in apoptotic response to genotoxic and inflammatory stress. Cell Res 2005;15(1):43-8. Part II [1] Aguirre V, Werner ED, Giraud J, Lee YH, Shoelson SE, White MF. Phosphorylation of Ser307 in insulin receptor substrate-1 blocks interactions with the insulin receptor and inhibits insulin action. J Biol Chem 2002;277(2):1531-7. [2] Anderson RA, Polansky MM. Tea enhances insulin activity. J Agric Food Chem 2002;50(24):7182-6. [3] Anton S, Melville L, Rena G. Epigallocatechin gallate (EGCG) mimics insulin action on the transcription factor FOXO1a and elicits cellular responses in the presence and absence of insulin. Cell Signal 2007;19(2):378-83. [4] Birnbaum MJ. Turning down insulin signaling. J Clin Invest 2001;108(5):655-9. [5] Considine RV, Nyce MR, Allen LE, Morales LM, Triester S, Serrano J, Colberg J, Lanza-Jacoby S, Caro JF. Protein kinase C is increased in the liver of humans and rats with non-insulin-dependent diabetes mellitus: an alteration not due to hyperglycemia. J Clin Invest 1995;95(6):2938-44. [6] Da RR, Assaloni R, Ceriello A. The preventive anti-oxidant action of thiazolidinediones: a new therapeutic prospect in diabetes and insulin resistance. Diabet Med 2004;21(11):1249-52. [7] Evans JL, Goldfine ID, Maddux BA, Grodsky GM. Are oxidative stress-activated signaling pathways mediators of insulin resistance and beta-cell dysfunction? Diabetes 2003;52(1):1-8. [8] Gupta D, Varma S, Khandelwal RL. Long-term effects of tumor necrosis factor-alpha treatment on insulin signaling pathway in HepG2 cells and HepG2 cells overexpressing constitutively active Akt/PKB. J Cell Biochem 2006. [9] Haasch D, Berg C, Clampit JE, Pederson T, Frost L, Kroeger P, Rondinone CM. PKCtheta is a key player in the development of insulin resistance. Biochem Biophys Res Commun 2006;343(2):361-8. [10] Hale PJ, Horrocks PM, Wright AD, Fitzgerald MG, Nattrass M, Bailey CJ. Xiaoke tea, a Chinese herbal treatment for diabetes mellitus. Diabet Med 1989;6(8):675-6. [11] Hartman ME, Villela-Bach M, Chen J, Freund GG. Frap-dependent serine phosphorylation of IRS-1 inhibits IRS-1 tyrosine phosphorylation. Biochem Biophys Res Commun 2001;280(3):776-81. [12] Idris I, Gray S, Donnelly R. Protein kinase C activation: isozyme-specific effects on metabolism and cardiovascular complications in diabetes. Diabetologia 2001;44(6):659-73. [13] Jiang G, las-Yang Q, Liu F, Moller DE, Zhang BB. Salicylic acid reverses phorbol 12-myristate-13-acetate (PMA)- and tumor necrosis factor alpha (TNFalpha)-induced insulin receptor substrate 1 (IRS1) serine 307 phosphorylation and insulin resistance in human embryonic kidney 293 (HEK293) cells. J Biol Chem 2003;278(1):180-6. [14] Kellerer M, Mushack J, Seffer E, Mischak H, Ullrich A, Haring HU. Protein kinase C isoforms alpha, delta and theta require insulin receptor substrate-1 to inhibit the tyrosine kinase activity of the insulin receptor in human kidney embryonic cells (HEK 293 cells). Diabetologia 1998;41(7):833-8. [15] Kim SP, Ellmerer M, Van Citters GW, Bergman RN. Primacy of hepatic insulin resistance in the development of the metabolic syndrome induced by an isocaloric moderate-fat diet in the dog. Diabetes 2003;52(10):2453-60. [16] Kim YS, Jhon DY, Lee KY. Involvement of ROS and JNK1 in selenite-induced apoptosis in Chang liver cells. Exp Mol Med 2004;36(2):157-64. [17] Koyama Y, Abe K, Sano Y, Ishizaki Y, Njelekela M, Shoji Y, Hara Y, Isemura M. Effects of green tea on gene expression of hepatic gluconeogenic enzymes in vivo. Planta Med 2004;70(11):1100-2. [18] Kyriakis JM, Avruch J. Sounding the alarm: protein kinase cascades activated by stress and inflammation. J Biol Chem 1996;271(40):24313-6. [19] Lee HB, Yu MR, Song JS, Ha H. Reactive oxygen species amplify protein kinase C signaling in high glucose-induced fibronectin expression by human peritoneal mesothelial cells. Kidney Int 2004;65(4):1170-9. [20] Li RW, Douglas TD, Maiyoh GK, Adeli K, Theriault AG. Green tea leaf extract improves lipid and glucose homeostasis in a fructose-fed insulin-resistant hamster model. J Ethnopharmacol 2005. [21] Lin JK, Lin CL, Liang YC, Lin-Shiau SY, Juan IM. Survey of Catechins, Gallic Acid, and Methylxanthines in Green, Oolong, Pu-erh, and Black Teas. J Agric Food Chem 1998;46(9):3635-42. [22] Liu YF, Herschkovitz A, Boura-Halfon S, Ronen D, Paz K, Leroith D, Zick Y. Serine phosphorylation proximal to its phosphotyrosine binding domain inhibits insulin receptor substrate 1 function and promotes insulin resistance. Mol Cell Biol 2004;24(21):9668-81. [23] Matsuo M, Sasaki N, Saga K, Kaneko T. Cytotoxicity of flavonoids toward cultured normal human cells. Biol Pharm Bull 2005;28(2):253-9. [24] Mussig K, Staiger H, Fiedler H, Moeschel K, Beck A, Kellerer M, Haring HU. Shp2 is required for protein kinase C-dependent phosphorylation of serine 307 in insulin receptor substrate-1. J Biol Chem 2005;280(38):32693-9. [25] Najib S, Sanchez-Margalet V. Homocysteine thiolactone inhibits insulin signaling, and glutathione has a protective effect. J Mol Endocrinol 2001;27(1):85-91. [26] Nakajima K, Yamauchi K, Shigematsu S, Ikeo S, Komatsu M, Aizawa T, Hashizume K. Selective attenuation of metabolic branch of insulin receptor down-signaling by high glucose in a hepatoma cell line, HepG2 cells. J Biol Chem 2000;275(27):20880-6. [27] Newgard CB, Brady MJ, O'Doherty RM, Saltiel AR. Organizing glucose disposal: emerging roles of the glycogen targeting subunits of protein phosphatase-1. Diabetes 2000;49(12):1967-77. [28] Osawa T, Kato Y. Protective role of antioxidative food factors in oxidative stress caused by hyperglycemia. Ann N Y Acad Sci 2005;1043:440-51. [29] Rosen P, Nawroth PP, King G, Moller W, Tritschler HJ, Packer L. The role of oxidative stress in the onset and progression of diabetes and its complications: a summary of a Congress Series sponsored by UNESCO-MCBN, the American Diabetes Association and the German Diabetes Society. Diabetes Metab Res Rev 2001;17(3):189-212. [30] Rossetti L. Glucose toxicity: the implications of hyperglycemia in the pathophysiology of diabetes mellitus. Clin Invest Med 1995;18(4):255-60. [31] Rudich A, Tirosh A, Potashnik R, Hemi R, Kanety H, Bashan N. Prolonged oxidative stress impairs insulin-induced GLUT4 translocation in 3T3-L1 adipocytes. Diabetes 1998;47(10):1562-9. [32] Rudich A, Tirosh A, Potashnik R, Khamaisi M, Bashan N. Lipoic acid protects against oxidative stress induced impairment in insulin stimulation of protein kinase B and glucose transport in 3T3-L1 adipocytes. Diabetologia 1999;42(8):949-57. [33] Shimomura I, Matsuda M, Hammer RE, Bashmakov Y, Brown MS, Goldstein JL. Decreased IRS-2 and increased SREBP-1c lead to mixed insulin resistance and sensitivity in livers of lipodystrophic and ob/ob mice. Mol Cell 2000;6(1):77-86. [34] Taniguchi CM, Ueki K, Kahn R. Complementary roles of IRS-1 and IRS-2 in the hepatic regulation of metabolism. J Clin Invest 2005;115(3):718-27. [35] Waltner-Law ME, Wang XL, Law BK, Hall RK, Nawano M, Granner DK. Epigallocatechin gallate, a constituent of green tea, represses hepatic glucose production. J Biol Chem 2002;277(38):34933-40. [36] West IC. Radicals and oxidative stress in diabetes. Diabet Med 2000;17(3):171-80. [37] Wolfram S, Raederstorff D, Preller M, Wang Y, Teixeira SR, Riegger C, Weber P. Epigallocatechin gallate supplementation alleviates diabetes in rodents. J Nutr 2006;136(10):2512-8. [38] Wolfram S, Raederstorff D, Preller M, Wang Y, Teixeira SR, Riegger C, Weber P. Epigallocatechin gallate supplementation alleviates diabetes in rodents. J Nutr 2006;136(10):2512-8. [39] Wolfram S, Wang Y, Thielecke F. Anti-obesity effects of green tea: from bedside to bench. Mol Nutr Food Res 2006;50(2):176-87. [40] Wu LY, Juan CC, Hwang LS, Hsu YP, Ho PH, Ho LT. Green tea supplementation ameliorates insulin resistance and increases glucose transporter IV content in a fructose-fed rat model. Eur J Nutr 2004;43(2):116-24. [41] Yamashita R, Saito T, Satoh S, Aoki K, Kaburagi Y, Sekihara H. Effects of dehydroepiandrosterone on gluconeogenic enzymes and glucose uptake in human hepatoma cell line, HepG2. Endocr J 2005;52(6):727-33. Part III [1] Angulo P. Nonalcoholic fatty liver disease. N Engl J Med 2002;346(16):1221-31. [2] Beltz LA, Bayer DK, Moss AL, Simet IM. Mechanisms of cancer prevention by green and black tea polyphenols. Anticancer Agents Med Chem 2006;6(5):389-406. [3] Bhathena SJ, Velasquez MT. Beneficial role of dietary phytoestrogens in obesity and diabetes. Am J Clin Nutr 2002;76(6):1191-201. [4] Blattler SM, Rencurel F, Kaufmann MR, Meyer UA. In the regulation of cytochrome P450 genes, phenobarbital targets LKB1 for necessary activation of AMP-activated protein kinase. Proc Natl Acad Sci U S A 2007;104(3):1045-50. [5] Carling D. The AMP-activated protein kinase cascade--a unifying system for energy control. Trends Biochem Sci 2004;29(1):18-24. [6] Charlton M, Kasparova P, Weston S, Lindor K, Maor-Kendler Y, Wiesner RH, Rosen CB, Batts KP. Frequency of nonalcoholic steatohepatitis as a cause of advanced liver disease. Liver Transpl 2001;7(7):608-14. [7] Clifford MN. Diet-derived phenols in plasma and tissues and their implications for health. Planta Med 2004;70(12):1103-14. [8] Fediuc S, Gaidhu MP, Ceddia RB. Regulation of AMP-activated protein kinase and acetyl-CoA carboxylase phosphorylation by palmitate in skeletal muscle cells. J Lipid Res 2006;47(2):412-20. [9] Giri S, Rattan R, Haq E, Khan M, Yasmin R, Won JS, Key L, Singh AK, Singh I. AICAR inhibits adipocyte differentiation in 3T3L1 and restores metabolic alterations in diet-induced obesity mice model. Nutr Metab (Lond) 2006;3:31. [10] Kemp BE, Stapleton D, Campbell DJ, Chen ZP, Murthy S, Walter M, Gupta A, Adams JJ, Katsis F, van DB, Jennings IG, Iseli T, Michell BJ, Witters LA. AMP-activated protein kinase, super metabolic regulator. Biochem Soc Trans 2003;31(Pt 1):162-8. [11] Kemp BE, Stapleton D, Campbell DJ, Chen ZP, Murthy S, Walter M, Gupta A, Adams JJ, Katsis F, van DB, Jennings IG, Iseli T, Michell BJ, Witters LA. AMP-activated protein kinase, super metabolic regulator. Biochem Soc Trans 2003;31(Pt 1):162-8. [12] Lin JK, Lin-Shiau SY. Mechanisms of hypolipidemic and anti-obesity effects of tea and tea polyphenols. Mol Nutr Food Res 2006;50(2):211-7. [13] Maron DJ, Lu GP, Cai NS, Wu ZG, Li YH, Chen H, Zhu JQ, Jin XJ, Wouters BC, Zhao J. Cholesterol-lowering effect of a theaflavin-enriched green tea extract: a randomized controlled trial. Arch Intern Med 2003;163(12):1448-53. [14] Menet MC, Sang S, Yang CS, Ho CT, Rosen RT. Analysis of theaflavins and thearubigins from black tea extract by MALDI-TOF mass spectrometry. J Agric Food Chem 2004;52(9):2455-61. [15] Nehra V, Angulo P, Buchman AL, Lindor KD. Nutritional and metabolic considerations in the etiology of nonalcoholic steatohepatitis. Dig Dis Sci 2001;46(11):2347-52. [16] Neuschwander-Tetri BA, Caldwell SH. Nonalcoholic steatohepatitis: summary of an AASLD Single Topic Conference. Hepatology 2003;37(5):1202-19. [17] Ronnett GV, Kim EK, Landree LE, Tu Y. Fatty acid metabolism as a target for obesity treatment. Physiol Behav 2005;85(1):25-35. [18] Sanyal AJ. Mechanisms of Disease: pathogenesis of nonalcoholic fatty liver disease. Nat Clin Pract Gastroenterol Hepatol 2005;2(1):46-53. [19] Scheen AJ, Luyckx FH. Obesity and liver disease. Best Pract Res Clin Endocrinol Metab 2002;16(4):703-16. [20] Shaw RJ, Lamia KA, Vasquez D, Koo SH, Bardeesy N, Depinho RA, Montminy M, Cantley LC. The kinase LKB1 mediates glucose homeostasis in liver and therapeutic effects of metformin. Science 2005;310(5754):1642-6. [21] Tavridou A, Kaklamanis L, Megaritis G, Kourounakis AP, Papalois A, Roukounas D, Rekka EA, Kourounakis PN, Charalambous A, Manolopoulos VG. Pharmacological characterization in vitro of EP2306 and EP2302, potent inhibitors of squalene synthase and lipid biosynthesis. Eur J Pharmacol 2006;535(1-3):34-42. [22] Taylor EB, Ellingson WJ, Lamb JD, Chesser DG, Winder WW. Long-chain acyl-CoA esters inhibit phosphorylation of AMP-activated protein kinase at threonine-172 by LKB1/STRAD/MO25. Am J Physiol Endocrinol Metab 2005;288(6):E1055-E1061. [23] Weng MS, Ho CT, Ho YS, Lin JK. Theanaphthoquinone inhibits fatty acid synthase expression in EGF-stimulated human breast cancer cells via the regulation of EGFR/ErbB-2 signaling. Toxicol Appl Pharmacol 2007;218:107-118. [24] Winder WW, Hardie DG. AMP-activated protein kinase, a metabolic master switch: possible roles in type 2 diabetes. Am J Physiol 1999;277(1 Pt 1):E1-10. [25] Yang GY, Liao J, Li C, Chung J, Yurkow EJ, Ho CT, Yang CS. Effect of black and green tea polyphenols on c-jun phosphorylation and H(2)O(2) production in transformed and non-transformed human bronchial cell lines: possible mechanisms of cell growth inhibition and apoptosis induction. Carcinogenesis 2000;21(11):2035-9. [26] Yang M, Wang C, Chen H. Green, oolong and black tea extracts modulate lipid metabolism in hyperlipidemia rats fed high-sucrose diet. J Nutr Biochem 2001;12(1):14-20. [27] Yeh CW, Chen WJ, Chiang CT, Lin-Shiau SY, Lin JK. Suppression of fatty acid synthase in MCF-7 breast cancer cells by tea and tea polyphenols: a possible mechanism for their hypolipidemic effects. Pharmacogenomics J 2003;3(5):267-76. [28] Zhou G, Myers R, Li Y, Chen Y, Shen X, Fenyk-Melody J, Wu M, Ventre J, Doebber T, Fujii N, Musi N, Hirshman MF, Goodyear LJ, Moller DE. Role of AMP-activated protein kinase in mechanism of metformin action. J Clin Invest 2001;108(8):1167-74. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/30165 | - |
| dc.description.abstract | 茶是世界上最被廣泛飲用的飲料,而其中許多的成分,特別是多酚類化合物在流行病學上被證實可以降低許多疾病的風險。在本研究中,我們據此來探討茶多酚對於阿茲海默症及代謝症候群的預防作用機制。在第一部份中,本研究發現處理EGCG可以經由促進類澱粉蛋白的分解機制,使得神經細胞中的類澱粉蛋白含量得以有效的降低,進一步發現除了這個機制外,EGCG更可以透過抑制細胞中c-Abl蛋白激酶的活性來達到保護神經細胞的效果。在第二部分中,已知在第二型糖尿病中高血糖的症狀會造成體內胰島素信息傳遞的衰減,因此利用高糖處理肝細胞的實驗模式提出一個可能的EGCG抗糖尿病機制。本研究發現高糖會促使肝細胞中IRS蛋白活性下降,進一步使得由胰島素促進的Akt蛋白磷酸化受到抑制,然而處理EGCG可以回復IRS蛋白的活性,並使得胰島素信息傳遞受到抑制的情形得以緩解。在第三部分中,探討為何茶多酚對於肝細胞具有顯著抑制脂質累積的能力。本研究發現茶黃素多酚類對於降低肝細胞中脂質的累積與合成具有顯著的效果,進一步證實此種抑制作用主要是透過調控活性氧自由基與LKB-1蛋白激酶,來誘導AMPK蛋白激酶活性增加,使得合成脂質的關鍵酶ACC的活性得以被抑制。綜合以上的研究結果證明茶多酚對於抑制由類澱粉蛋白導致的阿茲海默症與抗糖尿病等皆能發揮其顯著功效,希望經由發現這些機制在未來對於這些疾病的預防與治療上能有所貢獻。 | zh_TW |
| dc.description.abstract | Tea is the most consumed drink in the world containing many compounds particularly polyphenols shown to reduce the risk of a variety of diseases in epidemiological studies. In the present study, we demonstrated the possible preventive mechanisms of tea polyphenols on Alzheimer's disease and metabolic syndrome model. In part I, the results deminstrated that treatment with EGCG reduced the Aβ levels by enhancing endogenous APP nonamyloidogenic proteolytic processing in Aβ-induced AD model both in vitro and in vivo. Moreover, our results indicated that the neuroprotective action of EGCG may take place through c-Abl inhibition other than the promotion of APP nonamyloidogenic proteolysis. Part II demonstrated a possible mechanism for the antidiabetic effects of EGCG. As insulin resistance is a primary characteristic of type 2 diabetes resulting from hyperglycemia defects in insulin signals transduction, the aim of this study was to investigate the effects of EGCG on the insulin signaling pathway under high glucose. The results showed that high glucose downregulates IRS signaling activity, and subsequently repress hepatic glucose uptake and utilization by suppressing Akt activity. However, the EGCG supplementation alleviates this insulin signaling blockade by improving the function of IRS molecules, establishing a new molecular mechanism for antidiabetic activities of tea. In part III, the study examined why tea polyphenols have inhibitory effects on liver fat accumulation of hepatic cells. The results demonstrated that the tea compounds theaflavins significantly reduced hepatic lipid content, suppressed fatty acid synthesis both in vitro and in vivo. Furthermore, theaflavins also inhibited ACC activities by stimulating AMPK through LKB-1 and ROS pathway. The above-listed observations reveal that tea polyphenols indeed inhibit Aβ-induced neurotoxicity and display some antidiabetic benefits. Our results suggest that tea polyphenols show protection effects in the target cells and may be useful for the prevention of these diseases. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-13T01:40:40Z (GMT). No. of bitstreams: 1 ntu-96-D92442007-1.pdf: 2996420 bytes, checksum: d5439171e2ae70e741e90f479e76b75e (MD5) Previous issue date: 2007 | en |
| dc.description.tableofcontents | Abbreviations 2
Abstract (Chinese) 3 Abstract 4 General Introduction 5 Figures 16 Part I Epigallocatechin Gallate (EGCG) Attenuates β-Amyloid-Induced Neurotoxicity by Inhibiting c-Abl/FE65 Nuclear Translocation and GSK3β Activation 19 1.1 Summary 20 1.2 Introduction 21 1.3 Materials and Methods 24 1.4 Results 29 1.5 Discussion 37 1.6 References 40 1.7 Figures 44 Part II Epigallocatechin Gallate (EGCG) Attenuates High Glucose-Induced Insulin Signaling Blockade in Human HepG2 Cells 63 2.1 Summary 64 2.2 Introduction 65 2.3 Materials and Methods 68 2.4 Results 73 2.5 Discussion 82 2.6 References 87 2.7 Figures 92 Part III Tea Polyphenols Attenuate Hepatic Lipid Accumulation through Activating AMPK in Human HepG2 Cells 103 3.1 Summary 104 3.2 Introduction 105 3.3 Materials and Methods 108 3.4 Results 114 3.5 Discussion 119 3.6 References 122 3.7 Figures & Table 126 Conclusion 135 | |
| dc.language.iso | en | |
| dc.subject | 代謝症候群 | zh_TW |
| dc.subject | 阿茲海默症 | zh_TW |
| dc.subject | 乙型類澱粉 | zh_TW |
| dc.subject | 胰島素 | zh_TW |
| dc.subject | 茶多酚 | zh_TW |
| dc.subject | metabolic syndrome | en |
| dc.subject | beta-amyloid | en |
| dc.subject | tea polyphenol | en |
| dc.subject | insulin | en |
| dc.title | 茶多酚對於阿茲海默症及代謝症候群預防機制之研究 | zh_TW |
| dc.title | The study of tea polyphenols preventive mechanisms on Alzheimer's disease and metabolic syndrome | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 95-2 | |
| dc.description.degree | 博士 | |
| dc.contributor.oralexamcommittee | 彭汪嘉康,蕭水銀,高銘欽,鍾景光,楊泮池,吳妍華,鄭安理 | |
| dc.subject.keyword | 茶多酚,阿茲海默症,乙型類澱粉,胰島素,代謝症候群, | zh_TW |
| dc.subject.keyword | tea polyphenol,beta-amyloid,insulin,metabolic syndrome, | en |
| dc.relation.page | 138 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2007-07-12 | |
| dc.contributor.author-college | 醫學院 | zh_TW |
| dc.contributor.author-dept | 生物化學暨分子生物學研究所 | zh_TW |
| 顯示於系所單位: | 生物化學暨分子生物學科研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-96-1.pdf 未授權公開取用 | 2.93 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
